TOSHIBA BiCD IC Silicon Monolithic

TB62300FG

Dual Full－Bridge Driver for DC Motor

The TB62300FG is a dual brushed DC motors driver IC employing a chopper－based forward／reverse full－bridge mechanism．It controls two brushed DC motors at high precision． The motor supply voltage is up to 40 V and the VDD supply voltage is 5.0 V ．

Features

－A single IC can drive two brushed DC motors．
－Monolithic Bi－CMOS IC
－Low ON－resistance $\left(\mathrm{R}_{\text {on }}\right)=0.3 \Omega\left(\mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}\right.$ at 2.0 A typ．$)$
－Selectable current control：PWM current control using the

Weight： 0.79 g （typ．） PHASE pin or serial control
－5－bit DA converter for specifying current value and 2－bit DA converter for determining torque
－MIXED DECAY mode enables specification of current decay rate in four steps．
－Self－oscillation chopping frequency with external resistor and capacitor
－High－speed chopping at 100 kHz or higher
－ISD，TSD，and POR（VDD／VM）protection circuits
－Charge pump circuit（two external capacitors）for driving output
－36－pin package：HSOP36 with heat sink
－Output voltage： 40 V （max）
－Output current：2．5 A max（in steady－state phase）or $8 \mathrm{~A} \max$（pulsed output）
Note：The values specified in this document are designed values，which are not guaranteed．

Block Diagram

1. Overview (for single axis)

Pin Assignment

Note: When designing a ground line, make sure that all ground pins are connected to the same ground trail and remember to take heat radiation into account.
When pins that are used to toggle between modes are controlled by a switch, pull up or down the pins to avoid high impedance.
The IC may be destroyed due to short circuit between outputs, to supply, or to ground. Design output lines,
$V_{D D}\left(V_{M}\right)$ lines and ground lines with great care.
When power supply pins ($\mathrm{V}_{\mathrm{M}}, \mathrm{R}_{\mathrm{S}}$, OUT, P-GND, V_{SS} and C_{CP}) that are exposed to high current, or logic input pins are not connected correctly, excessive current or malfunction may cause the IC to break down.

Pin Description

Pin Number	Symbol	Function	Remarks
1	$\mathrm{R}_{\text {S A }}$	A-ch output power supply pin (current detection pin)	Reference pin for A-axis supply voltage
2	$V_{\text {REF A }}$	A-ch reference voltage input pin	Reference power supply pin for A-axis current
3	$V_{\text {REF B }}$	B-ch reference voltage input pin	Reference power supply pin for B-axis current
4	CR	External chopping reference pin	Pin used to set the chopping frequency
5	V_{M}	Supply voltage monitor pin	Monitor (reference) pin for motor supply voltage
6	Ccp 1	Charge pump capacitor pin	Pin for connecting a charge pump capacitor
7	Ccp 2	Charge pump capacitor pin	Pin for connecting a charge pump capacitor
8	Ccp 3	Charge pump capacitor pin	Pin for connecting a charge pump capacitor
9	VDD	Logic power supply	Logic supply current input pin
10	NC	NC pin	Note: Usually, leave this pin open.
11	TSTO	Test pin (usually not used)	Note: Usually, leave this pin open.
12	TSTI	Test pin (usually not used)	Note: Usually, connect this pin to LGND.
13	BRAKE A	A-ch brake mode pin	Forced brake mode
14	BRAKE B	B-ch brake mode pin	Forced brake mode
15	NC	NC pin	Note: Usually, leave this pin open.
16	OUT A -	A-ch negative output pin	A - output pin
17	PGND	V_{M} ground	Power ground
18	OUT A +	A-ch positive output pin	A + output pin
19	OUT B +	B-ch positive output pin	B + output pin
20	PGND	V_{M} ground	Power ground
21	OUT B -	B-ch negative output pin	B - output pin
22	NC	NC pin	Note: Usually, leave this pin open.
23	MODE A	A-ch data mode switching pin	Pin used to toggle between serial input and PWM control
24	MODE B	B-ch data mode switching pin	Pin used to toggle between serial input and PWM control
25	STROBE A	A-ch latch signal input pin	Data input: latched on rising edge
26	STROBE B	B-ch latch signal input pin	Data input: latched on rising edge
27	CLK A	A-ch clock input pin	Data input: referred to rising edge
28	CLK B	B-ch clock input pin	Data input: referred to rising edge
29	DATA A	A-ch data input pin	Data input:
30	DATA B	B-ch data input pin	Data input:
31	PHASE A	A-ch phase switching pin	PWM signal input pin:
32	PHASE B	B-ch phase switching pin	PWM signal input pin::
33	ENABLE A	A-ch output forced OFF pin	L: output stopped
34	ENABLE B	B-ch output forced OFF pin	L: output stopped
35	SLEEP	Operation stopped mode	Internal logic cleared and charge pump stopped
36	$\mathrm{R}_{\text {S } B}$	B-ch output power supply pin (current detection pin)	Reference pin for B-axis supply voltage
FIN1	LGND	Logic ground	Logic ground
FIN2	LGND	Logic ground	Logic ground

