FEATURES

Single－Supply Operation：2．7 V to 12 V
Wide Input Voltage Range
Rail－to－Rail Output Swing
Low Supply Current： $300 \mu \mathrm{~A} /$ Amp
Wide Bandwidth： $\mathbf{3 ~ M H z}$
Slew Rate： $0.5 \mathrm{~V} / \mu \mathrm{s}$
Low Offset Voltage： $700 \mu \mathrm{~V}$
No Phase Reversal

APPLICATIONS

Industrial Process Control

Battery Powered Instrumentation
Power Supply Control and Protection
Telecom
Remote Sensors
Low Voltage Strain Gage Amplifiers
DAC Output Amplifier

GENERAL DESCRIPTION

The OP191，OP291 and OP491 are single，dual and quad micropower，single－supply， 3 M Hz bandwidth amplifiers fea－ turing rail－to－rail inputs and outputs．All are guaranteed to operate from a 3 volt single supply as well as ± 5 volt dual supplies．
Fabricated on Analog Devices＇CBCM OS process，the OP191 family has a unique input stage that allows the input voltage to safely extend 10 volts beyond either supply without any phase inversion or latch－up．The output voltage swings to within millivolts of the supplies and continues to sink or source current all the way to the supplies．
Applications for these amplifiers include portable telecom equipment，power supply control and protection，and interface for transducers with wide output ranges．Sensors requiring a rail－to－rail input amplifier include H all effect，piezo electric， and resistive transducers．
The ability to swing rail－to－rail at both the input and output enables designers to build multistage filters in single－supply systems and maintain high signal－to－noise ratios．
The OP191／OP291／OP491 are specified over the extended industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature range．The OP 191 single and OP291 dual amplifiers are available in 8－pin plastic DIPs and SO surface mount packages．The OP491 quad is available in 14－pin DIPs and narrow 14－pin SO packages． Consult factory for OP491 T SSOP availability．

REV． 0

[^0]
OP191／OP291／OP491 PIN CONFIGURATIONS

8－Lead Narrow－B ody SO
（S Suffix）

14－Lead Epoxy DIP （P Suffix）

8－Lead Epoxy DIP （P Suffix）

8－Lead E poxy DIP （P Suffix）

14－Lead SO （S Suffix）

14－Lead TSSOP
 （RU Suffix）

One Technology Way，P．O．Box 9106，Nonwood．MA 02062－9106，U．S．A． Tel：617／329－4700

Fax：617／326－8703

OP191/OP291/OP491- SPECIFICATIONS

ELECTRICAL SPECIFICATIONS $@ V_{s}=+3.0 \mathrm{v}, \mathrm{V}_{\mathrm{cn}}=0.1 \mathrm{v}, \mathrm{V}_{0}=1.4 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameter	Symbol	Conditions	Min	Typ	Max	Units
INPUT CHARACTERISTICS Offset Voltage OP191G OP291/OP491G Input Bias C urrent Input Offset Current Input Voltage Range Common-M ode Rejection Ratio Large Signal Voltage G ain Offset Voltage D rift Bias Current Drift Offset Current D rift	$V_{0 S}$ Vos I_{B} Ios CMRR $A_{\text {vo }}$ $\Delta \mathrm{V}_{0 \mathrm{~S}} / \Delta \mathrm{T}$ $\Delta l_{\mathrm{B}} / \Delta \mathrm{T}$ $\Delta l_{\mathrm{OS}} / \Delta \mathrm{T}$	$\begin{aligned} & -40 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 2.9 \mathrm{~V} \\ & -40 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{O}}=0.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\ & -40 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0 \\ & 70 \\ & 65 \\ & 25 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 30 \\ & 0.1 \\ & \\ & \\ & 90 \\ & 87 \\ & 70 \\ & 50 \\ & 1.1 \\ & 100 \\ & 20 \end{aligned}$	$\begin{aligned} & 500 \\ & 1 \\ & 700 \\ & 1.25 \\ & 50 \\ & 70 \\ & 8 \\ & 16 \\ & 3 \end{aligned}$	$\mu \mathrm{V}$ mV $\mu \mathrm{V}$ mV nA nA nA nA V dB dB V / mV V / mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mathrm{pA} /{ }^{\circ} \mathrm{C}$ $\mathrm{pA} /{ }^{\circ} \mathrm{C}$
OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short Circuit Limit Open Loop Impedance	V_{OH} V_{OL} $I_{S C}$ $Z_{\text {OUT }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}+ \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{C}+ \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \text { Sink } / \mathrm{Source} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~A}_{\mathrm{V}}=1 \end{aligned}$	$\begin{aligned} & 2.95 \\ & 2.90 \\ & 2.8 \\ & 2.70 \\ & \\ & \\ & \\ & \pm 8.75 \\ & \pm 6.0 \end{aligned}$	$\begin{aligned} & 2.99 \\ & 2.98 \\ & 2.9 \\ & 2.8 \\ & 4.5 \\ & \\ & 40 \\ & \\ & \pm 13.5 \\ & \pm 10.5 \\ & 200 \end{aligned}$	$\begin{aligned} & 10 \\ & 35 \\ & 75 \\ & 130 \end{aligned}$	V V V V mV mV mV mV mA mA Ω
POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier	PSRR $I_{S Y}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{0}=0 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \\ & 200 \\ & 330 \end{aligned}$	$\begin{aligned} & 350 \\ & 480 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
DYNAMIC PERFORMANCE Slew Rate Slew Rate Full-Power Bandwidth Settling T ime Gain Bandwidth Product Phase M argin Channel Separation	$\begin{aligned} & +\mathrm{SR} \\ & -\mathrm{SR} \\ & \mathrm{BW} \\ & \mathrm{t}_{\mathrm{S}} \\ & \mathrm{GBP} \\ & \theta_{0} \\ & \mathrm{CS} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & 1 \% \text { D istortion } \\ & \mathrm{T} 00.01 \% \\ & \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.4 \\ & 1.2 \\ & 22 \\ & 3 \\ & 45 \\ & 145 \end{aligned}$		$\mathrm{V} / \mu \mathrm{s}$ V/us kHz $\mu \mathrm{S}$ M Hz D egrees dB
NOISE PERFORMANCE Voltage N oise Voltage N oise Density Current N oise D ensity	$\begin{aligned} & e_{n} p-p \\ & e_{n} \\ & i_{n} \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 2 \\ & 35 \\ & 0.8 \end{aligned}$		$\mu \mathrm{V}$ p-p $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$

