

User's Manual

V850ES/JG2

32-bit Single-Chip Microcontrollers

Hardware

μPD70F3715 μPD70F3716 μPD70F3717 μPD70F3718 μPD70F3719

Document No. U17715EJ2V0UD00 (2nd edition) Date Published January 2007 N CP(K)

© NEC Electronics Corporation 2005 Printed in Japan [MEMO]

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

⑤ POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

IECUBE is a registered trademark of NEC Electronics Corporation in Japan and Germany.

MINICUBE is a registered trademark of NEC Electronics Corporation in Japan and Germany or a trademark in the United States of America.

EEPROM is a trademark of NEC Electronics Corporation

Applilet is a registered trademark of NEC Electronics in Japan, Germany, Hong Kong, China, the Republic of Korea, the United Kingdom, and the United States of America.

Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

TRON is an abbreviation of The Realtime Operating System Nucleus.

ITRON is an abbreviation of Industrial TRON.

- The information in this document is current as of August, 2006. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

PREFACE

Readers	This manual is intended for users w V850ES/JG2 and design application sy	who wish to understand the functions of the restems using these products.
Purpose	This manual is intended to give users the V850ES/JG2 shown in the Organiz	an understanding of the hardware functions of ration below.
Organization	This manual is divided into two par (V850ES Architecture User's Manual	rts: Hardware (this manual) and Architecture).
	Hardware	Architecture
	Pin functions	
	CPU function	Data typesRegister set
	On-chip peripheral functions	 Instruction format and instruction set
	 Flash memory programming 	Interrupts and exceptions
	Electrical specifications	Pipeline operation
How to Read This Manual	It is assumed that the readers of this n electrical engineering, logic circuits, and To understand the overall functions of t	
	ightarrow Read this manual according to the C	CONTENTS.
	To find the details of a register where th \rightarrow Use APPENDIX B REGISTER INDE	
	Register format	
	\rightarrow The name of the bit whose number	r is in angle brackets (<>) in the figure of the fined as a reserved word in the device file.
	To understand the details of an instruct $ ightarrow$ Refer to the V850ES Architecture U	
	To know the electrical specifications of \rightarrow See CHAPTER 28 ELECTRICAL S	
		cribed as the "xxx.yyy bit" in this manual. Note escribed as is in a program, however, the t correctly.
	The mark <r> shows major revised po by copying an "<r>" in the PDF file and</r></r>	ints. The revised points can be easily searched d specifying it in the "Find what:" field.

Conventions

Data significance:	Higher digits on the left and lower digits on the right
Active low representation:	xxx (overscore over pin or signal name)
Memory map address:	Higher addresses on the top and lower addresses on
	the bottom
Note:	Footnote for item marked with Note in the text
Caution:	Information requiring particular attention
Remark:	Supplementary information
Numeric representation:	Binary xxxx or xxxxB
	Decimal xxxx
	Hexadecimal xxxxH
Prefix indicating power of 2 (ad	ddress space, memory capacity):
	K (kilo): 2 ¹⁰ = 1,024
	M (mega): 2 ²⁰ = 1,024 ²

G (giga): 2³⁰ = 1,024³

User's Manual U17715EJ2V0UD

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents related to V850ES/JG2

Document Name	Document No.
V850ES Architecture User's Manual	U15943E
V850ES/JG2 Hardware User's Manual	This manual

Documents related to development tools

Document Name		Document No.
QB-V850ESSX2 In-Circuit Emulator		U17091E
QB-V850MINI On-Chip Debug Emulator		U17638E
QB-MINI2 On-Chip Debug Emulator with Flash	n Programming Function	To be prepared
CA850 Ver. 3.00 C Compiler Package	Operation	U17293E
	C Language	U17291E
	Assembly Language	U17292E
	Link Directives	U17294E
PM+ Ver. 6.20 Project Manager		U17990E
ID850QB Ver. 3.20 Integrated Debugger	Operation	U17964E
SM850 Ver. 2.50 System Simulator	Operation	U16218E
SM850 Ver. 2.00 or Later System Simulator	External Part User Open Interface Specification	U14873E
SM+ System Simulator	Operation	U17246E
	User Open Interface	U17247E
RX850 Ver. 3.20 Real-Time OS	Basics	U13430E
	Installation	U17419E
	Technical	U13431E
	Task Debugger	U17420E
RX850 Pro Ver. 3.20 Real-Time OS	Basics	U13773E
	Installation	U17421E
	Technical	U13772E
	Task Debugger	U17422E
AZ850 Ver. 3.30 System Performance Analyze	ər	U17423E
PG-FP4 Flash Memory Programmer		U15260E