Pin Description (Supplementary)

Pull-up/pull-down status and operation within the IC for input pins

Pin Number	Symbol	Internal Pull-up/down	Output Operation at High	Output Operation at Low
10	NC	Open	Does not affect normal operation of the IC.	Does not affect normal operation of the IC.
11	TSTO	Output pin (usually low)	Does not affect normal operation of the IC (with the same withstand voltage as for VDD).	Does not affect normal operation of the IC.
12	TSTI	Input pin (no pull-up or down)	Toshiba test mode	Normal operation mode

Truth Table (1)

Pin logic overview

Pin Number	Symbol	Function	Logic
23	MODE A	A-ch data mode switching pin	H: Serial signal input control L : PWM control Note: When PWM control is selected, serial data bits D0 to D6 are valid while D7 to D13 are invalid.
24	MODE B	B-ch data mode switching pin	
25	STROBE A	A-ch latch signal input pin	H: Latched on rising edge L : Pass-through
26	STROBE B	B-ch latch signal input pin	
31	PHASE A	A-ch phase switching pin	H: Positive phase L : Negative phase
32	PHASE B	B-ch phase switching pin	
35	SLEEP	Operation stopped mode	H: Sleep released L : Sleep state All internal circuits, including charge pumps, are stopped.
33	ENABLE A	A-ch output forced OFF pin	H: Output enabled Output transistors turned on L : Output disabled Output transistors turned off
34	ENABLE B	B-ch output forced OFF pin	
13	BRAKE A	A-ch brake mode pin	H:Brake applied PHASE and ENABLE pins disabled L : Brake released
14	BRAKE B	B-ch brake mode pin	

Truth Table (2)
Overall logic

External Pins					Serial	Status
SLEEP	$\begin{gathered} \text { ENABLE } \\ \text { A/B } \end{gathered}$	BRAKE A/B	$\begin{gathered} \text { MODE } \\ \text { A/B } \end{gathered}$	$\begin{gathered} \text { PHASE } \\ \text { A/B } \end{gathered}$	PHASE	
0	X	X	X	X	X	Sleep mode
1	0	X	X	X	X	Disable mode
	1	1	X	X	X	Breake ON
		0	0	1	X	Forward
			0	0	X	Reverse
			1	X	1	Forward
			1	X	0	Reverse

IC State for Each Function

Function	Internal Logic	Output	Charge Pump	OSC	Recovery Time
SLEEP	Reset	OFF	OFF	OFF	$\mathrm{t}_{\mathrm{ONG}}=2.0 \mathrm{~ms}$ (typ.)/4.0 ms (max)
ENABLE	Maintained	OFF	Operating	Operating	N/A
POR	Reset	OFF	OFF	OFF	toNG $=2.0 \mathrm{~ms}$ (typ.)/4.0 ms (max)
ISD	Reset	OFF	OFF	OFF	$\mathrm{t}_{\mathrm{ONG}}=2.0 \mathrm{~ms}$ (typ.)/4.0 ms (max)
TSD	Reset	OFF	OFF	OFF	tong $=2.0 \mathrm{~ms}$ (typ.)/4.0 ms (max)

Serial Input Signals

Order of data input	Data Bit	Name	Function	Initial Value	Initial State	When PWM is Operating
\|	0	TBlank 0		0		
	1	TBlank 1	Set blanking time to prevent false detection due to noise	1	$1 \div$ fchop $\div 16 \times 7$	Enabled
	2	TBlank 2		1		
	3	Torque 0		0		
	4	Torque 1	Set current rang	0	25\%	Enabled
	5	Decay mode 0	Set decay mode	1	Mixed decay mode	Enabled
	6	Decay mode 1	Set decay mode	0	(37.5\%)	
	7	Current 0		1		
	8	Current 1		1		
	9	Current 2	Set current	1	100\%	Disabled
	10	Current 3		1		
	11	Current 4		1		
	12	Phase	Switch phase	0	Negative	Disabled
	13	-	-	-	-	-
	14	-	-	-	-	-
1	15	-	-	-	-	-

