FAIRCHILD

SEMICONDUCTOR

MM74C73 • MM74C76 Dual J-K Flip-Flops with Clear and Preset

General Description

The MM74C73 and MM74C76 dual J-K flip-flops are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement transistors. Each flip-flop has independent J, K, clock and clear inputs and Q and Q outputs. The MM74C76 flip flops also include preset inputs and are supplied in 16 pin packages. This flip-flop is edge sensitive to the clock input and change state on the negative going transition of the clock pulse. Clear or preset is independent of the clock and is accomplished by a low level on the respective input.

October 1987 Revised May 2002

MM74C73 • MM74C76 Dual J-K Flip-Flops with Clear and Preset

Ordering Code:

Order Number	Package Number	Package Description
MM74C73N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74C76M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74C76N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Features

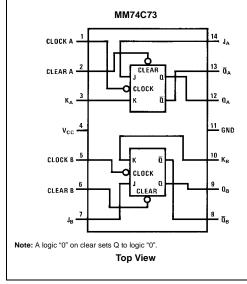
■ Supply voltage range: 3V to 15V

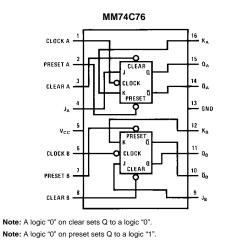
■ Low power: 50 nW (typ.)

Applications

Data terminals
Instrumentation
Medical electronics
Alarm systems
Industrial electronics
Remote metering
Computers

Automotive

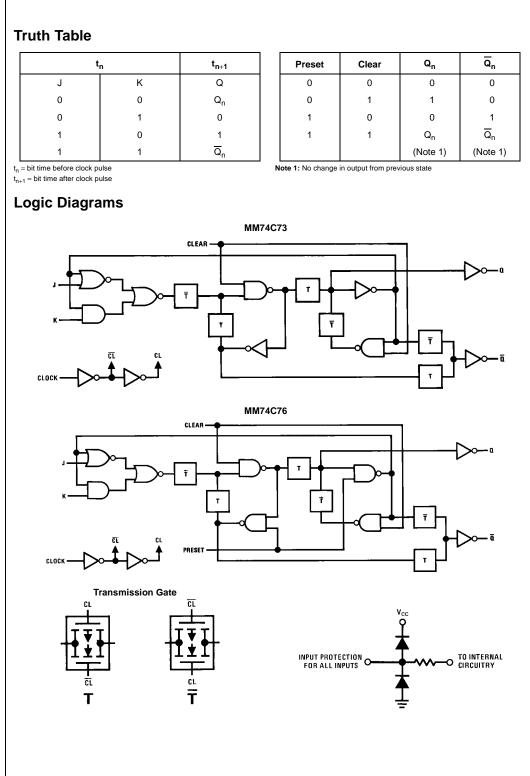

■ High noise immunity: 0.45 V_{CC} (typ.)


Medium speed operation: 10 MHz (typ.)

