TDA1308

FEATURES

- · Wide temperature range
- No switch ON/OFF clicks
- · Excellent power supply ripple rejection
- · Low power consumption
- · Short-circuit resistant
- · High performance
 - high signal-to-noise ratio
 - high slew rate
 - low distortion
- · Large output voltage swing.

GENERAL DESCRIPTION

The TDA1308 is an integrated class AB stereo headphone driver contained in an SO8 or a DIP8 plastic package. The device is fabricated in a 1 mm CMOS process and has been primarily developed for portable digital audio applications.

QUICK REFERENCE DATA

 $V_{DD} = 5 \text{ V}$; $V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \text{ °C}$; $f_i = 1 \text{ kHz}$; $R_L = 32 \Omega$; unless otherwise specified.

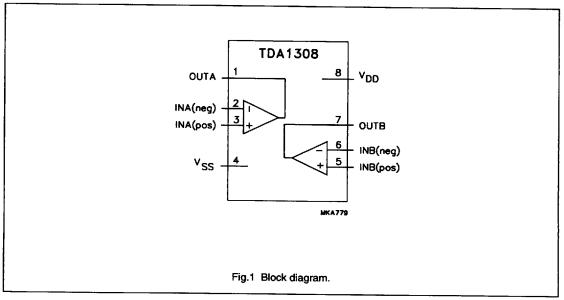
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DD}	supply voltage					
	single		3.0	5.0	7.0	v
	dual		1.5	2.5	3.5	v
V _{SS}	negative supply voltage		-1.5	-2.5	-3.5	V
I _{DD}	supply current	no load	-	3	5	mA
P _{tot}	total power dissipation	no load	1-	15	25	mW
Po	maximum output power	THD < 0.1%; note 1	_	60	-	mW
(THD + N)/S	total harmonic distortion plus noise-to-signal ratio	note 1				
			-	0.03	0.06	%
			-	-70	-65	dB
		$R_L = 5 k\Omega$	-	-101	-	dB
S/N	signal-to-noise ratio		100	110	_	dB
$\alpha_{ extsf{cs}}$	channel separation		-	70	Ī-	dB
		$R_L = 5 k\Omega$	_	105	_	dB
PSRR	power supply ripple rejection	$f_i = 100 \text{ Hz}; V_{ripple(p-p)} = 100 \text{ mV}$	1-	90	_	dB
T _{amb}	operating ambient temperature		-4 0	_	+85	°C

Note

1. $V_{DD} = 5 \text{ V}$; $V_{O(p-p)} = 3.5 \text{ V}$ (at 0 dB).

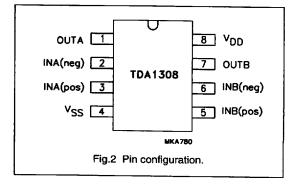
ORDERING INFORMATION

TYPE NUMBER	PACKAGE			
I TPE NOMBER	NAME	DESCRIPTION	VERSION	
TDA1308	DIP8	plastic dual in-line package; 8 leads (300 mil)	SOT97-1	
TDA1308T	SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1	