Notes on TBlank Setting

When using PWM control and serial control simultaneously, constant-current chopping may be disabled depending on the TBlank setting. Using constant-current chopping requires the following phase width in Fast Decay mode:
$($ TBlank setting $+2 /$ fcr $) \times 2$

Setting Table (1): D0, D1, D2

Blanking time settings

Data Bit	Name	Function	TBlank 2	TBlank 1	TBlank 0	Setting TBlank (typ.)
012	TBlank 0 TBlank 1 TBlank 2	Set blanking time to prevent false detection due to noise	0	0	0	$1 \div \mathrm{f}$ Chop $\div 16 \times 1$
			0	0	1	$1 \div \mathrm{f}_{\text {Chop }} \div 16 \times 2$
			0	1	0	$1 \div \mathrm{f}_{\text {Chop }} \div 16 \times 3$
			0	1	1	$1 \div \mathrm{f}$ Chop $\div 16 \times 4$
			1	0	0	$1 \div \mathrm{f}$ Chop $\div 16 \times 5$
			1	0	1	$1 \div \mathrm{f}_{\text {Chop }} \div 16 \times 6$
			1	1	0	$1 \div \mathrm{f}_{\text {Chop }} \div 16 \times 7$
			1	1	1	$1 \div \mathrm{f}$ Chop $\div 16 \times 8$

Setting Table (2): D3, D4

Torque settings

Data Bit	Name	Function	Torque 1	Torque 0	Setting Torque (typ.)
3	Torque 0	Set current range	0	0	25%
4	Torque 1		0	1	50%
			1	0	75%
			1	1	100%

Setting Table (3): D5, D6
Decay mode settings

Data Bit	Name	Function	Torque Mode 1	Torque Mode 0	Setting Decay Mode
5	Decay mode 0 Decay mode 1	Set decay mode	0	0	Slow decay mode
6			0	1	Mixed decay mode: 37.5\%
			1	0	Mixed decay mode: 75.0\%
			1	1	Fast decay mode

Setting Table (4): D7, D8, D9, D10, D11
Current settings

Data Bit	Name	Function	Current 4	Current 3	Current 2	Current 1	Current 0	Setting Current
7891011	Current 0 Current 1 Current 2 Current 3 Current 4	Set current	0	0	0	0	0	0\%
			0	0	0	0	1	3\%
			0	0	0	1	0	6\%
			0	0	0	1	1	9\%
			0	0	1	0	0	12\%
			0	0	1	0	1	16\%
			0	0	1	1	0	19\%
			0	0	1	1	1	22\%
			0	1	0	0	0	25\%
			0	1	0	0	1	29\%
			0	1	0	1	0	32\%
			0	1	0	1	1	35\%
			0	1	1	0	0	38\%
			0	1	1	0	1	41\%
			0	1	1	1	0	45\%
			0	1	1	1	1	48\%
			1	0	0	0	0	51\%
			1	0	0	0	1	54\%
			1	0	0	1	0	58\%
			1	0	0	1	1	61\%
			1	0	1	0	0	64\%
			1	0	1	0	1	67\%
			1	0	1	1	0	70\%
			1	0	1	1	1	74\%
			1	1	0	0	0	77\%
			1	1	0	0	1	80\%
			1	1	0	1	0	83\%
			1	1	0	1	1	87\%
			1	1	1	0	0	90\%
			1	1	1	0	1	93\%
			1	1	1	1	0	96\%
			1	1	1	1	1	100\%

Setting Table (5): D12

Phase settings

Data Bit	Name	Function	Phase	Setting Phase
12	Phase	Switch phase	0	Negative
			1	Positive

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{opr}}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Condition	Rating	Unit
Logic supply voltage	$V_{\text {DD }}$	-	-0.4 to 7.0	V
Maximum output voltage	V_{M}	-	40	V
Peak output current (Note: preliminary specification)	IOUT (Peak)	tw $\leq 500 \mathrm{~ns}$	8.0	A
Continuous output current	IOUT (Cont)	-	2.5	A
Logic input voltage	$V_{\text {IN }}$	-	-0.5 to V_{DD}	V
Current detection pin voltage	V_{RS}	-	$\mathrm{V}_{\mathrm{M}} \pm 4.5 \mathrm{~V}$	V
Power dissipation	P_{D}	IC alone	1.4	W
		When mounted on a board (Note)	3.2	W
Operating temperature	Topr	-	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-	-55 to 150	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{j}	-	150	${ }^{\circ} \mathrm{C}$