■ Tenth power TTL compatible: Drive 2 LPTTL loads

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagrams

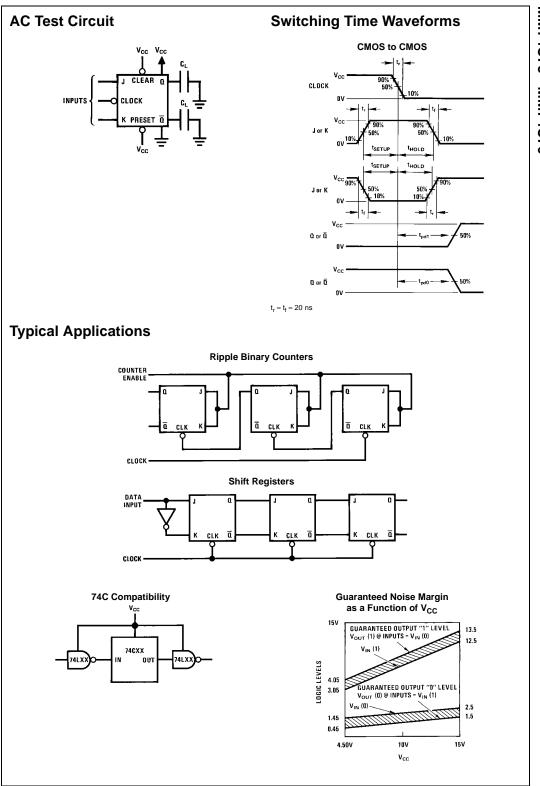


Top View

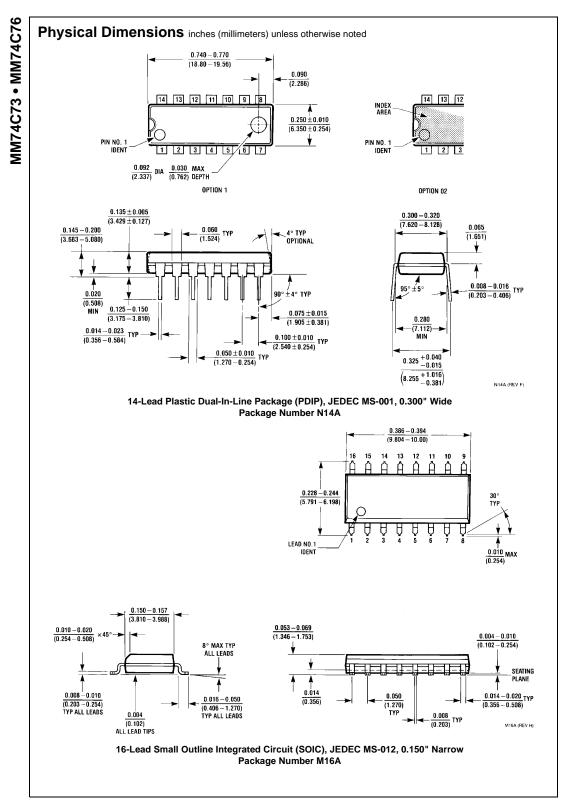
© 2002 Fairchild Semiconductor Corporation DS005884

Absolute Maximum Ratings(Note 2)

Voltage at Any Pin Operating Temperature Range	-0.3V to V _{CC} + 0.3V -55°C to +125°C
Storage Temperature	-65°C to +150°C
Power Dissipation	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature	
(Soldering, 10 seconds)	260°C
Operating V _{CC} Range	+3V to 15V
V _{CC} (Max)	18V

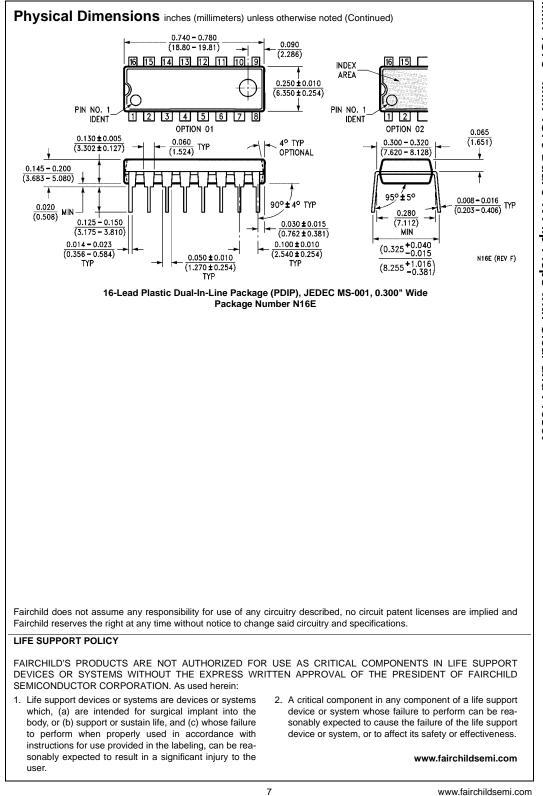

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of Electrical Characteristics provides conditions for actual device operation.

