

54F/74F157A Quad 2-Input Multiplexer

General Description

The 'F157A is a high-speed quad 2-input multiplexer. Four bits of data from two sources can be selected using the common Select and Enable inputs. The four outputs present the selected data in the true (non-inverted) form. The 'F157A can also be used to generate any four of the 16 different functions to two variables.

Features

■ Guaranteed 4000V minimum ESD protection

Commercial	Military	Package Number	Package Description
74F157APC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line
	54F157ADM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line
74F157ASC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC
74F157ASJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F157AFM (Note 2)	W16A	16-Lead Cerpack
	54F157ALM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13'' reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

Connection Diagrams

© 1995 National Semiconductor Corporation TL/F/9483

RRD-B30M75/Printed in U. S. A.

54F/74F157A Quad 2-Input Multiplexer

November 1994

Unit Loading/Fan Out

		54F/74F			
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
I _{0a} -I _{0d}	Source 0 Data Inputs	1.0/1.0	20 µA/−0.6 mA		
I _{1a} -I _{1d}	Source 1 Data Inputs	1.0/1.0	20 µA/−0.6 mA		
Ē	Enable Input (Active LOW)	1.0/1.0	20 µA/−0.6 mA		
S	Select Input	1.0/1.0	20 µA/−0.6 mA		
Z _a -Z _d	Outputs	50/33.3	-1 mA/20 mA		

Functional Description

The 'F157A is a quad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input (S). The Enable input (\overline{E}) is active LOW. When \overline{E} is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs. The 'F157A is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$$Z_n = \overline{E} \bullet (I_{1n} S + I_{0n} \overline{S})$$

A common use of the 'F157A is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The 'F157A can generate any four of the

Truth Table

Inputs				Output
Ē	S	I ₀	l ₁	Z
Н	Х	х	Х	L
L	н	Х	L	L
L	Н	Х	Н	Н
L	L	L	Х	L
L	L	Н	Х	Н

L = LOW Voltage Level X = Immaterial

Immaterial

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Storage Temperature -65° C to $\pm 150^{\circ}$ C

Storage Temperature	-65°C to +150°C	
Ambient Temperature under Bias	-55°C to +125°C	
Junction Temperature under Bias	-55°C to +175°C	
Plastic	-55°C to +150°C	
V _{CC} Pin Potential to		
Ground Pin	-0.5V to +7.0V	
Input Voltage (Note 2)	-0.5V to $+7.0V$	
Input Current (Note 2)	-30 mA to $+5.0$ mA	
Voltage Applied to Output		
in HIGH State (with $V_{CC} = 0V$)		
Standard Output	- 0.5V to V _{CC}	
TRI-STATE [®] Output	-0.5V to $+5.5V$	
Current Applied to Output		
in LOW State (Max)	twice the rated I _{OL} (mA)	
ESD Last Passing Voltage (Min)	4000V	

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied. Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Symbol	Parameter Input HIGH Voltage		54F/74F			Units	Vcc	Conditions
			Min	Тур	Мах	Onits	•00	Contractions
V _{IH}			2.0			v		Recognized as a HIGH Signa
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signa
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	v	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$
Ι _{ΙΗ}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	$V_{IN} = 7.0V$
ICEX	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage Test	74F	4.75			v	0.0	$I_{ID} = 1.9 \mu A$ All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
I _{OS}	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$
ICCH	Power Supply Current			15	23	mA	Max	V _O = HIGH
ICCL	Power Supply Current			15	23	mA	Max	V _O = LOW

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.