CONTENTS

CHAPTER	1 INTRODUCTION	18
1.1	General	18
1.2	Features	
1.3	Application Fields	
1.4	Ordering Information	
1.5	Pin Configuration (Top View)	
1.6	Function Block Configuration	
	1.6.1 Internal block diagram	
	1.6.2 Internal units	
		20
2.1	List of Pin Functions	
2.2	Pin States	
2.3	Pin I/O Circuit Types, I/O Buffer Power Supplies, and Connection of Unused Pins.	
2.4	Cautions	45
CHAPTER	3 CPU FUNCTION	46
3.1	Features	46
3.2	CPU Register Set	
	3.2.1 Program register set	48
	3.2.2 System register set	49
3.3	Operation Modes	55
	3.3.1 Specifying operation mode	55
3.4	Address Space	56
	3.4.1 CPU address space	56
	3.4.2 Wraparound of CPU address space	
	3.4.3 Memory map	58
	3.4.4 Areas	60
	3.4.5 Recommended use of address space	67
	3.4.6 Peripheral I/O registers	70
	3.4.7 Special registers	80
	3.4.8 Cautions	84
CHAPTER	4 PORT FUNCTIONS	88
4.1	Features	88
4.2	Basic Port Configuration	88
4.3	Port Configuration	89
	4.3.1 Port 0	
	4.3.2 Port 1	
	4.3.3 Port 3	98
	4.3.4 Port 4	104
	4.3.5 Port 5	106
	4.3.6 Port 7	110
	4.3.7 Port 9	112
	4.3.8 Port CM	120
	4.3.9 Port CT	122