[^1]
ELECTRICAL SPECIFICATIONS (e $v_{s}=+5.0 v, v_{c n}=0.1 v_{1}, v_{0}=1.4 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameter	Symbol	Conditions	Min	Typ	Max	Units
INPUT CHARACTERISTICS Offset Voltage OP191 OP291/OP491 Input Bias Current Input Offset Current Input Voltage Range Common-M ode Rejection Ratio Large Signal Voltage G ain Offset Voltage D rift Bias C urrent Drift Offset C urrent D rift	$V_{0 s}$ $\mathrm{V}_{\text {OS }}$ I_{B} Ios CMRR $A_{\text {vo }}$ $\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$ $\Delta l_{B} / \Delta T$ $\Delta l_{\text {OS }} / \Delta \mathrm{T}$	$\begin{aligned} & -40 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 4.9 \mathrm{~V} \\ & -40 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=0.3 \mathrm{~V} \text { to } 4.7 \mathrm{~V} \\ & -40 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & -40 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0 \\ & 70 \\ & 65 \\ & 25 \end{aligned}$	80 80 30 0.1 93 90 70 50 1.1 100 20	$\begin{aligned} & 500 \\ & 1.0 \\ & 700 \\ & 1.25 \\ & 50 \\ & 60 \\ & 8 \\ & 16 \\ & 5 \end{aligned}$	$\mu \mathrm{V}$ mV $\mu \mathrm{V}$ mV nA nA nA nA V dB dB V / mV V / mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mathrm{pA} /{ }^{\circ} \mathrm{C}$ $\mathrm{pA} /{ }^{\circ} \mathrm{C}$
OUTPUT CHARACTERISTICS Output Voltage High O utput Voltage Low Short Circuit Limit Open Loop Impedance	V_{OH} V_{OL} $I_{S C}$ $Z_{\text {OUT }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}+ \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}+ \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \text { Sink } / \mathrm{Source}^{2} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~A}_{\mathrm{V}}=1 \end{aligned}$	$\begin{aligned} & 4.95 \\ & 4.90 \\ & 4.8 \\ & 4.65 \\ & \\ & \\ & \\ & \pm 8.75 \\ & \pm 6.0 \end{aligned}$	4.99 4.98 4.85 4.75 4.5 40 ± 13.5 ± 10.5 200	10 35 75 155	V V V V mV mV mV mV mA mA Ω
POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier	$\begin{aligned} & \text { PSRR } \\ & I_{S Y} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & -40 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \\ & -40 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \\ & 220 \\ & 350 \end{aligned}$	$\begin{aligned} & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
DYNAMIC PERFORMANCE Slew Rate Slew Rate Full-Power Bandwidth Settling Time Gain Bandwidth Product Phase M argin Channel Separation	$\begin{aligned} & +S R \\ & -S R \\ & \mathrm{BW}_{\mathrm{P}} \\ & \mathrm{t}_{\mathrm{S}} \\ & \mathrm{GBP} \\ & \theta_{0} \\ & \mathrm{CS} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & 1 \% \text { D istortion } \\ & \text { To } 0.01 \% \\ & \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.4 \\ & 1.2 \\ & 22 \\ & 3 \\ & 45 \\ & 145 \end{aligned}$		$\mathrm{V} / \mu \mathrm{S}$ V/us kHz $\mu \mathrm{S}$ M Hz D egrees dB
NOISE PERFORMANCE Voltage N oise Voltage N oise Density Current Noise Density	$\begin{aligned} & e_{n} p-p \\ & e_{n} \\ & i_{n} \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 2 \\ & 35 \\ & 0.8 \end{aligned}$		$\begin{aligned} & \mu \mathrm{V}-\mathrm{p}-\mathrm{p} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$

