
查询D101供应商

Agilent T- $1^3/_4$ (5 mm), T-1 (3 mm), High Intensity, Double Heterojunction AlGaAs Red LED Lamps

Data Sheet

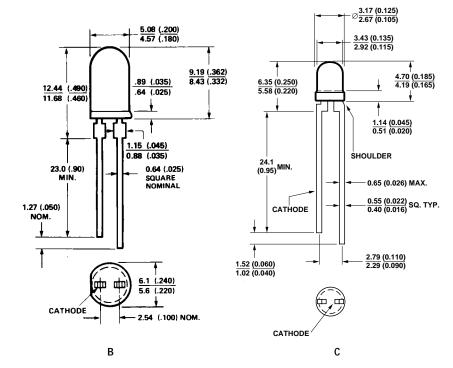
HLMP-D101/D105, HLMP-K101/K105

Description

These solid state LED lamps utilize newly developed double heterojunction (DH) AlGaAs/GaAs material technology. This LED material has outstanding light output efficiency over a wide range of drive currents. The color is deep red at the dominant wavelength of 637 nanometres. These lamps may be DC or pulse driven to achieve desired light output.

Features

- Exceptional brightness
- · Wide viewing angle
- · Outstanding material efficiency
- · Low forward voltage
- CMOS/MOS compatible
- TTL compatible
- Deep red color

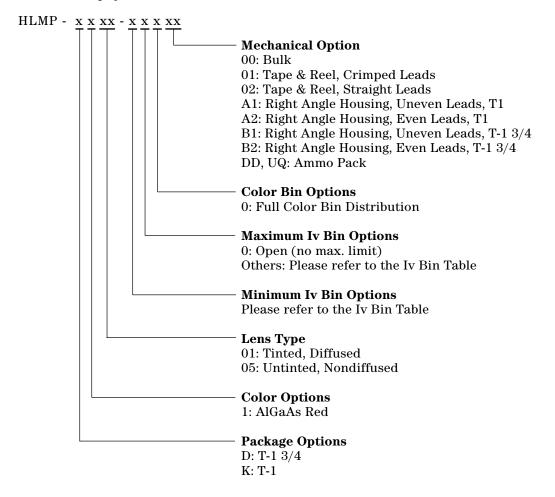

Applications

- · Bright ambient lighting conditions
- · Moving message panels
- · Portable equipment
- General use

Packane Dimensions

NOTES: A 1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES). 2. AN EPOXY MINISCUS MAY EXTEND ABOUT 1 mm (0.040") DOWN THE LEADS.

Agilent Technologies


Selection Guide

		Luminous Intensity lv (mcd) at 20 mA			20 _{1/2} ^[1]	Package
Package Description	Device HLMP-	Min.	Тур.	Max.	Degree	Outline
T-1 3/4 Red Tinted Diffused	D101	35.2	70.0	-	65	А
	D101-J00xx	35.2	70.0	_	65	А
	D101-JK0xx	35.2	70.0	112.8	65	А
T-1 3/4 Red Untinted Non-diffused	D105	138.0	240.0	_	24	В
	D105-M00xx	138.0	240.0	_	24	В
	D105-NO0xx	200.0	290.0	580.0	24	В
T-1 Red Tinted Diffused	K101	22.0	45.0	_	60	С
	K101-100xx	22.0	45.0	_	60	С
	K101-IJ0xx	22.0	45.0	70.4	60	С
T-1 Red Untinted Non-diffused	K105	35.2	65.0	_	45	С
	K105-J00xx	35.2	65.0	_	45	С
	K105-KL0xx	56.4	110.0	180.4	45	С

Note:

1. $\theta_{1/2}$ is the off axis angle from lamp centerline where the luminous intensity is 1/2 the on-axis value.