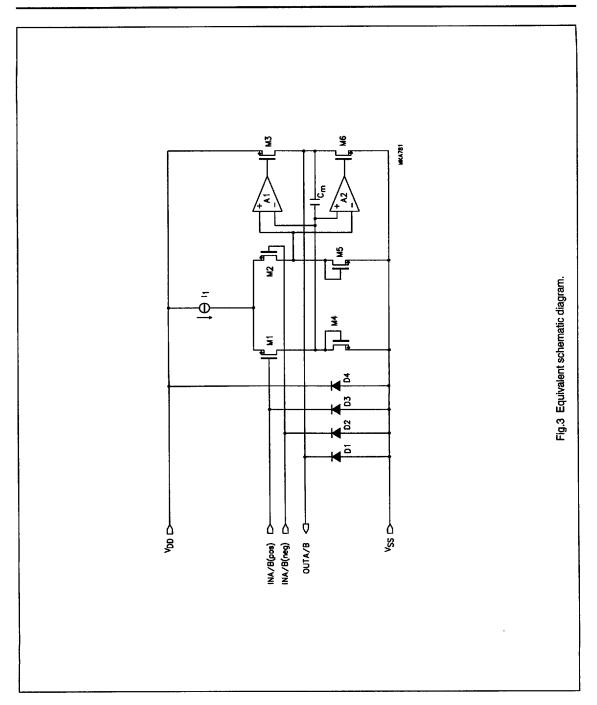

August 1994

996

■ 7110826 0081129 909


TDA1308

BLOCK DIAGRAM



PINNING

SYMBOL	PIN	DESCRIPTION
OUTA	1	output A
INA(neg)	2	inverting input A
INA(pos)	3	non-inverting input A
V _{SS}	4	negative supply
INB(pos)	5	non-inverting input B
INB(neg)	6	inverting input B
OUTB	7	output B
V_{DD}	8	positive supply

TDA1308

TDA1308

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DD}	supply voltage		0	8.0	V
t _{SC(O)}	output short-circuit duration	T _{amb} = 25 °C; P _{tot} = 1 W	20	1-	s
T _{stg}	storage temperature		-65	+150	°C
T _{amb}	operating ambient temperature		-40	+85	°C
V _{esd}	electrostatic discharge	note 1	-2000	+2000	V
		note 2	-200	+200	V

Notes

- 1. Human body model: C = 100 pF; R = 1500 Ω ; 3 pulses positive plus 3 pulses negative.
- 2. Machine model: C = 200 pF: L = 0.5 mH: R = 0Ω ; 3 pulses positive plus 3 pulses negative.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient in free air		
	DIP8	109	K/W
	SO8	210	K/W

QUALITY SPECIFICATION

In accordance with "UZW-BO/FQ-0601". The numbers of the quality specification can be found in the "Quality Reference Handbook". The handbook can be ordered using the code 9398 510 63011.