 4.3.11 Port DL	129 159 167 .167 .170 .171 .171 .171 .171 172 172 173 .173 .173 .173 174 175 176 .176
 4.5 Port Register Settings When Alternate Function Is Used	 159 167 .167 .170 .171 .171 .171 172 172 173 .173 .173 .173 174 175 176 .176
4.6 Cautions 4.6.1 Cautions on setting port pins 4.6.2 Cautions on on chip debug pins 4.6.3 Cautions on Pot/INTP2/DRST pin 4.6.4 Cautions on P10, P11, and P53 pins when power is turned on 4.6.6 Hysteresis characteristics CHAPTER 5 BUS CONTROL FUNCTION 5.1 Features 5.2.1 Pin status when internal ROM, internal RAM, or on-chip peripheral I/O is accessed 5.2.2 Pin status when internal ROM, internal RAM, or on-chip peripheral I/O is accessed 5.2.2 Pin status when internal ROM, internal RAM, or on-chip peripheral I/O is accessed 5.2.1 Pin status when internal ROM, internal RAM, or on-chip peripheral I/O is accessed 5.2.1 Pin status in each operation mode 5.3 Memory Block Function 5.4 External Bus Interface Mode Control Function 5.5 Bus Access 5.5.2 Bus size setting function 5.5.3 Access by bus size 5.6 Wait Function 5.6.1 Programmable wait function 5.6.2 External wait function 5.6.3 Relationship between programmable wait and external wait	 167 .167 .170 .171 .171 .171 .171 172 172 173 .173 .173 .173 174 175 176 .176
4.6 Cautions 4.6.1 Cautions on setting port pins 4.6.2 Cautions on on chip debug pins 4.6.3 Cautions on Pot/INTP2/DRST pin 4.6.4 Cautions on P10, P11, and P53 pins when power is turned on 4.6.6 Hysteresis characteristics CHAPTER 5 BUS CONTROL FUNCTION 5.1 Features 5.2.1 Pin status when internal ROM, internal RAM, or on-chip peripheral I/O is accessed 5.2.2 Pin status when internal ROM, internal RAM, or on-chip peripheral I/O is accessed 5.2.2 Pin status when internal ROM, internal RAM, or on-chip peripheral I/O is accessed 5.2.1 Pin status when internal ROM, internal RAM, or on-chip peripheral I/O is accessed 5.2.1 Pin status in each operation mode 5.3 Memory Block Function 5.4 External Bus Interface Mode Control Function 5.5 Bus Access 5.5.2 Bus size setting function 5.5.3 Access by bus size 5.6 Wait Function 5.6.1 Programmable wait function 5.6.2 External wait function 5.6.3 Relationship between programmable wait and external wait	 167 .167 .170 .171 .171 .171 .171 172 172 173 .173 .173 .173 174 175 176 .176
4.6.2 Cautions on bit manipulation instruction for port n register (Pn)	.170 .171 .171 .171 .171 172 172 173 .173 174 175 176 .176
4.6.2 Cautions on bit manipulation instruction for port n register (Pn)	.170 .171 .171 .171 .171 172 172 173 .173 .173 174 175 176 .176
4.6.3 Cautions on on-chip debug pins	.171 .171 .171 .171 172 172 173 .173 .173 174 175 176 .176
 4.6.4 Cautions on P05/INTP2/DRST pin	.171 .171 .171 172 172 173 .173 .173 174 175 176 .176
 4.6.5 Cautions on P10, P11, and P53 pins when power is turned on	.171 .171 172 172 173 .173 .173 174 175 176 .176
 4.6.6 Hysteresis characteristics CHAPTER 5 BUS CONTROL FUNCTION 5.1 Features 5.2 Bus Control Pins 5.2.1 Pin status when internal ROM, internal RAM, or on-chip peripheral I/O is accessed 5.2.2 Pin status in each operation mode 5.3 Memory Block Function 5.4 External Bus Interface Mode Control Function 5.5 Bus Access 5.5.1 Number of clocks for access 5.5.2 Bus size setting function 5.5.3 Access by bus size 5.6 Wait Function 5.6.1 Programmable wait function 5.6.2 External wait function 5.6.3 Relationship between programmable wait and external wait 5.6.4 Programmable address wait function 5.6.5 Hourction 5.7 Idle State Insertion Function 5.8 Bus Hold Function 5.8.1 Functional outline 5.8.2 Bus hold procedure 5.8.3 Operation in power save mode 5.9 Bus Priority 	.171 172 172 173 .173 .173 174 175 176 .176
CHAPTER 5 BUS CONTROL FUNCTION. 5.1 Features 5.2 Bus Control Pins. 5.2.1 Pin status when internal ROM, internal RAM, or on-chip peripheral I/O is accessed. 5.2.2 Pin status in each operation mode. 5.3 Memory Block Function. 5.4 External Bus Interface Mode Control Function 5.5 Bus Access 5.5.1 Number of clocks for access. 5.5.2 Bus size setting function 5.5.3 Access by bus size 5.6 Wait Function 5.6.1 Programmable wait function 5.6.2 External wait function 5.6.3 Access by bus size 5.6 Wait Function 5.6.2 External wait function 5.6.3 Relationship between programmable wait and external wait 5.6.4 Programmable address wait function 5.7 Idle State Insertion Function 5.8 Bus Hold Function 5.8.1 Functional outline 5.8.2 Bus hold procedure 5.8.3 Operation in power save mode 5.9 Bus Priority	172 173 .173 .173 174 175 176 .176
 5.1 Features	172 173 .173 .173 174 175 175 .176
 5.2 Bus Control Pins	 173 .173 173 174 175 176 .176
 5.2.1 Pin status when internal ROM, internal RAM, or on-chip peripheral I/O is accessed	.173 .173 174 175 176 .176
 5.2.2 Pin status in each operation mode. 5.3 Memory Block Function	.173 174 175 176 .176
 5.2.2 Pin status in each operation mode. 5.3 Memory Block Function	.173 174 175 176 .176
 5.3 Memory Block Function 5.4 External Bus Interface Mode Control Function 5.5 Bus Access 5.5.1 Number of clocks for access 5.5.2 Bus size setting function 5.5.3 Access by bus size 5.6 Wait Function 5.6.1 Programmable wait function 5.6.2 External wait function 5.6.3 Relationship between programmable wait and external wait 5.6.4 Programmable address wait function 5.7 Idle State Insertion Function 5.8 Bus Hold Function 5.8.1 Functional outline 5.8.2 Bus hold procedure 5.8.3 Operation in power save mode 5.9 Bus Priority 	174 175 176 .176
 5.4 External Bus Interface Mode Control Function 5.5 Bus Access 5.5.1 Number of clocks for access 5.5.2 Bus size setting function 5.5.3 Access by bus size 5.6 Wait Function 5.6.1 Programmable wait function 5.6.2 External wait function 5.6.3 Relationship between programmable wait and external wait 5.6.4 Programmable address wait function 5.6.5 Bus Hold Function 5.8 Bus Hold Function 5.8 Bus Hold Function 5.8.3 Operation in power save mode 5.9 Bus Priority 	175 176 . 176
 5.5 Bus Access 5.5.1 Number of clocks for access 5.5.2 Bus size setting function 5.5.3 Access by bus size 5.6 Wait Function 5.6.1 Programmable wait function 5.6.2 External wait function 5.6.3 Relationship between programmable wait and external wait 5.6.4 Programmable address wait function 5.7 Idle State Insertion Function 5.8 Bus Hold Function 5.8.1 Functional outline 5.8.2 Bus hold procedure 5.8.3 Operation in power save mode 5.9 Bus Priority 	176 . 176
 5.5.1 Number of clocks for access	.176
 5.5.2 Bus size setting function	
 5.5.3 Access by bus size	
 5.6 Wait Function 5.6.1 Programmable wait function 5.6.2 External wait function 5.6.3 Relationship between programmable wait and external wait 5.6.4 Programmable address wait function 5.7 Idle State Insertion Function 5.8 Bus Hold Function 5.8.1 Functional outline 5.8.2 Bus hold procedure 5.8.3 Operation in power save mode 5.9 Bus Priority 	
 5.6.1 Programmable wait function	
 5.6.2 External wait function	
 5.6.3 Relationship between programmable wait and external wait	
 5.6.4 Programmable address wait function 5.7 Idle State Insertion Function 5.8 Bus Hold Function 5.8.1 Functional outline 5.8.2 Bus hold procedure 5.8.3 Operation in power save mode 5.9 Bus Priority 	
 5.7 Idle State Insertion Function 5.8 Bus Hold Function 5.8.1 Functional outline 5.8.2 Bus hold procedure 5.8.3 Operation in power save mode 5.9 Bus Priority 	
 5.8 Bus Hold Function	
 5.8.1 Functional outline 5.8.2 Bus hold procedure	
 5.8.2 Bus hold procedure 5.8.3 Operation in power save mode 5.9 Bus Priority 	
5.8.3 Operation in power save mode5.9 Bus Priority	
5.9 Bus Priority	
,	
	192
CHAPTER 6 CLOCK GENERATION FUNCTION	198
6.1 Overview	100
6.2 Configuration	
•	
•	
6.4 Operation	
6.4.1 Operation of each clock	
6.4.2 Clock output function	
6.5 PLL Function	
6.5.1 Overview	-
6.5.2 Registers	
6.5.3 Usage	.210
CHAPTER 7 16-BIT TIMER/EVENT COUNTER P (TMP)	211