Part Numbering System

Absolute Maximum Ratings at $T_A=25^\circ C$

Parameter	Value
Peak Forward Current ^[1,2]	300 mA
Average Forward Current ^[2]	20 mA
DC Current ^[3]	30 mA
Power Dissipation	87 mW
Reverse Voltage ($I_R = 100 \ \mu A$)	5 V
Transient Forward Current (10 μs Pulse) ^[4]	500 mA
LED Junction Temperature	110°C
Operating Temperature Range	-20 to +100°C
Storage Temperature Range	-55 to +100°C
Wave Soldering Temperature [1.59 mm (0.063 in.) from body]	250°C for 3 seconds
Lead Solder Dipping Temperature [1.59 mm (0.063 in.) from body]	260°C for 5 seconds

Notes:

1. Maximum I_{PEAK} at f = 1 kHz, DF = 6.7%. 2. Refer to Figure 6 to establish pulsed operating conditions.

3. Derate linearly as shown in Figure 5.

4. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

Symbol	Description	Min.	Тур.	Max.	Unit	Test Condition
V _F	Forward Voltage		1.8	2.2	V	I _F = 20 mA
V _R	Reverse Breakdown Voltage	5.0	15.0		V	I _R = 100 μA
$\overline{\lambda_p}$	Peak Wavelength		645		nm	Measurement at Peak
λ_d	Dominant Wavelength		637		nm	Note 1
$\Delta\lambda^{1/2}$	Spectral Line Halfwidth		20		nm	
τ_{S}	Speed of Response		30		ns	Exponential Time Constant, e ^{-t} /T _S
С	Capacitance		30		pF	$V_{F} = 0, f = 1 MHz$
Rθ _{J-PIN}	Thermal Resistance		260 ^[3] 210 ^[4] 290 ^[5]		°C/W	Junction to Cathode Lead
$\overline{\eta_{V}}$	Luminous Efficacy		80		lm/W	Note 2

Electrical/Optical Characteristics at $T_A = 25^{\circ}C$

Notes:

1. The dominant wavelength, λ_{d} , is derived from the CIE chromaticity diagram and represents the color of the device.

2. The radiant intensity, $I_{e'}$ in watts per steradian, may be found from the equation $I_e = I_V/\eta_V$, where I_V is the luminous intensity in candelas and η_V is luminous efficacy in lumens/watt.

3. HLMP-D101.

4. HLMP-D105.

5. HLMP-K101/-K105.

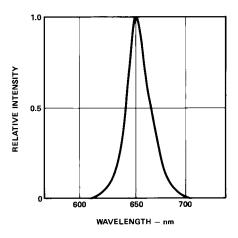


Figure 1. Relative intensity vs. wavelength.

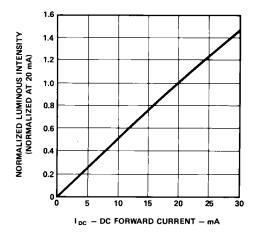


Figure 3. Relative luminous intensity vs. dc forward current.

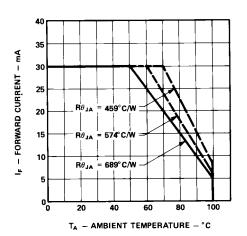


Figure 5. Maximum forward dc current vs. ambient temperature. Derating based on T_J MAX. = 110 °C.

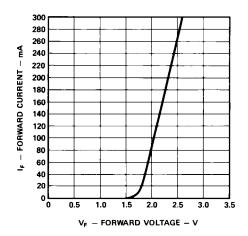


Figure 2. Forward current vs. forward voltage.

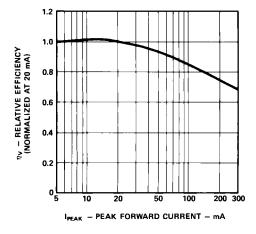


Figure 4. Relative efficiency vs. peak forward current.