Note: When $\mathrm{T}_{\mathrm{opr}}=45^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ and $\theta \mathrm{ja}=32^{\circ} \mathrm{C}$

Recommended Operating Conditions ($\mathrm{T}_{\mathrm{opr}}=\mathbf{0}$ to $85^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Condition	Min	Typ.	Max	Unit
Supply voltage (Note 1)	$V_{\text {DD }}$	-	4.5	5.0	5.5	V
Output voltage (Note 1)	V_{M}	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	18.0	24.0	33.0	V
Output current (Note: preliminary specification)	IOUT (Peak)	$\mathrm{V}_{\mathrm{M}}=33.0 \mathrm{~V}, \mathrm{t}_{\mathrm{w}} \leq 500 \mathrm{~ns}$	-	6.4	7.2	A
	IoUT (Cont)	$\mathrm{V}_{\mathrm{M}}=33.0 \mathrm{~V}$	-	1.5	1.8	A
Logic input voltage range	VIN	-	0	-	V_{DD}	V
Clock frequency	$\mathrm{f}_{\text {CLK }}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	1.0		25.0	MHz
Chopping frequency	$\mathrm{f}_{\text {chop }}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	20	30	150	kHz
$\mathrm{V}_{\text {ref }}$ reference voltage	$V_{\text {ref }}$	$\mathrm{V}_{\mathrm{M}}=24.0 \mathrm{~V}, \mathrm{~T}_{\text {ORQUE }}=100 \%$	2.0	3.0	V_{DD}	V
Current detection pin voltage	V_{RS}	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	0	± 1.0	± 1.5	V
Junction temperature	T_{j}	-	-	-	120	${ }^{\circ} \mathrm{C}$
Oscillator capacitor	Cosc	-	-	270	-	pF
Oscillator resistor	Rosc	-	-	3.9	-	$\mathrm{k} \Omega$
Charge pump capacitor A	$\mathrm{C}_{\text {CPA }}$	-	-	0.22	-	$\mu \mathrm{F}$
Charge pump capacitor B	$\mathrm{C}_{\text {CPB }}$	-	-	0.022	-	$\mu \mathrm{F}$
Input rise and fall rate (Note 2)	tri/tfi	-	-	0.1	5.0	$\mu \mathrm{s}$

Note 1: Do not reduce $V_{D D}$ to 0 V (ground) while V_{M} voltage is applied. Such an attempt may damage the IC because there is a current path from the V_{M} pin to $V_{D D}$ pin and the internal logic is undefined when $V_{D D}$ is not applied. Leaving $V_{D D}$ open (Hi-Z) is less likely to damage the IC, although it is not recommended.
Note 2: The circuit configuration of this IC cannot handle extremely slow data input (on pins BREAK A, BREAK B, SLEEP, ENABLE A, ENABLE B, PHASE A, PHASE B, DATA A, DATA B, CLK A, CLK B, STROBE A, STROBE B, MODE A, and MODE B). Applying a slow signal having a period longer than $5 \mu \mathrm{~s}$ may cause the IC to oscillate.
(1) Calculating the current

Iout $=1 / 3 \times \mathrm{V}_{\text {ref }}(\mathrm{V}) \times\left(\right.$ Torque $\left.(\%) \div \mathrm{R}_{\text {RS }}(\Omega)\right) \times$ Current (\%)
where $1 / 3$ is the $V_{\text {ref }}$ (GAIN): $\mathrm{V}_{\text {ref }}$ attenuation ratio.
(2) Calculating the oscillation frequency
$\left.\mathrm{f}_{\mathrm{CR}}=1 /(\mathrm{KA}) \times(\mathrm{C} \times \mathrm{R}+\mathrm{KB} \times \mathrm{C})\right) \times[\mathrm{Hz}]$
$\mathrm{KA}=0.523, \mathrm{~KB}=600, \mathrm{f}_{\mathrm{chop}}=\mathrm{fCR}_{\mathrm{CR}} / 16[\mathrm{~Hz}]$
[Example] When Cosc $=270 \mathrm{pF}$ and $\mathrm{ROSC}_{\mathrm{OS}}=3.9 \mathrm{k} \Omega: \mathrm{f}_{\mathrm{CR}}=1.57 \mathrm{MHz}$ and $\mathrm{f}_{\text {chop }}=1.57 / 16=98.4 \mathrm{kHz}$

