－Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
－State－of－the－Art EPIC－IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
－Latch－Up Performance Exceeds 500 mA Per JESD 17
－Typical $\mathrm{V}_{\text {OLP }}$（Output Ground Bounce）$<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
－Distributed $V_{C C}$ and GND Pin Configuration Minimizes High－Speed Switching Noise
－Flow－Through Architecture Optimizes PCB Layout
－High－Drive Outputs（ $-32-\mathrm{mA} \mathrm{I}_{\mathrm{OH}}, 64-\mathrm{mA} \mathrm{I}_{\mathrm{OL}}$ ）
－Package Options Include Plastic Shrink Small－Outline（DL），Thin Shrink Small－Outline（DGG）Packages and $380-\mathrm{mil}$ Fine－Pitch Ceramic Flat（WD）Package Using 25－mil Center－to－Center Spacings

description

The＇ABT16646 devices consist of bus－transceiver circuits，D－type flip－flops，and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers．
These devices can be used as two 8－bit transceivers or one 16－bit transceiver．Data on the A or B bus is clocked into the registers on the low－to－high transition of the appropriate clock （CLKAB or CLKBA）input．Figure 1 illustrates the four fundamental bus－management functions that can be performed with the＇ABT16646 devices．

SN54ABT16646 ．．．WD PACKAGE
SN74ABT16646．．．DGG OR DL PACKAGE （TOP VIEW）

1DIR 1	\cup_{56}	$] 1 \overline{O E}$
1CLKAB 2	55	1CLKBA
1SAB 3	54	1 1SBA
GND［ 4	53	$]$ GND
1A1 ${ }^{5}$	52	$1 \mathrm{B1}$
1A2 ${ }^{6}$	51	1 B 2
$V_{\text {CC }}$	50	V_{CC}
1A3 8	49	1B3
1A4 9	48	$1 \mathrm{B4}$
1A5 10	47	1 B 5
GND 11	46	$]$ GND
1A6 12	45	$1 \mathrm{B6}$
1A7 13	44	$1 \mathrm{B7}$
1A8 14	43	188
2A1 15	42	2B1
2 A 2 l	41	2B2
2A3 17	40	2B3
GND 18	39	1 GND
2A4 19	38	12 B 4
2A5 20	37	2B5
2A6 21	36	12 C
$\mathrm{V}_{\text {CC }}$［22	35	V_{CC}
2A7 23	34	2B7
2A8 24	33	$]$ 2B8
GND 25	32	1 GND
2SAB 26	31	－2SBA
2CLKAB 27	30	1 2CLKB
2DIR 28	29	$2 \overline{\mathrm{O}}$

Output－enable（ $\overline{\mathrm{OE}}$ ）and direction－control（DIR）inputs are provided to control the transceiver functions．In the transceiver mode，data present at the high－impedance port may be stored in either register or in both．The select－control（SAB and SBA）inputs can multiplex stored and real－time（transparent mode）data．The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real－time data．The direction control（DIR）determines which bus receives data when $\overline{\mathrm{OE}}$ is low．In the isolation mode（ $\overline{\mathrm{OE}}$ high），A data can be stored in one register and／or B data can be stored in the other register．
When an output function is disabled，the input function is still enabled and can be used to store and transmit data．Only one of the two buses，A or B，can be driven at a time．

To ensure the high－impedance state during power up or power down，$\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor；the minimum value of the resistor is determined by the current－sinking capability of the driver．

description (continued)

The SN54ABT16646 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16646 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS						DATA I/O†		OPERATION OR FUNCTION
$\overline{\text { OE }}$	DIR	CLKAB	CLKBA	SAB	SBA	A1-A8	B1-B8	
X	X	\uparrow	X	X	X	Input	Unspecified	Store A, B unspecified ${ }^{\dagger}$
X	X	X	\uparrow	X	X	Unspecified	Input	Store B, A unspecified ${ }^{\dagger}$
H	X	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
H	X	H or L	H or L	X	X	Input disabled	Input disabled	Isolation, hold storage
L	L	X	X	X	L	Output	Input	Real-time B data to A bus
L	L	X	H or L	X	H	Output	Input	Stored B data to A bus
L	H	X	X	L	X	Input	Output	Real-time A data to B Bus
L	H	H or L	X	H	X	Input	Output	Stored A data to bus

\dagger The data-output functions can be enabled or disabled by various signals at $\overline{\text { OE }}$ or DIR. Data-input functions always are enabled, i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.

Figure 1. Bus-Management Functions
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (except I/O ports) (see Note 1) .. } 0.5 \mathrm{~V} \text { to } 7 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}} \text { : SN54ABT16646 } 96 \text { mA } \\
& \text { SN74ABT16646 ... } 128 \text { mA } \\
& \text { Input clamp current, } \mathrm{I}_{\mathrm{IK}}\left(\mathrm{~V}_{\mathrm{I}}<0\right) \text {.. } 18 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Package thermal impedance, } \theta_{\mathrm{JA}} \text { (see Note 2): DGG package } 81^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { DL package .. } 74^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51 .
recommended operating conditions (see Note 3)

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the Tl application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

* On products compliant to MIL-PRF-38535, this parameter does not apply.
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger The parameters IOZH and IOZL include the input leakage current.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
I This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 2)