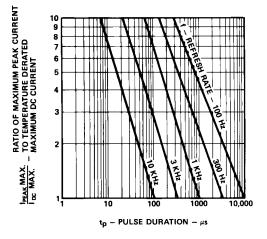


Figure 6. Maximum tolerable peak current vs. peak duration (I_{PEAK} MAX. determined from temperature derated I_{DC} MAX.).

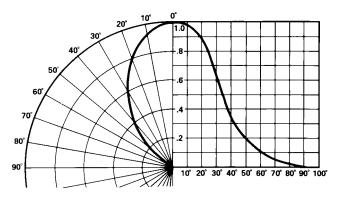


Figure 7. Relative luminous intensity vs. angular displacement. HLMP-D101.

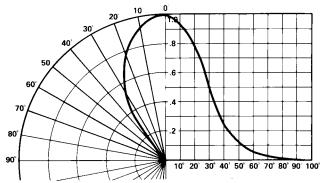


Figure 8. Relative luminous intensity vs. angular displacement. HLMP-K101.

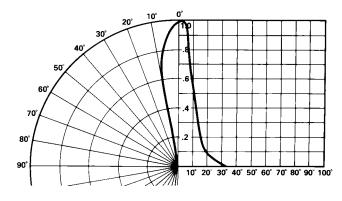


Figure 9. Relative luminous intensity vs. angular displacement. HLMP-D105.

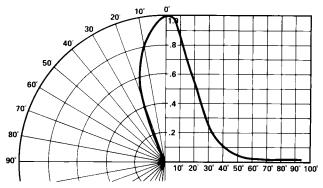


Figure 10. Relative luminous intensity vs. angular displacement. HLMP-K105.

		Intensity Range (mcd)				
Color	Bin	Min.	Max.			
Red	I	24.8	39.6			
	J	39.6	63.4			
	K	63.4	101.5			
	L	101.5	162.4			
	М	162.4	234.6			
	Ν	234.6	340.0			
	0	340.0	540.0			
	Р	540.0	850.0			
	Q	850.0	1200.0			
	R	1200.0	1700.0			
	S	1700.0	2400.0			
	Т	2400.0	3400.0			
	U	3400.0	4900.0			
	V	4900.0	7100.0			
	W	7100.0	10200.0			
	Х	10200.0	14800.0			
	Y	14800.0	21400.0			
	Z	21400.0	30900.0			

Maximum tolerance for each bin limit is \pm 18%.

Mechanical Option Matrix

Mechanical Option Code	Definition				
00	Bulk Packaging, minimum increment 500 pcs/bag				
01	Tape & Reel, crimped leads, minimum increment 1300 pcs (T-1 3/4)/1800 pcs (T-1)				
02	Tape & Reel, straight leads, minimum increment 1300 pcs (T-1 3/4)/1800 pcs (T-1)				
A1	Right Angle Housing, uneven leads, minimum increment 500 pcs/bag				
A2	Right Angle Housing, even leads, minimum increment 500 pcs/bag				
B1	Right Angle Housing, uneven leads, minimum increment 500 pcs/bag				
B2	Right Angle Housing, even leads, minimum increment 500 pcs/bag				
DD	Ammo Pack, straight leads in 2K increment				
UQ	Ammo Pack, horizontal leads in 2K increment				

Note:

All categories are established for classification of products. Products may not be available in all categories. Please contact your local Agilent representative for further clarification/information.

www.agilent.com/semiconductors

For product information and a complete list of distributors, please go to our web site. For technical assistance call: Americas/Canada: +1 (800) 235-0312 or (916) 788-6763 Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (+65) 6756 2394 India, Australia, New Zealand: (+65) 6755 1939 Japan: (+81 3) 3335-8152 (Domestic/International), or 0120-61-1280 (Domestic Only) Korea: (+65) 6755 1989 Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (+65) 6755 2044 Taiwan: (+65) 6755 1843 Data subject to change. Copyright © 2004 Agilent Technologies, Inc. Obsoletes 5968-1440E

November 12, 2004 5988-2230EN