Electrical Characteristics 1

DC Characteristics (unless otherwise specified, $\mathrm{V}_{\mathrm{M}}=\mathbf{2 4 V}$, $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{opr}}=25^{\circ} \mathrm{C}$)

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Input voltage	High	V_{IH}	DC	CLK, STROBE, DATA, MODE, PHASE, ENABLE and PHASE pins	2.0	-	-	V
	Low	$\mathrm{V}_{\text {IL }}$			-	-	0.8	
Input current		$\mathrm{l}_{\mathrm{H} 1}$	DC	CLK, STROBE, DATA, MODE, PHASE, ENABLE and PHASE pins	-	-	1.0	$\mu \mathrm{A}$
		IIL1			-	-	1.0	
		$\mathrm{I}_{1 \mathrm{H} 2}$		SLEEP pin	-	-	200.0	$\mu \mathrm{A}$
		$I_{\text {IL2 }}$			-	-	1.0	
Current consumed by logic power supply		IDD1	DC	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, fcr stopped	-	3.0	4.5	mA
		IDD2		In SLEEP mode		0.3	1.0	
V_{M} current consumption		$\mathrm{l}_{\mathrm{M} 1}$	DC	Output open, $\mathrm{f}_{\mathrm{CLK}}=1 \mathrm{kHz}$, logic operating, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{M}}=24 \mathrm{~V}$, all output stages stopped, charge pump charged	-	4.3	7.0	mA
		$\mathrm{I}_{\mathrm{M} 2}$		Output open, f CLK $=4 \mathrm{kHz}$, internal logic operating (100-kHz chopping), output stages operating without load, charge pump charged	-	20.0	28.0	
		$\mathrm{I}_{\text {M3 }}$		In SLEEP mode	-	0.5	1.0	
Output standby current	Upper	IOH	DC	$\begin{aligned} & \mathrm{V}_{\mathrm{RS}}=\mathrm{V}_{\mathrm{M}}=24 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0 \mathrm{~V}, \\ & \mathrm{ENABLE}=\text { Low }, \\ & \text { DATA = All low } \end{aligned}$	-400	-	-	$\mu \mathrm{A}$
Output bias current	Upper	IOB		$\begin{aligned} & \mathrm{V}_{\mathrm{RS}}=\mathrm{V}_{\mathrm{M}}=24 \mathrm{~V}, \mathrm{~V}_{\text {out }}=24 \mathrm{~V}, \\ & \mathrm{ENABLE}=\text { Low, } \\ & \text { DATA }=\text { All low } \end{aligned}$	-200	-	-	
Output leakage current	Lower	IOL		$\begin{aligned} & V_{R S}=V_{M}=C c p A=V_{\text {out }} \\ & =24 \mathrm{~V}, \mathrm{SLEEP}=\text { Low } \end{aligned}$	-	-	1.0	
Comparator reference voltage ratio	High	$\mathrm{V}_{\mathrm{RS}}(\mathrm{H})$	DC	$\begin{aligned} & V_{\text {ref }}=3.0 \mathrm{~V}, V_{\text {ref }}(\text { gain })=1 / 3.0 \\ & \text { TORQUE }=11=100 \% \text { set } \end{aligned}$	-	100	-	\%
	Mid High	$\mathrm{V}_{\text {RS }}(\mathrm{MH})$		$\begin{aligned} & \mathrm{V}_{\text {ref }}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {ref }}(\text { gain })=1 / 3.0 \\ & \text { TORQUE }=10=75 \% \text { set } \end{aligned}$	73	75	77	
	Mid Low	$\mathrm{V}_{\mathrm{RS}}(\mathrm{ML})$		$\begin{aligned} & \mathrm{V}_{\text {ref }}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {ref }}(\text { gain })=1 / 3.0 \\ & \text { TORQUE }=01=50 \% \text { set } \end{aligned}$	48	50	52	
	Low	$\mathrm{V}_{\mathrm{RS}}(\mathrm{L})$		$\begin{aligned} & V_{\text {ref }}=3.0 \mathrm{~V}, V_{\text {ref }}(\text { gain })=1 / 3.0 \\ & \text { TORQUE }=00=25 \% \text { set } \end{aligned}$	23	25	27	