[^2]OP191/OP291/OP491
ELECTRICAL SPECIFICATIONS (@ $\mathrm{V}_{0}= \pm 5.0 \mathrm{~V},-4.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CH}} \leq 4.9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameter	Symbol	Conditions	Min	Typ	Max	Units
INPUT CHARACTERISTICS Offset Voltage OP191 OP291/OP491 Input Bias C urrent Input Offset Current Input Voltage Range Common-M ode Rejection Large Signal Voltage G ain Offset Voltage D rift Bias Current D rift Offset Current D rift	$V_{0 S}$ V_{OS} I_{B} Ios CMR $A_{\text {vo }}$ $\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$ $\Delta l_{B} / \Delta T$ $\Delta l_{0 S} / \Delta T$	$\begin{aligned} & -40 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 5 \mathrm{~V} \\ & -40 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 4.7 \mathrm{~V}, \\ & -40 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -5 \\ & 75 \\ & 67 \\ & 25 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 30 \\ & 0.1 \\ & \\ & \\ & 100 \\ & 97 \\ & 70 \\ & 50 \\ & 1.1 \\ & 100 \\ & 20 \end{aligned}$	500 1 700 1.25 50 70 8 16 +5	$\mu \mathrm{V}$ mV $\mu \mathrm{V}$ mV nA nA nA nA V dB dB V / mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mathrm{pA} /{ }^{\circ} \mathrm{C}$ $\mathrm{pA} /{ }^{\circ} \mathrm{C}$
OUTPUT CHARACTERISTICS Output Voltage Swing Short Circuit Limit Open Loop Impedance	V_{0} $I_{S C}$ $Z_{\text {OUT }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & -40 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \text { Sink } / \text { Source } \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{M} \mathrm{~Hz}, \mathrm{~A}_{\mathrm{V}}=1 \end{aligned}$	$\begin{aligned} & \pm 4.93 \\ & \pm 4.90 \\ & \pm 4.80 \\ & \pm 4.65 \\ & \pm 8.75 \\ & \pm 6 \end{aligned}$	$\begin{aligned} & \pm 4.99 \\ & \pm 4.98 \\ & \pm 4.95 \\ & \pm 4.75 \\ & \pm 16 \\ & \pm 13 \\ & 200 \end{aligned}$		V V V V mA mA Ω
POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier	PSRR $\mathrm{I}_{5 Y}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \\ & -40 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{0}=0 \mathrm{~V} \\ & -40 \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \\ & 260 \\ & 390 \\ & \hline \end{aligned}$	$\begin{aligned} & 420 \\ & 550 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
DYNAMIC PERFORMANCE Slew Rate Full-Power Bandwidth Settling Time Gain Bandwidth Product Phase M argin Channel Separation	$\begin{aligned} & \pm \mathrm{SR} \\ & \mathrm{BW} \\ & \mathrm{t}_{\mathrm{S}} \\ & \mathrm{~GB} \\ & \theta_{0} \\ & \mathrm{CS} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & 1 \% \mathrm{D} \text { istortion } \\ & \text { Too } 0.01 \% \\ & \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		0.5 1.2 22 3 45 145		$\mathrm{V} / \mu \mathrm{s}$ kHz $\mu \mathrm{S}$ M Hz D egrees dB
NOISE PERFORMANCE Voltage N oise Voltage N oise D ensity Current N oise Density	$\begin{aligned} & e_{n} p-p \\ & e_{n} \\ & i_{n} \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 2 \\ & 35 \\ & 0.8 \end{aligned}$		$\mu \mathrm{V}$ p-p $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Specifications subject to change without notice.

Figure 1. Input and Output with Inputs Overdriven by 5 V

WAFER TEST LIMITS (@ $\mathrm{V}_{\mathrm{s}}=+3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}=}=0.1 V_{, ~} \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameter	Symbol	Conditions	Limit	Units
Offset Voltage	$\mathrm{V}_{\text {OS }}$		± 300	$\mu \mathrm{V}$ max
Input Bias C urrent	I_{B}		50	$n A$ max
Input Offset Current	$\mathrm{I}_{0 S}$		8	
Input Voltage Range	$V_{\text {CM }}$		V- to V +	V min
Common-M ode Rejection Ratio	CMRR	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to +2.9 V	70	dB min
Power Supply Rejection R atio	PSRR	$\mathrm{V}=2.7 \mathrm{~V}$ to +12 V	80	dB min
L arge Signal Voltage Gain	A_{Vo}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	50	V / mV min
Output Voltage High	$\mathrm{V}_{\text {OH }}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to GND	2.8	V min
Output Voltage Low	$\mathrm{V}_{\text {OL }}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}+$	75	$m V$ max
Supply C urrent/A mplifier	I_{SY}	$\mathrm{V}_{0}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$	350	$\mu \mathrm{A}$ max

NOTE
Electrical tests and wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$

Supply Voltage	16 V
Input Voltage	. GND to $\mathrm{V}_{\mathrm{S}}+10 \mathrm{~V}$
D ifferential Input Voltage	7 V
Output Short-C ircuit D uration to GND	inite
Storage T emperature R ange	
P, S, RU Packages	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating T emperature R ange	
OP191/O P291/OP491G	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction T emperature Range	
P, S, RU Packages	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering 60	$+300^{\circ} \mathrm{C}$