		SN54ABT16646				UNIT
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		MIN	MAX	
		MIN	MAX			
$\mathrm{f}_{\text {clock }}$	Clock frequency		125		125	MHz
t_{w}	Pulse duration, CLK high or low	4.3		4.3		ns
$\mathrm{t}_{\text {su }}$	Setup time, A or B before CLKAB \uparrow or CLKBA \uparrow	3.5		4		ns
$\mathrm{th}^{\text {h }}$	Hold time, A or B after CLKAB \uparrow or CLKBA \uparrow	0.5		0.5		ns

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 2)

			N74A	16646		
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}= \\ & \mathrm{T}_{\mathrm{A}}=2 \end{aligned}$		MIN	MAX	UNIT
		MIN	MAX			
$\mathrm{f}_{\text {clock }}$	Clock frequency		125		125	MHz
t_{w}	Pulse duration, CLK high or low	4.3		4.3		ns
$\mathrm{t}_{\text {su }}$	Setup time, A or B before CLKAB \uparrow or CLKBA \uparrow	3		3		ns
th	Hold time, A or B after CLKAB \uparrow or CLKBA \uparrow	0		0		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54ABT16646					UNIT
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			MIN	MAX	
			MIN	TYP	MAX			
$f_{\text {max }}$			125			125		MHz
tPLH	CLKBA or CLKAB	A or B	1.5	3.1	4	1	5	ns
tPHL			1.5	3.2	4.1	1	5	
tPLH	A or B	B or A	1	2.3	3.2	0.6	4	ns
tPHL			1	3	4.1	0.6	4.9	
tPLH	SAB or SBA \dagger	B or A	1	2.9	4.3	0.6	5.3	ns
tPHL			1	3.1	4.3	0.6	5.3	
tPZH	$\overline{\mathrm{OE}}$	A or B	1	3.4	4.6	0.6	5.9	ns
tPZL			1.5	3.5	5.3	1	6	
tPHZ	$\overline{O E}$	A or B	1.5	3.9	5.6	1	6.4	ns
tPLZ			1.5	3.1	4.4	1	4.7	
tPZH	DIR	A or B	1	3.2	4.5	0.6	5.8	ns
tPZL			1.5	3.4	5.1	1	6.7	
tPHZ	DIR	A or B	2	4.2	5.9	1.2	7.1	ns
tPLZ			1.5	3.6	5.1	1	6.2	

\dagger These parameters are measured with the internal output state of the storage register opposite that of the bus input.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN74ABT16646					UNIT
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			MIN	MAX	
			MIN	TYP	MAX			
$f_{\text {max }}$			125			125		MHz
tPLH	CLKBA or CLKAB	A or B	1.5	3.1	4	1.5	4.9	ns
tPHL			1.5	3.2	4.1	1.5	4.7	
tPLH	A or B	B or A	1	2.3	3.2	1	3.9	ns
tPHL			1	3	4.1	1	4.6	
tPLH	SAB or SBA \dagger	B or A	1	2.9	4.3	1	5	ns
tPHL			1	3.1	4.3	1	5	
tPZH	$\overline{\mathrm{OE}}$	A or B	1	3.4	4.6	1	5.5	ns
tPZL			1.5	3.5	4.9	1.5	5.7	
tPHZ	$\overline{\mathrm{OE}}$	A or B	1.5	3.9	4.9	1.5	5.4	ns
tPLZ			1.5	3.1	4.1	1.5	4.5	
tPZH	DIR	A or B	1	3.2	4.5	1	5.4	ns
tPZL			1.5	3.4	4.8	1.5	5.6	
tPHZ	DIR	A or B	2	4.2	5.7	2	6.7	ns
tPLZ			1.5	3.6	5.1	1.5	5.9	

[^0]
PARAMETER MEASUREMENT INFORMATION

TEST	S1
$\mathrm{tPLH}^{\prime} / \mathrm{tPHL}$	Open
$\mathrm{tPLZ}^{\mathrm{t} P \mathrm{PZL}}$	7 V
$\mathrm{tPHZ} / \mathrm{tPZH}$	Open

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5962-9450201QXA | ACTIVE | CFP | WD | 56 | 1 | TBD | Call TI | Level-NC-NC-NC |
| 74ABT16646DGGRE4 | ACTIVE | TSSOP | DGG | 56 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT16646DGGR | ACTIVE | TSSOP | DGG | 56 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT16646DL | ACTIVE | SSOP | DL | 56 | 20 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT16646DLR | ACTIVE | SSOP | DL | 56 | 1000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT16646DLRG4 | ACTIVE | SSOP | DL | 56 | 1000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SNJ54ABT16646WD | ACTIVE | CFP | WD | 56 | 1 | TBD | Call TI | Level-NC-NC-NC |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathbf{S b} / \mathbf{B r}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only
E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA

GDFP1-F56 and JEDEC MO-146AB

PIM	$\mathbf{2 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	0.380 $(9,65)$	0.630 $(16,00)$	0.730 $(18,54)$
A MIN	0.370 $(9,40)$	0.620 $(15,75)$	0.720 $(18,29)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MO-118

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

[^0]: \dagger These parameters are measured with the internal output state of the storage register opposite that of the bus input.