7.1	Overview	211
7.2	Functions	211
7.3	Configuration	212
7.4	Registers	214
7.5	Operation	
	7.5.1 Interval timer mode (TPnMD2 to TPnMD0 bits = 000)	
	7.5.2 External event count mode (TPnMD2 to TPnMD0 bits = 001)	
	7.5.3 External trigger pulse output mode (TPnMD2 to TPnMD0 bits = 010)	
	7.5.4 One-shot pulse output mode (TPnMD2 to TPnMD0 bits = 011)	
	7.5.5 PWM output mode (TPnMD2 to TPnMD0 bits = 100)	
	7.5.6 Free-running timer mode (TPnMD2 to TPnMD0 bits = 101)	
	7.5.7 Pulse width measurement mode (TPnMD2 to TPnMD0 bits = 110)	
	7.5.8 Timer output operations	
7.6	Selector Function	
7.7	Cautions	
СНАРТЕС	R 8 16-BIT TIMER/EVENT COUNTER Q (TMQ)	200
8.1	Overview	
8.2	Functions	
8.3	Configuration	
8.4	Registers	
8.5	Operation	
	8.5.1 Interval timer mode (TQ0MD2 to TQ0MD0 bits = 000)	
	8.5.2 External event count mode (TQ0MD2 to TQ0MD0 bits = 001)	
	8.5.3 External trigger pulse output mode (TQ0MD2 to TQ0MD0 bits = 010)	
	8.5.4 One-shot pulse output mode (TQ0MD2 to TQ0MD0 bits = 011)	
	8.5.5 PWM output mode (TQ0MD2 to TQ0MD0 bits = 100)	
	8.5.6 Free-running timer mode (TQ0MD2 to TQ0MD0 bits = 101)	
	8.5.7 Pulse width measurement mode (TQ0MD2 to TQ0MD0 bits = 110)	
	8.5.8 Timer output operations	
8.6	Cautions	
CHAPTER	R 9 16-BIT INTERVAL TIMER M (TMM)	
9.1	Overview	
9.2	Configuration	
9.3	Register	
9.4	Operation	
••••	9.4.1 Interval timer mode	
	9.4.2 Cautions	
	R 10 WATCH TIMER FUNCTIONS	
10.1	Functions	
10.2	Configuration	
10.3	Control Registers	
10.4	Operation	
	10.4.1 Operation as watch timer	
	10.4.2 Operation as interval timer	
	10.4.3 Cautions	
CHAPTER	R 11 FUNCTIONS OF WATCHDOG TIMER 2	416