Electrical Characteristics 2

DC Characteristics (unless otherwise specified, $\mathrm{V}_{\mathrm{M}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{opr}}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Output current interchannel error	DIOUT1	DC	Error in output current between channels (loUT = 1.5 A)	-5.0	-	5.0	\%
Output current setting error	- ${ }_{\text {IOUT2 }}$	DC	l OUT $=1.5 \mathrm{~A}$	-5.0	-	5.0	\%
RS pin current	$I_{\text {RS }}$	DC					$\mu \mathrm{A}$
Output transistor drain-source ON-resistance	RON1	DC	$\mathrm{I}_{\mathrm{OUT}}=1.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, forward direction	-	0.3	0.4	Ω
	RON1		$\mathrm{IOUT}=1.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, reverse direction	-	0.3	0.4	
	RON2		$\mathrm{I}_{\mathrm{OUT}}=1.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{j}}=105^{\circ} \mathrm{C}$, forward direction	-	0.4	0.55	
	RON2		$\mathrm{I}_{\mathrm{OUT}}=1.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{j}}=105^{\circ} \mathrm{C}$, reverse direction	-	0.4	0.55	
$V_{\text {REF }}$ input voltage	$V_{\text {ref }}$	DC	$\mathrm{V}_{\mathrm{M}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V},$ ENABLE, output operation	2.0	-	$V_{D D}$	V
$V_{\text {REF }}$ input current	Iref	DC	$\begin{aligned} & \mathrm{V}_{\mathrm{ref}}=3.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{M}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \end{aligned}$ SLEEP	-	-	100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {REF }}$ attenuation ratio	$V_{\text {ref }}$ (GAIN)	DC	$\begin{aligned} & \mathrm{V}_{\mathrm{ref}}=3.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{M}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \end{aligned}$ SLEEP	1/2.82	1/3	1/3.18	-
TSD operating temperature (Note 1)	TjTSD	DC	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=24 \mathrm{~V}$	130	-	170	${ }^{\circ} \mathrm{C}$
Overcurrent protection circuit operating current	ISD	DC	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=24 \mathrm{~V}$	-	6.0	-	A
Output OFF mode supply voltage	Vpor (VD)	DC	$\mathrm{V}_{\mathrm{M}}=24 \mathrm{~V}$	-	3.0	-	V
	$\begin{aligned} & \text { Vpor } \\ & \left(\mathrm{V}_{\mathrm{M}}\right) \end{aligned}$	DC	$V_{D D}=5 \mathrm{~V}$	-	15.0	-	

Note 1: Thermal shutdown (TSD) circuit
When the IC junction temperature reaches the specified value and the TSD circuit is activated, the internal reset circuit turns output off. The TSD activation temperature can be set within the range from $130^{\circ} \mathrm{C}$ (min) to $170^{\circ} \mathrm{C}$ (max). Once the TSD circuit is activated, output is stopped until a pulse (L to H to L) is subsequently applied to the SLEEP pin. The charge pump is halted while the TSD circuit is active. The TSD circuit does not include hysteresis. Applying a pulse (L to H to L) to the SLEEP pin deactivates the circuit.

Note 2: Overcurrent protection circuit (ISD)
This circuit is activated when a current pulse exceeding the specified output value is applied for a period of $1 / 2 \mathrm{f} C \mathrm{HOP}$ (min) to fCHOP (max).
The circuit activates the internal reset circuit to turn output off.
Once it is activated, output is stopped until a pulse (L to H to L) is subsequently applied to the SLEEP pin. While the ISD circuit is active, the IC is placed in SLEEP mode with the charge pump halted.