Package Type	$\theta_{\text {JA }}{ }^{\mathbf{2}}$	$\theta_{\text {Jc }}$	Units
8-Pin Plastic DIP (P)	103	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin SOIC (S)	158	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin Plastic DIP (P)	76	33	${ }^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin SOIC (S)	120	36	${ }^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin TSSOP (RU)	180	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES

${ }^{1}$ Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
${ }^{2} \theta_{\mathrm{JA}}$ is specified for the worst case conditions; i.e., θ_{JA} is specified for device in socket for P-DIP packages; θ_{JA} is specified for device soldered in circuit board for TSSOP and SOIC packages.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
OP191G P	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Pin Plastic DIP	N-8
OP191GS	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Pin SOIC	SO-8
OP191GBC	$+25^{\circ} \mathrm{C}$	DICE	
OP291GP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Pin Plastic DIP	N-8
OP291GS	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Pin SOIC	S0-8
OP291GBC	$+25^{\circ} \mathrm{C}$	DICE	
OP491GP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Pin Plastic DIP	N-14
OP491GS	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Pin SOIC	S0-14
OP491HRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Pin T SSOP	RU-14
OP491GBC	$+25^{\circ} \mathrm{C}$	DICE	

OP191 Die Size 0.047×0.066 Inch, 3,102 Sq. Mils. Substrate (Die Backside) Is Connected to $V+$.
Transistor Count, 74.

OP291 Die Size 0.070×0.070 Inch, 4,900 Sq. Mils. Substrate (Die Backside) Is Connected to V+. Transistor Count, 146

OP491 Die Size 0.070×0.110 Inch, 7,700 Sq. Mils. Substrate (Die Backside) Is Connected to V+. Transistor Count, 290.

OP191/OP291/OP491- Typical Performance Characteristics

Figure 2. OP291 Input Offset Voltage Distribution, $V_{S}=+3 \mathrm{~V}$

Figure 5. Input Bias Current vs. Temperature, $V_{S}=+3 V$

Figure 8. Output Voltage Swing vs. Temperature, $V_{S}=+3 \mathrm{~V}$

Figure 3. OP291 Input Offset Voltage Drift Distribution, $V_{S}=+3 \mathrm{~V}$

Figure 6. Input Offset Current vs. Temperature, $V_{s}=+3 \mathrm{~V}$

Figure 9. Open-Loop Gain \& Phase vs. Frequency, $V_{s}=+3 \mathrm{~V}$

Figure 4. Input Offset Voltage vs. Temperature, $V_{S}=+3 \mathrm{~V}$

Figure 7. Input Bias Current vs. Common-Mode Voltage, $V_{S}=+3 V$

Figure 10. Open-Loop Gain vs. Temperature, $V_{S}=+3 V$

Figure 11. Closed-Loop Gain vs. Frequency, $V_{S}=+3 V$

Figure 14. PSRR vs. Frequency, $V_{S}=+3 V$

Figure 17. Supply Current vs.
Temperature, $V_{S}=+3 \mathrm{~V},+5 \mathrm{~V}, \pm 5 \mathrm{~V}$

Figure 12. CMRR vs. Frequency, $V_{S}=+3 V$

Figure 15. PSRR vs. Temperature, $V_{S}=+3 V$

Figure 18. Maximum Output Swing vs. Frequency, $V_{s}=+3 \mathrm{~V}$

Figure 13. CMRR vs. Temperature, $V_{S}=+3 \mathrm{~V}$

Figure 16. Slew Rate vs. Temperature, $V_{S}=+3 \mathrm{~V}$

Figure 19. Voltage Noise Density, $V_{S}=+3 V$ to $\pm 5 V, A_{V o}=1000$

OP191/OP291/OP491- Typical Performance Characteristics

Figure 20. OP291 Input Offset Voltage Distribution, $V_{S}=+5 \mathrm{~V}$

Figure 23. Input Bias Current vs. Temperature, $V_{S}=+5 \mathrm{~V}$

Figure 26. Output Voltage Swing vs. Temperature, $V_{S}=+5 \mathrm{~V}$

Figure 21. OP291 Input Offset Voltage Drift Distribution, $V_{S}=+5 \mathrm{~V}$

Figure 24. Input Offset Current vs. Temperature, $V_{S}=+5 \mathrm{~V}$

Figure 27. Open-Loop Gain \& Phase vs. Frequency, $V_{S}=+5 \mathrm{~V}$

Figure 22. Input Offset Voltage vs. Temperature, $V_{S}=+5 \mathrm{~V}$

Figure 25. Input Bias Current vs. Common-Mode Voltage, $V_{S}=+5 V$

Figure 28. Open-Loop Gain vs. Temperature, $V_{S}=+5 \mathrm{~V}$

Figure 29. Closed-Loop Gain vs. Frequency, $V_{S}=+5 \mathrm{~V}$

Figure 32. PSRR vs. Frequency, $V_{S}=+5 \mathrm{~V}$

Figure 35. Short Circuit Current vs. Temperature, $V_{S}=+3 \mathrm{~V},+5 \mathrm{~V}, \pm 5 \mathrm{~V}$