11.1	Functions	416
11.2	Configuration	417
11.3	Registers	418
11.4	Operation	420
CHAPTER	12 REAL-TIME OUTPUT FUNCTION (RTO)	421
	Function	
12.1 12.2	Configuration	
12.2	Registers	
12.3	Operation	
12.4	•	
12.5	Usage Cautions	
12.0		427
CHAPTER	13 A/D CONVERTER	428
13.1	Overview	428
13.2	Functions	428
13.3	Configuration	429
13.4	Registers	432
13.5	Operation	443
	13.5.1 Basic operation	443
	13.5.2 Conversion operation timing	444
	13.5.3 Trigger mode	445
	13.5.4 Operation mode	447
	13.5.5 Power-fail compare mode	451
		450
13.6	Cautions	456
13.6 13.7	Cautions How to Read A/D Converter Characteristics Table	
13.7	How to Read A/D Converter Characteristics Table	460
13.7 CHAPTER	How to Read A/D Converter Characteristics Table	460 464
13.7 CHAPTER 14.1	How to Read A/D Converter Characteristics Table	460 464 464
13.7 CHAPTER 14.1 14.2	How to Read A/D Converter Characteristics Table 14 D/A CONVERTER Functions Configuration	460 464 464 464
13.7 CHAPTER 14.1 14.2 14.3	How to Read A/D Converter Characteristics Table	460 464 464 464 465
13.7 CHAPTER 14.1 14.2	How to Read A/D Converter Characteristics Table	460 464 464 464 465 467
13.7 CHAPTER 14.1 14.2 14.3	How to Read A/D Converter Characteristics Table	460 464 464 465 465 467
13.7 CHAPTER 14.1 14.2 14.3	How to Read A/D Converter Characteristics Table 14 D/A CONVERTER Functions Configuration Registers Operation 14.4.1 Operation in normal mode 14.4.2 Operation in real-time output mode	460 464 464 465 467 467 467
13.7 CHAPTER 14.1 14.2 14.3	How to Read A/D Converter Characteristics Table	460 464 464 465 467 467 467
13.7 CHAPTER 14.1 14.2 14.3 14.4	How to Read A/D Converter Characteristics Table 14 D/A CONVERTER Functions Configuration Registers Operation 14.4.1 Operation in normal mode 14.4.2 Operation in real-time output mode 14.4.3 Cautions 15 ASYNCHRONOUS SERIAL INTERFACE A (UARTA)	460 464 464 465 465 467 467 468 469
13.7 CHAPTER 14.1 14.2 14.3 14.4	How to Read A/D Converter Characteristics Table 14 D/A CONVERTER Functions Configuration Registers Operation 14.4.1 Operation in normal mode 14.4.2 Operation in real-time output mode 14.4.3 Cautions	460 464 464 465 465 467 467 468 469
13.7 CHAPTER 14.1 14.2 14.3 14.4 CHAPTER	How to Read A/D Converter Characteristics Table 14 D/A CONVERTER Functions Configuration Registers Operation 14.4.1 Operation in normal mode 14.4.2 Operation in real-time output mode 14.4.3 Cautions 15 ASYNCHRONOUS SERIAL INTERFACE A (UARTA)	460 464 464 465 467 467 467 468 469 469
13.7 CHAPTER 14.1 14.2 14.3 14.4 CHAPTER	How to Read A/D Converter Characteristics Table 14 D/A CONVERTER Functions Configuration Registers Operation 14.4.1 Operation in normal mode 14.4.2 Operation in real-time output mode 14.4.3 Cautions 15 ASYNCHRONOUS SERIAL INTERFACE A (UARTA) Mode Switching of UARTA and Other Serial Interfaces 15.1.1 CSIB4 and UARTA0 mode switching 15.1.2 UARTA2 and I ² C00 mode switching	460 464 464 465 465 467 467 468 469 469 469 470
13.7 CHAPTER 14.1 14.2 14.3 14.4 CHAPTER	How to Read A/D Converter Characteristics Table	460 464 464 465 467 467 467 467 469 469 469 470 471
13.7 CHAPTER 14.1 14.2 14.3 14.4 CHAPTER	How to Read A/D Converter Characteristics Table	460 464 464 465 467 467 467 468 469 469 469 470 471 472
13.7 CHAPTER 14.1 14.2 14.3 14.4 CHAPTER 15.1	How to Read A/D Converter Characteristics Table	460 464 464 465 467 467 467 468 469 469 470 471 472 473
13.7 CHAPTER 14.1 14.2 14.3 14.4 CHAPTER 15.1	How to Read A/D Converter Characteristics Table 14 D/A CONVERTER Functions Configuration Registers Operation 14.4.1 Operation in normal mode 14.4.2 Operation in real-time output mode 14.4.3 Cautions 15 ASYNCHRONOUS SERIAL INTERFACE A (UARTA) Mode Switching of UARTA and Other Serial Interfaces 15.1.1 CSIB4 and UARTA0 mode switching 15.1.3 UARTA2 and I ² C00 mode switching 15.1.3 UARTA1 and I ² C02 mode switching Features Configuration Registers	460 464 464 465 467 467 467 467 469 469 470 471 472 473 475
13.7 CHAPTER 14.1 14.2 14.3 14.4 CHAPTER 15.1 15.2 15.3 15.4 15.5	How to Read A/D Converter Characteristics Table 14 D/A CONVERTER Functions Configuration Registers Operation 14.4.1 Operation in normal mode 14.4.2 Operation in real-time output mode 14.4.3 Cautions 15 ASYNCHRONOUS SERIAL INTERFACE A (UARTA) Mode Switching of UARTA and Other Serial Interfaces 15.1.1 CSIB4 and UARTA0 mode switching 15.1.2 UARTA2 and I ² C00 mode switching 15.1.3 UARTA1 and I ² C02 mode switching Features Configuration Registers Interrupt Request Signals	460 464 464 465 467 467 467 467 468 469 469 470 471 472 473 475 481
13.7 CHAPTER 14.1 14.2 14.3 14.4 CHAPTER 15.1 15.2 15.3 15.4	How to Read A/D Converter Characteristics Table 14 D/A CONVERTER Functions Configuration Registers Operation 14.4.1 Operation in normal mode 14.4.2 Operation in real-time output mode 14.4.3 Cautions 15 ASYNCHRONOUS SERIAL INTERFACE A (UARTA) Mode Switching of UARTA and Other Serial Interfaces 15.1.1 CSIB4 and UARTA0 mode switching 15.1.3 UARTA2 and I ² C00 mode switching 15.1.3 UARTA1 and I ² C02 mode switching Features Configuration Registers	460 464 464 465 467 467 467 467 468 469 469 470 471 472 473 475 481
13.7 CHAPTER 14.1 14.2 14.3 14.4 CHAPTER 15.1 15.2 15.3 15.4 15.5	How to Read A/D Converter Characteristics Table 14 D/A CONVERTER Functions Configuration Registers Operation 14.4.1 Operation in normal mode 14.4.2 Operation in real-time output mode 14.4.3 Cautions 15 ASYNCHRONOUS SERIAL INTERFACE A (UARTA) Mode Switching of UARTA and Other Serial Interfaces 15.1.1 CSIB4 and UARTA0 mode switching 15.1.2 UARTA2 and I ² C00 mode switching 15.1.3 UARTA1 and I ² C02 mode switching Features Configuration Registers Interrupt Request Signals Operation 15.6.1 Data format	460 464 464 465 467 467 467 467 469 469 470 470 471 472 473 473 482 482
13.7 CHAPTER 14.1 14.2 14.3 14.4 CHAPTER 15.1 15.2 15.3 15.4 15.5	How to Read A/D Converter Characteristics Table	460 464 464 465 467 467 467 467 469 469 470 470 471 472 473 473 482 482