DC Electrical Characteristics


Symbol	Parameter	Conditions	Min	Тур	Max	Units	
CMOS TO	смоз						
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			v	
		$V_{CC} = 10V$	8				
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$			1.5	v	
		$V_{CC} = 10V$			2	Ī	
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V$	4.5			v	
		$V_{CC} = 10V$	9			1	
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V$			0.5	v	
		$V_{CC} = 10V$			1		
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V$			1	μΑ	
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V$	-1			μΑ	
I _{CC}	Supply Current	$V_{CC} = 15V$		0.050	60	μΑ	
LOW POW	ER TTL TO CMOS INTERFACE						
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 4.75V$	V _{CC} – 1.5			V	
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 4.75V$			0.8	V	
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75 V$, $I_O = -360 \ \mu A$	2.4			V	
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75 V$, $I_{O} = 360 \ \mu A$			0.4	V	
OUTPUT D	RIVE (See Family Characteristics	Data Sheet) (Short Circuit Current)					
ISOURCE	Output Source Current	$V_{CC} = 5V, V_{IN(0)} = 0V$	-1.75			mA	
		$T_A = 25^{\circ}C, V_{OUT} = 0V$	-1.75				
ISOURCE	Output Source Current	$V_{CC} = 10V, V_{IN(0)} = 0V$	-8			mA	
		$T_A = 25^{\circ}C, \ V_{OUT} = 0V$	-0				
I _{SINK}	Output Sink Current	$V_{CC} = 5V, V_{IN(1)} = 5V$	1.75			mA	
		$T_A = 25^{\circ}C$, $V_{OUT} = V_{CC}$	1.75				
I _{SINK} Out	Output Sink Current	$V_{CC} = 10V, V_{IN(1)} = 10V$	8			mA	
	1	$T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	0				

$T_A = 25^{\circ}C$, $C_L = 50 \text{ pF}$, unless otherwise noted									
Symbol	Parameter	Conditions	Min	Тур	Max	Uni			
CIN	Input Capacitance	Any Input		5		pl			
t _{pd0} , t _{pd1}	Propagation Delay Time to a	$V_{CC} = 5V$		180	300	ns			
	Logical "0" or Logical "1" from	$V_{CC} = 10V$		70	110				
	Clock to Q or Q								
t _{pd0}	Propagation Delay Time to a	$V_{CC} = 5V$		200	300	ns			
	Logical "0" from Preset or Clear	$V_{CC} = 10V$		80	130				
t _{pd}	Propagation Delay Time to a	$V_{CC} = 5V$		200	300	ns			
	Logical "1" from Preset or Clear	$V_{CC} = 10V$		80	130				
t _S	Time Prior to Clock Pulse that	$V_{CC} = 5V$		110	175	ns			
	Data must be Present	$V_{CC} = 10V$		45	70				
t _H	Time after Clock Pulse that J	$V_{CC} = 5V$		-40	0	ns			
	and K must be Held	$V_{CC} = 10V$		-20	0				
t _{PW}	Minimum Clock Pulse Width	$V_{CC} = 5V$		120	190	ns			
	$t_{WL} = t_{WH}$	$V_{CC} = 10V$		50	80				
t _{PW}	Minimum Preset and Clear	$V_{CC} = 5V$		90	130	ns			
	Pulse Width	$V_{CC} = 10V$		40	60				
t _{MAX}	Maximum Toggle Frequency	$V_{CC} = 5V$	2.5	4		MHz			
		$V_{CC} = 10V$	7	11					
t _r , t _f	Clock Pulse Rise and Fall Time	$V_{CC} = 5V$			15	μs			
		$V_{CC} = 10V$			5				

neters are guaranteed by DC correlated testing AC Parar



MM74C73 • MM74C76

www.fairchildsemi.com

6

MM74C73 • MM74C76 Dual J-K Flip-Flops with Clear and Preset