AC Characteristics ($\mathrm{T}_{\mathrm{opr}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{M}}=\mathbf{2 4} \mathrm{V}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ with load of $6.8 \mathrm{mH} / 5.7 \Omega$)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Clock frequency	$\mathrm{f}_{\text {CLK }}$	-		1.0	-	25.0	MHz
Minimum clock pulse width	$\mathrm{t}_{\mathrm{w}}(\mathrm{t}$ CLK)	AC		40.0	-	-	ns
	$t_{\text {wp }}$			20.0	-	-	
	$t_{\text {wn }}$			20.0	-	-	
Minimum STROBE pulse width	twstrobe	AC		40.0	-	-	ns
	tstrobe (H)			20.0	-	-	
	tstrobe (L)			20.0	-	-	
Minimum SLEEP pulse width	twSTROBE	AC		tong	-	-	ns
Phase difference between PHASE signal and fcr	tp	AC		-	-	1/fCR	ns
Blanking time for preventing false detection	${ }^{\text {t }}$ BLNIK		(Note 1)	-	300	-	ns
Data setup time	$\mathrm{t}_{\text {SSIN-CLK }}$	AC		20.0	-	-	ns
	$\mathrm{t}_{\text {SST-CLK }}$			20.0	-	-	
Data hold time	$\mathrm{t}_{\mathrm{hSIN}} \mathrm{CLK}$	AC		20.0	-	-	ns
	$t_{\text {hST-CLK }}$			20.0	-	-	
STROBE setup time (relative to CLK)	$\mathrm{t}_{\text {sSSB-CLK }}$	AC		20.0	-	-	ns
STROBE hold time (relative to CLK)	thSB-CLK	AC		20.0	-	-	
Output transistor switching time	t_{f}	AC		-	40.0	100	ns
	t_{f}			-	40.0	100	
	$\mathrm{t}_{\mathrm{pLH}}$			-	100	200	
	$\mathrm{t}_{\mathrm{pHL}}$			-	580	1000	
	$t_{p L Z}$			-	100	200	
	$t_{p H Z}$			-	350	700	
	$t_{p Z L}$			-	1000	2000	
	$t_{p Z H}$			-	350	700	
CR reference signal oscillation frequency	f_{CR}		$\mathrm{C}_{\mathrm{OSC}}=270 \mathrm{pF}, \mathrm{R}_{\mathrm{OSC}}=3.9 \mathrm{k} \Omega$	1.1	1.3	1.5	MHz
Chopping frequency	$\mathrm{f}_{\text {chop (}}$ min) $\mathrm{f}_{\text {chop (typ.) }}$ $\mathrm{f}_{\text {chop (max) }}$			20.0	-	150.0	kHz
Oscillation frequency	$\mathrm{f}_{\text {chop }}$		When $\mathrm{f}_{\mathrm{CR}}=480 \mathrm{kHz}$	-	30.0	-	kHz
Charge pump rise time	tong	AC		-	2.0	4.0	ms

Note 1: The blanking time is internally fixed but it can be elongated by applying a serial blanking time signal.

Test Circuit (DC)

Test Circuit (AC)

$\mathrm{f}_{\mathrm{CLK}}, \mathrm{t}_{\mathrm{w}}\left(\mathrm{t}_{\text {CLK }}\right), \mathrm{t}_{\mathrm{wp}}, \mathrm{t}_{\mathrm{wn}}$,
$\mathrm{t}_{\text {wSTROBE }}$, tstrobe (H), tstrobe (L),
$\mathrm{t}_{\text {SSIN-CLK }}, \mathrm{t}_{\text {sST}}$ CLK, $\mathrm{t}_{\text {hSIN-CLK, }}$, $\mathrm{t}_{\text {ST }}$-CLK

AC Test Waveforms

DATA
DATA 15 50\% DATA 0 DATA 1

PHASE

ENABLE

Waveform in Mixed Decay Mode (Current Waveform)

Output Transistor Operating Mode

Output Transistor Operation Functions

CLK	U1	U2	L1	L2
Charge	ON	OFF	OFF	ON
Slow	OFF	OFF	ON	ON
Fast	OFF	ON	ON	OFF

Note: The above table is an example where current flows in the direction of the arrows in the above figures. When the current flows in the opposite direction of the arrows, see the table below.

CLK	U1	U2	L1	L2
Charge	OFF	ON	ON	OFF
Slow	OFF	OFF	ON	ON
Fast	ON	OFF	OFF	ON

Power Supply Sequence (Recommended)

Note 1: If $V_{D D}$ drops to the level of the $V_{D D R}$ or below while the specified voltage is applied to the V_{M} pin, the IC is internally reset.
This is a protective measure against malfunction. Likewise, if V_{M} drops to the level of V_{MR} or below while regulation voltage is applied to $V_{D D}$, the IC is internally reset as a protective measure against malfunction. To avoid malfunction, when turning on V_{M} or V_{DD}, applying a signal to the SLEEP pin at the above timing is recommended.
It takes time for the output control charge pump circuit to stabilize. Wait up to tong time after power on before driving a motor.

Note 2: When the V_{M} value is between 3.3 to 5.5 V , the internal reset is released, thus output may be active. In such a case, the charge pump circuit cannot operate properly because of insufficient voltage. The IC should be held in SLEEP mode until V_{M} reaches 13 V or more.

Note 3: Since $\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{M}}=$ voltage within the rating are applied, output is turned off by internal reset. At that time, a current of several mA flows due to a current path between V_{M} and V_{DD}. When the output voltage is high, make sure that the specified voltage is applied to $V_{D D}$.

PD - Ta (Package power dissipation)

Transient thermal resistance
(1) HSOP36 $\mathrm{R}_{\text {th }}(\mathrm{j}-\mathrm{a})$ without a board $\left(96^{\circ} \mathrm{C} / \mathrm{W}\right)$
(2) When mounted on a board ($140 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}: 38^{\circ} \mathrm{C} / \mathrm{W}$: typ.)