Figure 30. CMRR vs. Frequency, $V_{S}=+5 \mathrm{~V}$

Figure 33. OP291 Slew Rate vs. Temperature, $V_{S}=+5 \mathrm{~V}$

Figure 36. Channel Separation, $V_{S}= \pm 5 \mathrm{~V}$

Figure 31. CMRR vs. Temperature, $V_{S}=+5 \mathrm{~V}$

Figure 34. OP491 Slew Rate vs. Temperature, $V_{S}=+5 V$

Figure 37. Maximum Output Swing vs. Frequency, $V_{S}=+5 \mathrm{~V}$

OP191/OP291/OP491- Typical Performance Characteristics

Figure 38. Maximum Output Swing vs. Frequency, $V_{s}= \pm 5 \mathrm{~V}$

Figure 41. Input Offset Current vs. Temperature, $V_{S}= \pm 5 \mathrm{~V}$

Figure 44. Open-Loop Gain \& Phase vs. Frequency, $V_{S}= \pm 5 \mathrm{~V}$

Figure 39. Input Offset Voltage vs. Temperature, $V_{S}= \pm 5 \mathrm{~V}$

Figure 42. Input Bias Current vs. Common-Mode Voltage, $V_{S}= \pm 5 \mathrm{~V}$

Figure 45. Open-Loop Gain vs.
Temperature, $V_{S}= \pm 5 \mathrm{~V}$

Figure 40. Input Bias Current vs. Temperature, $V_{S}= \pm 5 \mathrm{~V}$

Figure 43. Output Voltage Swing vs. Temperature, $V_{S}= \pm 5 \mathrm{~V}$

Figure 46. Closed-Loop Gain vs. Frequency, $V_{S}= \pm 5 \mathrm{~V}$

Figure 47. CMRR vs. Frequency, $V_{S}= \pm 5 \mathrm{~V}$

Figure 50. OP291/OP491 PSRR vs. Temperature, $V_{S}= \pm 5 \mathrm{~V}$

Figure 48. CMRR vs. Temperature, $V_{S}= \pm 5 \mathrm{~V}$

Figure 51. Slew Rate vs.
Temperature, $V_{S}= \pm 5 \mathrm{~V}$

Figure 49. PSRR vs. Frequency, $V_{S}= \pm 5 \mathrm{~V}$

Figure 52. Output Impedance vs. Frequency

Figure 53. Large Signal Transient Response, $V_{S}=+3 V$

Figure 54. Large Signal Transient Response, $V_{S}= \pm 5 \mathrm{~V}$

OP191/OP291/OP491

FUNCTIONAL DESCRIPTION

The OP191/OP291/OP491 are single supply, micropower amplifiers featuring rail-to-rail inputs and outputs. In order to achieve wide input and output ranges, these amplifiers employ unique input and output stages. As the simplified schematic shows (Figure 55), the input stage is actually comprised of two differential pairs, a PN P pair and an NPN pair. These two stages do not actually work in parallel. Instead, only one or the other stage is on for any given input signal level. The PN P stage (transistors Q1 and Q2) is required to ensure that the amplifier remains in the linear region when the input voltage approaches and reaches the negative rail. On the other hand, the N PN stage (transistors Q5 and Q6) is needed for input voltages up to and including the positive rail.
F or the majority of the input common-mode range, the PN P stage is active, as is evidenced by examining the graph of Input Bias Current vs. C ommon-M ode V oltage. N otice that the bias current switches direction at approximately 1.2 volts to 1.3 volts below the positive rail. At voltages below this, the bias current flows out of the OP291, indicating a PN P input stage. Above this voltage, however, the bias current enters the device, revealing the NPN stage. The actual mechanism within the amplifier for switching between the input stages is comprised of the transistors Q3, Q4, and Q7. As the input common-mode voltage increases, the emitters of Q 1 and Q 2 follow that voltage plus a diode drop. Eventually the emitters of Q1 and Q2 are high enough to turn Q3 on. This diverts the $8 \mu \mathrm{~A}$ of tail current away from the PNP input stage, turning it off. Instead, the current is mirrored through Q4 and Q7 to activate the N PN input stage.
N otice that the input stage includes $5 \mathrm{k} \Omega$ series resistors and differential diodes, a common practice in bipolar amplifiers to protect the input transistors from large differential voltages. These diodes will turn on whenever the differential voltage
exceeds approximately 0.6 V . In this condition, current will flow between the input pins, limited only by the two $5 \mathrm{k} \Omega$ resistors. Being aware of this characteristic is important in circuits where the amplifier may be operated open-loop, such as a comparator. Evaluate each circuit carefully to make sure that the increase in current does not affect the performance.
The output stage of the OP191 family uses a PN P and an N PN transistor as do most output stages; however, the output transistors, Q 32 and Q 33, are actually connected with their collectors to the output pin to achieve the rail-to-rail output swing. As the output voltage approaches either the positive or negative rail, these transistors begin to saturate. Thus, the final limit on output voltage is the saturation voltage of these transistors, which is about 50 mV . The output stage does have inherent gain arising from the collectors and any external load impedance. Because of this, the open-loop gain of the amplifier is dependent on the load resistance.