	15.6.4 SBF reception	487
	15.6.5 UART transmission	488
	15.6.6 Continuous transmission procedure	
	15.6.7 UART reception	491
	15.6.8 Reception errors	492
	15.6.9 Parity types and operations	
	15.6.10 Receive data noise filter	
15.7	Dedicated Baud Rate Generator	
15.8	Cautions	504
CHAPTER	16 3-WIRE VARIABLE-LENGTH SERIAL I/O (CSIB)	505
16.1	Mode Switching of CSIB and Other Serial Interfaces	505
	16.1.1 CSIB4 and UARTA0 mode switching	505
	16.1.2 CSIB0 and I ² C01 mode switching	506
16.2	Features	
16.3	Configuration	
16.4	Registers	
16.5	Interrupt Request Signals	
16.6	Operation	
	16.6.1 Single transfer mode (master mode, transmission mode)	
	16.6.2 Single transfer mode (master mode, reception mode)	
	16.6.3 Single transfer mode (master mode, transmission/reception mode)	
	16.6.4 Single transfer mode (slave mode, transmission mode)	
	16.6.5 Single transfer mode (slave mode, reception mode)	
	16.6.6 Single transfer mode (slave mode, transmission/reception mode)	
	16.6.7 Continuous transfer mode (master mode, transmission mode)	
	16.6.8 Continuous transfer mode (master mode, reception mode)	
	16.6.9 Continuous transfer mode (master mode, transmission/reception mode)	
	16.6.10 Continuous transfer mode (slave mode, transmission mode)	
	16.6.11 Continuous transfer mode (slave mode, reception mode)	
	16.6.12 Continuous transfer mode (slave mode, transmission/reception mode)	
	16.6.13 Reception error.	
16 7	16.6.14 Clock timing	
16.7 16.8	Output Pins Baud Rate Generator	
10.0		
16.9	16.8.1 Baud rate generation	
10.9		
CHAPTER	17 I ² C BUS	
17.1	Mode Switching of I ² C Bus and Other Serial Interfaces	
	17.1.1 UARTA2 and I ² C00 mode switching	
	17.1.2 CSIB0 and I ² C01 mode switching	
	17.1.3 UARTA1 and I ² C02 mode switching	
17.2	Features	
17.3	Configuration	
17.4	Registers	
17.5	I ² C Bus Mode Functions	
	17.5.1 Pin configuration	
17.6	I ² C Bus Definitions and Control Methods	
	17.6.1 Start condition	580