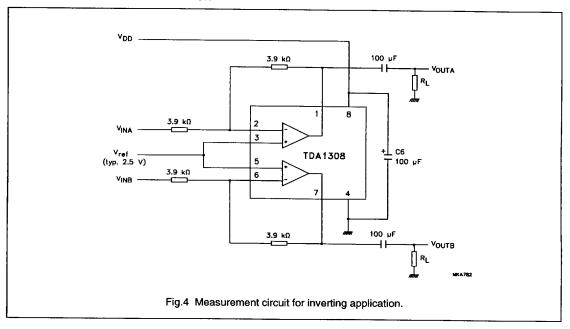
TDA1308

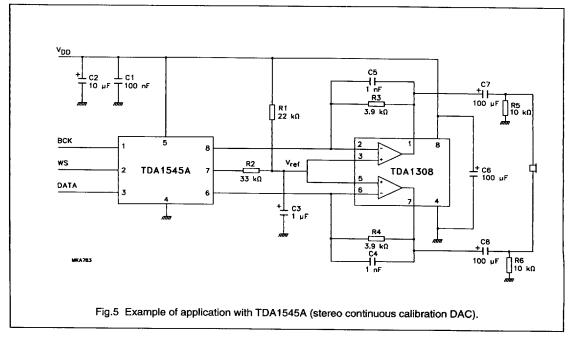
CHARACTERISTICS

 V_{DD} = 5 V; V_{SS} = 0 V; T_{amb} = 25 °C; f_i = 1 kHz; R_L = 32 Ω ; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
V _{DD}	supply voltage					
	single		3.0	5.0	7.0	V
	dual		1.5	2.5	3.5	٧
V _{SS}	negative supply voltage		-1.5	-2.5	-3.5	V
I _{DD}	supply current	no load	-	3	5	mA
P _{tot}	total power dissipation	no load	-	15	25	mW
DC characte	ristics		-			
V _{I(os)}	input offset voltage		-	10	 -	mV
I _{bias}	input bias current			10	-	pΑ
V _{CM}	common mode voltage		0	-	3.5	V
G√	open-loop voltage gain	$R_L = 5 k\Omega$	_	70	T-	dB
Io	maximum output current	(THD + N)/S < 0.1%	_	60	-	mA
Ro	output resistance		-	0.25	-	Ω
v _o	output voltage swing	note 1	0.75	-	4.25	٧
		$R_L = 16 \Omega$; note 1	1.5	-	3.5	V
ı		$R_L = 5 \text{ k}\Omega$; note 1	0.1]-	4.9	٧
PSRR	power supply rejection ratio	f _i = 100 Hz; V _{ripple(p-p)} = 100 mV	-	90	_	dB
α_{cs}	channel separation		_	70	T-	dB
		$R_L = 5 k\Omega$	—	105	_	dB
CL	load capacitance		_	_	200	pF
AC characte	ristics					
(THD + N)/S	total harmonic distortion plus	note 2	-	-70	-65	dB
,	noise-to-signal ratio		-	0.03	0.06	%
		note 2; $R_L = 5 k\Omega$	-	-101	1-	dB
			-	0.0009	-	%
S/N	signal-to-noise ratio		100	110	-	dB
f _G	unity gain frequency	open-loop; $R_L = 5 \text{ k}\Omega$	-	5.5	-	MHz
Po	maximum output power	(THD + N)/S < 0.1%	-	60	-	mW
Ci	input capacitance		_	3	_	pF
SR	slew rate	unity gain inverting	-	5	_	V/μs
В	power bandwidth	unity gain inverting	1-	20	T-	kHz

Notes

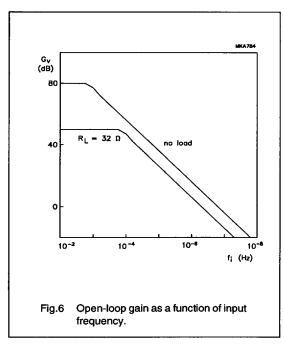

August 1994

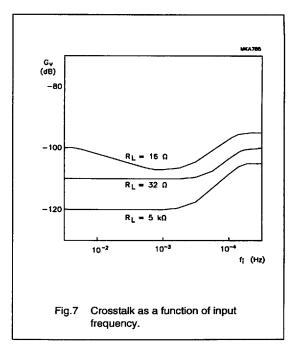

- 1. Values are proportional to V_{DD} ; (THD + N)/S < 0.1%.
- 2. $V_{DD} = 5.0 \text{ V}$; $V_{O(p-p)} = 3.5 \text{ V}$ (at 0 dB).

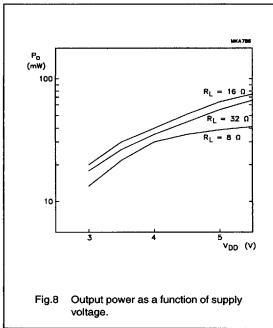
1000

TDA1308

TEST AND APPLICATION INFORMATION

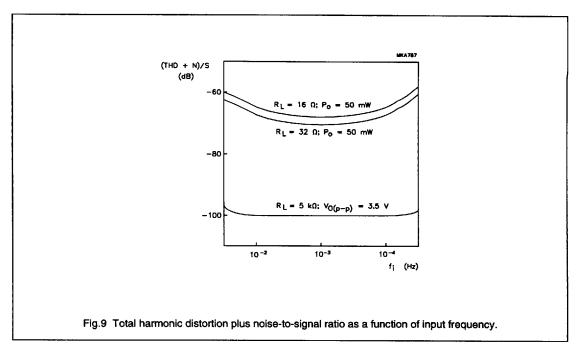


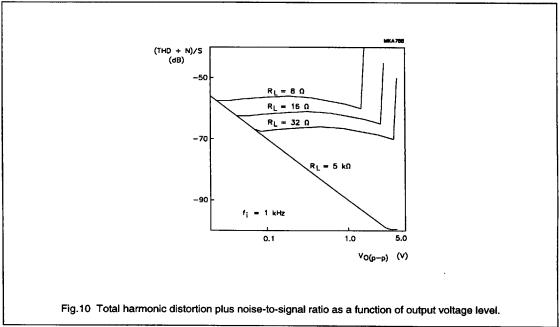

August 1994


1001

7110826 0081134 276

TDA1308




August 1994

1002

711085P 0087732 705

TDA1308

August 1994