Input Overvoltage Protection

As with any semiconductor device, whenever the condition exists for the input to exceed either supply voltage, attention needs to be paid to the input overvoltage characteristic. When an overvoltage occurs, the amplifier could be damaged depending on the voltage level and the magnitude of the fault current. Figure 56 shows the characteristic for the OP191 family. This graph was generated with the power supplies at ground and a curve tracer connected to the input. As can be seen, when the input voltage exceeds either supply by more than 0.6 V , internal pn-junctions energize allowing current to flow from the input to the supplies. As described above, the OP291/OP491 does have $5 \mathrm{k} \Omega$ resistors in series with each input, which helps limit the current. Calculating the slope of the current versus voltage in the graph confirms the $5 \mathrm{k} \Omega$ resistor.

Figure 55. Simplified Schematic

Figure 56. Input Overvoltage Characteristics
This input current is not inherently damaging to the device as long as it is limited to 5 mA or less. In the case shown, for an input of 10 V over the supply, the current is limited to 1.8 mA . If the voltage is large enough to cause more than 5 mA of current to flow, then an external series resistor should be added. The size of this resistor is calculated by dividing the maximum overvoltage by 5 mA and subtracting the internal $5 \mathrm{k} \Omega$ resistor. For example, if the input voltage could reach 100 V , the external resistor should be ($100 \mathrm{~V} / 5 \mathrm{~mA}$) $-5 \mathrm{k}=15 \mathrm{k} \Omega$. This resistance should be placed in series with either or both inputs if they are subjected to the overvoltages. F or more information on general overvoltage characteristics of amplifiers refer to the 1993 System A pplications Guide, available from the A nalog D evices Literature Center.

Output Voltage Phase Reversal

Some operational amplifiers designed for single-supply operation exhibit an output voltage phase reversal when their inputs are driven beyond their useful common-mode range. T ypically for single-supply bipolar op amps, the negative supply
determines the lower limit of their common-mode range. With these devices, external clamping diodes, with the anode connected to ground and the cathode to the inputs, prevent input signal excursions from exceeding the device's negative supply (i.e., GND), preventing a condition which could cause the output voltage to change phase. JFET -input amplifiers may also exhibit phase reversal, and, if so, a series input resistor is usually required to prevent it.
The OP191 family is free from reasonable input voltage range restrictions due to its novel input structure. In fact, the input signal can exceed the supply voltage by a significant amount without causing damage to the device. As illustrated in Figure 57, the OP191 family can safely handle a 20 V p-p input signal on $\pm 5 \mathrm{~V}$ supplies without exhibiting any sign of output voltage phase reversal or other anomalous behavior. Thus no external clamping diodes are required.

Overdrive Recovery

The overdrive recovery time of an operational amplifier is the time required for the output voltage to recover to its linear region from a saturated condition. This recovery time is important in applications where the amplifier must recover quickly after a large transient event, such as a comparator. The circuit shown in Figure 58 was used to evaluate the OP191 family's overload recovery time. The OP191 family takes approximately $8 \mu s$ to recover from positive saturation and approximately $6.5 \mu \mathrm{~s}$ to recover from negative saturation.

Figure 58. Overdrive Recovery Time Test Circuit

Figure 57. Output Voltage Phase Reversal Behavior

OP191/OP291/OP491

APPLICATIONS

Single +3 V Supply, Instrumentation Amplifier

The OP291's low supply current and low voltage operation make it ideal for battery powered applications such as the instrumentation amplifier shown in Figure 59. The circuit utilizes the classic two op amp instrumentation amplifier topology, with four resistors to set the gain. The equation is simply that of a noninverting amplifier as shown in the figure. The two resistors labeled R1 should be closely matched to each other as well as both resistors labeled R2 to ensure good common-mode rejection performance. Resistor networks ensure the closest matching as well as matched drifts for good temperature stability. C apacitor C1 is included to limit the bandwidth and, therefore, the noise in sensitive applications. The value of this capacitor should be adjusted depending on the desired closed-loop bandwidth of the instrumentation amplifier. T he RC combination creates a pole at a frequency equal to $1 /(2 \pi \times R 1 C 1)$. If AC-CM RR is critical, than a matched capacitor to C 1 should be included across the second resistor labeled R 1.

Figure 59. Single +3 V Supply Instrumentation Amplifier
Because the OP291 accepts rail-to-rail inputs, the input common-mode range includes both ground and the positive supply of 3 V . F urthermore, the rail-to-rail output range ensures the widest signal range possible and maximizes the dynamic range of the system. Also, with its low supply current of $300 \mu \mathrm{~A} /$ device, this circuit consumes a quiescent current of only $600 \mu \mathrm{~A}$, yet still exhibits a gain bandwidth of 3 M Hz .
A question may arise about other instrumentation amplifier topologies for single supply applications. For example, a variation on this topology adds a fifth resistor between the two inverting inputs of the op amps for gain setting. While that topology works well in dual supply applications, it is inherently not appropriate for single supply circuits. The same could be said for the traditional three op amp instrumentation amplifier. In both cases, the circuits simply will not work in single supply situations unless a false ground between the supplies is created.