	17.6.2 Addresses	
	17.6.3 Transfer direction specification	
	17.6.4 ACK	
	17.6.5 Stop condition	
	17.6.6 Wait state	
	17.6.7 Wait state cancellation method	
17.7	l ² C Interrupt Request Signals (INTIICn)	
	17.7.1 Master device operation	
	17.7.2 Slave device operation (when receiving slave address data (address match))	
	17.7.3 Slave device operation (when receiving stave address data (address match))	
	17.7.4 Operation without communication	
	17.7.5 Arbitration loss operation (operation as slave after arbitration loss)	
	17.7.6 Operation when arbitration loss occurs (no communication after arbitration loss)	
17.8	Interrupt Request Signal (INTIICn) Generation Timing and Wait Control	
17.0	Address Match Detection Method	
	Error Detection	
	Extension Code	
	Arbitration	
	Wakeup Function	
17.14	Communication Reservation	
	17.14.1 When communication reservation function is enabled (IICFn.IICRSVn bit = 0)	
	17.14.2 When communication reservation function is disabled (IICFn.IICRSVn bit = 1)	
	Cautions	
17.16	Communication Operations	
	17.16.1 Master operation in single master system	
	17.16.2 Master operation in multimaster system	
	17.16.3 Slave operation	
17.17	Timing of Data Communication	627
		624
	18 DMA FUNCTION (DMA CONTROLLER)	
18.1	Features	
18.2	Configuration	
18.3	Registers	
18.4	Transfer Targets	643
18.5	Transfer Modes	643
18.6	Transfer Types	644
18.7	DMA Channel Priorities	645
18.8	Time Related to DMA Transfer	645
18.9	DMA Transfer Start Factors	646
18.10	DMA Abort Factors	647
18.11	End of DMA Transfer	647
18.12	Operation Timing	647
18.13	Cautions	652
		<u> </u>
	R 19 INTERRUPT/EXCEPTION PROCESSING FUNCTION	
19.1	Features	
19.2	Non-Maskable Interrupts	
	19.2.1 Operation	
	19.2.2 Restore	
	19.2.3 NP flag	665