Note: $R_{\text {th (}}(\mathrm{j}-\mathrm{a}): 8.5^{\circ} \mathrm{C} / \mathrm{W}$

Relationship between V_{M} and V_{H} (charge pump voltage)

Note: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
Ccp $1=0.22 \mu \mathrm{~F}, \mathrm{Ccp} 2=0.022 \mu \mathrm{~F}, \mathrm{f}_{\mathrm{chop}}=150 \mathrm{kHz}$
(Care must be taken about the temperature charges of charge pump capacitor.)

- Initial charging
(1) When RESET is released, $\mathrm{T}_{\mathrm{r} 1}$ is turned on and $\mathrm{T}_{\mathrm{r} 2}$ turned off. Ccp 2 is charged from Vm via Di1.
(2) After $\mathrm{T}_{\mathrm{r} 1}$ is turned off and $\mathrm{T}_{\mathrm{r} 2}$ is turned on, and Ccp 1 is charged from Ccp 2 via Di2.
(3) When the voltage difference between VM_{M} and V_{H} (Ccp A pin voltage $=$ charge pump voltage) reaches VDD or higher, operation halts (in the steady-state phase).
- Actual operation
(4) The charge of Ccp 1 charge is used at fchop switching and the potential of V_{H} drops.
(5) The circuit is charged up by the operations of (1) and (2) above.

Charge Pump Rise Time

tONG: Time taken for capacitor Ccp 2 (charging capacitor) to fill up Ccp 1 (storing capacitor) to Vm + VDD after a reset is released.
The internal circuits cannot drive the gates correctly until the voltage of Ccp 1 reaches Vm + VDD. Be sure to wait for tONG or longer before driving the motors.
Basically, the larger the Ccp 1 capacitance is, the smaller the voltage fluctuation is, though the initial charge up time is longer.
The smaller the Ccp 1 capacitance is, the shorter the initial charge-up time is, but the voltage fluctuation is larger.
Depending on the combination of capacitors (especially with small capacitance), voltage may not be sufficiently boosted. When the voltage does not increase sufficiently, RON of output DMOS becomes lower than the reference value, which raises the temperature.
Thus, use the capacitors under the capacitor combination conditions ($\mathrm{Ccp} 1=0.22 \mu \mathrm{~F}, \mathrm{Ccp} 2=0.022$ $\mu \mathrm{F}$) recommended by Toshiba.

External Capacitor for Charge Pump

When driving a motor while $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{f}_{\text {chop }}=150 \mathrm{kHz}, \mathrm{L}=10 \mathrm{mH}$ under the conditions of $\mathrm{V}_{\mathrm{M}}=27 \mathrm{~V}$ and 2.0 A , the logical values for Ccp 1 and Ccp 2 are as shown in the graph below:

Choose Ccp 1 and Ccp 2 to be combined from the above applicable range. We recommend Ccp 1:Ccp 2 at $10: 1$ or more. (If our recommended values ($\mathrm{Ccp}=0.22 \mu \mathrm{~F}$, $\mathrm{Ccp} 2=0.022 \mu \mathrm{~F}$) are used, the drive conditions in the specification sheet are satisfied. (There is no capacitor temperature characteristic as a condition.) When setting the constants, make sure that the charge pump voltage is not below the specified value and set the constants with a margin (the larger Ccp 1 and Ccp 2, the more the margin).
Some capacitors exhibit a large change in capacitance according to the temperature. Make sure the above capacitance is obtained under the IC ambient temperature.

Recommended Application Circuit

The values of external constants are example recommended values. For values under different input conditions, see the above-mentioned recommended operating conditions.
(The following shows an example when fcho $=501 \mathrm{~Hz}$ (CR frequency $=800 \mathrm{kHz}$ and constant-current limiter $=2.27 \mathrm{~A}$) with serial signals placed in initial status.)

Note: It is recommended to add bypass capacitors as required.
Make sure that all gound pins are connected to the same ground rail.
STROBE, CLK, and DATA must be tied to LGND if serial input is not used for settings or motor control.
Because there may be short circuits between outputs, to supply, or to ground, be careful when designing output lines, $\mathrm{V}_{\mathrm{DD}}\left(\mathrm{V}_{\mathrm{M}}\right)$ lines, and ground lines.

Connection Diagram (when external forced PWM mode is used)

$---->$: Signal from central unit

Package Dimensions

Weight: 0.79 g (typ.)

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