Single Supply RTD Amplifier

The circuit in Figure 60 uses three op amps of the OP491 to develop a bridge configuration for an RTD amplifier that operates from a single +5 V supply. The circuit takes advantage of the OP491's wide output swing range to generate a high bridge excitation voltage of 3.9 V . In fact, because of the rail-to-rail output swing, this circuit will work with supplies as low as 4.0 V . Amplifier Al servos the bridge to create a constant excitation current in conjunction with the AD 589, a 1.235 V precision reference. The op amp maintains the reference voltage across the parallel combination of the $6.19 \mathrm{k} \Omega$ and 2.55 $\mathrm{M} \Omega$ resistor, which generates a $200 \mu \mathrm{~A}$ current source. This current splits evenly and flows through both halves of the bridge. Thus, $100 \mu \mathrm{~A}$ flows through the RTD to generate an output voltage based on its resistance. A 3-wire RTD is used to balance the line resistance in both 100Ω legs of the bridge to improve accuracy.

Figure 60. Single Supply RTD Amplifier
Amplifiers A2 and A3 are configured in the two op amp IA discussed above. Their resistors are chosen to produce a gain of 274 , such that each $1^{\circ} \mathrm{C}$ increase in temperature results in a 10 mV change in the output voltage, for ease of measurement. A $0.01 \mu \mathrm{~F}$ capacitor is included in parallel with the $100 \mathrm{k} \Omega$ resistor on amplifier A3 to filter out any unwanted noise from this high gain circuit. This particular RC combination creates a pole at 1.6 kHz .

A +2.5 V Reference from a +3V Supply

In many single-supply applications, the need for a 2.5 V reference often arises. M any commercially available monolithic 2.5 V references require at least a minimum operating supply voltage of 4 V . The problem is exacerbated when the minimum operating system supply voltage is +3 V . The circuit illustrated in Figure 61 is an example of a +2.5 V that operates from a single +3 V supply. The circuit takes advantage of the OP291's rail-to-rail input and output voltage ranges to amplify an AD 589's 1.235 V output to +2.5 V . The OP291's low TCV ${ }_{\text {Os }}$ of $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ helps to maintain an output voltage temperature coefficient of less than $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The circuit's overall temperature coefficient is dominated by R2 and R3's temperature coefficient. L ower tempco resistors are recommended. The entire circuit draws less than $420 \mu \mathrm{~A}$ from a +3 V supply at $+25^{\circ} \mathrm{C}$.

Figure 61. A +2.5 V Reference that Operates on a Single +3 V Supply

+5 V Only, 12-Bit DAC Swings Rail-to-Rail

The OP191 family is ideal for use with a CM OS DAC to generate a digitally controlled voltage with a wide output range. Figure 62 shows the DAC 8043 used in conjunction with the AD 589 to generate a voltage output from 0 V to 1.23 V The DAC is actually operated in "voltage switching" mode where the reference is connected to the current output, I Iout, and the output voltage is taken from the $\mathrm{V}_{\text {REF }} \mathrm{pin}$. This topology is inherently noninverting as opposed to the classic current output mode, which is inverting and, therefore, unsuitable for single supply.

Figure 62. +5 V Only, 12-Bit DAC Swings Rail-to-Rail

The OP291 serves two functions. First, it is required to buffer the high output impedance of the $D A C$'s $V_{\text {REF }}$ pin, which is on the order of $10 \mathrm{k} \Omega$. The op amp provides a low impedance output to drive any following circuitry. Secondly, the op amp amplifies the output signal to provide a rail-to-rail output swing. In this particular case, the gain is set to 4.1 to generate a 5.0 V output when the DAC is at full scale. If other output voltage ranges are needed, such as 0 to 4.095, the gain can easily be adjusted by altering the value of the resistors.

A High Side Current Monitor

In the design of power supply control circuits, a great deal of design effort is focused on ensuring a pass transistor's long-term reliability over a wide range of load current conditions. As a result, monitoring and limiting device power dissipation is of prime importance in these designs. The circuit illustrated in Figure 63 is an example of a +5 V , single-supply high side current monitor that can be incorporated into the design of a voltage regulator with fold-back current limiting or a high current power supply with crowbar protection. This design uses an OP291's rail-to-rail input voltage range to sense the voltage drop across a 0.1Ω current shunt. A p-channel M OSFET used as the feedback element in the circuit converts the op amp's differential input voltage into a current. This current is then applied to R2 to generate a voltage that is a linear representation of the load current. The transfer equation for the current monitor is given by:

$$
\text { M onitor Output }=R 2 \times\left(\frac{R_{\text {SENSE }}}{R 1}\right) \times I_{L}
$$

For the element values shown, the M onitor Output's transfer characteristic is $2.5 \mathrm{~V} / \mathrm{A}$.

Figure 63. A High-Side Load Current Monitor

OP191/OP291/OP491

A +3 V, Cold Junction Compensated Thermocouple Amplifier T he OP291's low supply operation makes it ideal for +3 V battery powered applications such as the thermocouple amplifier shown in Figure 64. The K-type thermocouple terminates in an isothermal block where the junctions' ambient temperature is continuously monitored using a simple 1N 914 diode. The diode corrects the thermal EM F generated in the junctions by feeding a small voltage, scaled by the $1.5 \mathrm{M} \Omega$ and 475Ω resistors, to the op amp.
To calibrate this circuit, immerse the thermocouple measuring junction in a $0^{\circ} \mathrm{C}$ ice bath, and adjust the 500Ω pot to zero volts out. N ext, immerse the thermocouple in a $250^{\circ} \mathrm{C}$ temperature bath or oven and adjust the Scale Adjust pot for an output voltage of 2.50 V . Within this temperature range, the K -type thermocouple is accurate to within $\pm 3^{\circ} \mathrm{C}$ without linearization.

Figure 64. A 3 V, Cold J unction Compensated Thermocouple Amplifier

Single Supply, Direct Access Arrangement for Modems

An important building block in modems is the telephone line interface. In the circuit shown in Figure 65, a direct access arrangement is utilized for transmitting and receiving data from the telephone line. Amplifier A1 is the receiving amplifier, and amplifiers A 2 and A3 are the transmitters. The forth amplifier, A4, generates a pseudo ground half way between the supply voltage and ground. This pseudo ground is needed for the ac coupled bipolar input signals.

Figure 65. Single Supply Direct Access Arrangement for Modems
The transmit signal, TXA, is inverted by A2 and then reinverted by A3 to provide a differential drive to the transformer, where each amplifier supplies half the drive signal. This is needed because of the smaller swings associated with a single supply as opposed to a dual supply. Amplifier A 1 provides some gain for the received signal, and it also removes the transmit signal present at the transformer from the receive signal. To do this, the drive signal from A2 is also fed to the noninverting input of $A 1$ to cancel the transmit signal from the transformer. The OP491's bandwidth of 3 M Hz and rail-to-rail output swings ensures that it can provide the largest possible drive to the transformer at the frequency of transmission.

A +3V, $\mathbf{5 0 ~ H z / 6 0 ~ H z ~ A c t i v e ~ N o t c h ~ F i l t e r ~ w i t h ~ F a l s e ~ G r o u n d ~}$

 T o process ac signals in a single-supply system, it is often best to use a false-ground biasing scheme. A circuit that uses this approach is illustrated in Figure 66. In this circuit, a falseground circuit biases an active notch filter used to reject $50 \mathrm{~Hz} /$ 60 Hz power line interference in portable patient monitoring equipment. N otch filters are quite commonly used to reject power line frequency interference which often obscures low frequency physiological signals, such as heart rates, blood pressure readings, EEGs, EK Gs, etcetera. This notch filter effectively squelches 60 Hz pickup at a filter Q of 0.75 . Substituting $3.16 \mathrm{k} \Omega$ resistors for the $2.67 \mathrm{k} \Omega$ resistors in the twin-T section (R1 through R5) configures the active filter to reject 50 Hz interference.

Figure 66. A +3 V Single-Supply, $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ Active Notch Filter with False Ground
Amplifier A3 is the heart of the false-ground bias circuit. It simply buffers the voltage developed by R9 and R10 and is the reference for the active notch filter. Since the OP491 exhibits a rail-to-rail input common-mode range, R9 and R10 are chosen to split the +3 V supply symmetrically. An in-the-loop compensation scheme is used around the OP491 that allows the op amp to drive C6, a $1 \mu \mathrm{~F}$ capacitor, without oscillation. C 6 maintains a low impedance ac ground over the operating frequency range of the filter.
The filter section uses a pair of OP491s in a twin-T configuration whose frequency selectivity is very sensitive to the relative matching of the capacitors and resistors in the twin-T section. M ylar is the material of choice for the capacitors, and the relative matching of the capacitors and resistors determines the filter's passband symmetry. U sing 1\% resistors and 5\% capacitors produces satisfactory results.

Single-Supply Half-Wave and Full-Wave Rectifiers

An OP191 family configured as a voltage follower operating on a single supply can be used as a simple half-wave rectifier in low-frequency ($<2 \mathrm{kHz}$) applications. A full-wave rectifier can be configured with a pair of OP291s as illustrated in Figure 67. The circuit works in the following way: When the input signal is above 0 V , the output of amplifier A 1 follows the input signal. Since the noninverting input of amplifier A2 is connected to A1's output, op amp loop control forces the A 2's inverting input to the same potential. The result is that both terminals of R1 are equipotential; i.e., no current flows. Since there is no current flow in R1, the same condition exists upon R 2; thus, the output of the circuit tracks the input signal. When the input signal is below 0 V , the output voltage of A 1 is forced to 0 V . This condition now forces A 2 to operate as an inverting voltage follower because the noninverting terminal of A 2 is at 0 V as well. The output voltage at $\mathrm{V}_{\text {OUT }} \mathrm{A}$ is then a full-wave rectified version of the input signal. If needed, a buffered, half-wave rectified version of the input signal is available at $\mathrm{V}_{\text {OUT }} \mathrm{B}$.

Figure 67. Single-Supply Half-Wave and Full-Wave Rectifiers Using an OP291

OP191/OP291/OP491

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable．However，no responsibility is assumed by Analog Devices for its use，nor for any infringements of patents or other rights of third parties which may result from its use．No license is granted by implication or otherwise under any patent or patent rights of Analog Devices．

[^1]: Specifications subject to change without notice.

[^2]: NOTES
 +5 V specifications are guaranteed by +3 V and $\pm 5 \mathrm{~V}$ testing.
 Specifications subject to change without notice.