19.3	Maskable Interrupts	666
	19.3.1 Operation	
	19.3.2 Restore	
	19.3.3 Priorities of maskable interrupts	
	19.3.4 Interrupt control register (xxICn)	
	19.3.5 Interrupt mask registers 0 to 3 (IMR0 to IMR3)	675
	19.3.6 In-service priority register (ISPR)	677
	19.3.7 ID flag	678
	19.3.8 Watchdog timer mode register 2 (WDTM2)	678
19.4	Software Exception	679
	19.4.1 Operation	679
	19.4.2 Restore	
	19.4.3 EP flag	681
19.5	Exception Trap	682
	19.5.1 Illegal opcode	
	19.5.2 Debug trap	
19.6	External Interrupt Request Input Pins (NMI and INTP0 to INTP7)	686
	19.6.1 Noise elimination	
	19.6.2 Edge detection	
19.7	Interrupt Acknowledge Time of CPU	
19.8	Periods in Which Interrupts Are Not Acknowledged by CPU	692
19.9	Cautions	692
		602
CHAPIER	20 KEY INTERRUPT FUNCTION	
20.1	Function	
20.2	Register	694
20.3	Cautions	694
CHAPTER	21 STANDBY FUNCTION	695
21.1	Overview	
21.2	Registers	
21.3	HALT Mode	
	21.3.1 Setting and operation status	
	21.3.2 Releasing HALT mode	
21.4	IDLE1 Mode	
	21.4.1 Setting and operation status	
01 5	21.4.2 Releasing IDLE1 mode	
21.5	IDLE2 Mode	
	21.5.1 Setting and operation status	
	21.5.2 Releasing IDLE2 mode	
01.0	21.5.3 Securing setup time when releasing IDLE2 mode	
21.6	STOP Mode	
	21.6.1 Setting and operation status	
	21.6.2 Releasing STOP mode	
01 7	21.6.3 Securing oscillation stabilization time when releasing STOP mode	710
21.7	21.6.3 Securing oscillation stabilization time when releasing STOP mode	710 711
21.7	 21.6.3 Securing oscillation stabilization time when releasing STOP mode Subclock Operation Mode	710 711 711
	 21.6.3 Securing oscillation stabilization time when releasing STOP mode	710 711 711 711
21.7 21.8	 21.6.3 Securing oscillation stabilization time when releasing STOP mode Subclock Operation Mode	

	21.8.2 Releasing sub-IDLE mode	713
	A DESET FUNCTIONS	745
	22 RESET FUNCTIONS	
22.1	Overview	
22.2	Registers to Check Reset Source	
22.3	Operation	
	22.3.1 Reset operation via RESET pin	
	22.3.2 Reset operation by watchdog timer 2	
	22.3.3 Reset operation by low-voltage detector	
	22.3.4 Operation after reset release	
	22.3.5 Reset function operation flow	725
CHAPTER	23 CLOCK MONITOR	726
23.1	Functions	726
23.2	Configuration	
23.3	Register	
23.4	Operation	
	•	
CHAPTER	R 24 LOW-VOLTAGE DETECTOR (LVI)	731
24.1	Functions	731
24.2	Configuration	
24.3	Registers	732
24.4	Operation	734
	24.4.1 To use for internal reset signal	734
	24.4.2 To use for interrupt	
24.5	RAM Retention Voltage Detection Operation	
24.6	Emulation Function	737
CHAPTER	25 REGULATOR	738
25.1	Outline 738	
25.1	Operation	720
25.2		739
CHAPTER	26 FLASH MEMORY	740
26.1	Features	740
26.2	Memory Configuration	741
26.3	Functional Outline	742
26.4	Rewriting by Dedicated Flash Programmer	745
	26.4.1 Programming environment	745
	26.4.2 Communication mode	746
	26.4.3 Flash memory control	754
	26.4.4 Selection of communication mode	
	26.4.5 Communication commands	
	26.4.6 Pin connection	
26.5	Rewriting by Self Programming	
	26.5.1 Overview	
	26.5.2 Features	
	26.5.3 Standard self programming flow	
	26.5.4 Flash functions	
	26.5.5 Pin processing	764

	26.5.6 Internal resources used	
СНА	PTER 27 ON-CHIP DEBUG FUNCTION	766
	27.1 Debugging with DCU	767
	27.1.1 Connection circuit example	
	27.1.2 Interface signals	
	27.1.3 Maskable functions	
	27.1.4 Register	
	27.1.5 Operation	771
	27.1.6 Cautions	771
	27.2 Debugging Without Using DCU	773
	27.2.1 Circuit connection examples	
	27.2.2 Maskable functions	774
	27.2.3 Securement of user resources	
	27.2.4 Cautions	
	27.3 ROM Security Function	
	27.3.1 Security ID	
	27.3.2 Setting	
СНА	PTER 28 ELECTRICAL SPECIFICATIONS	
	PTER 30 RECOMMENDED SOLDERING CONDITIONS	
	ENDIX A DEVELOPMENT TOOLS	
APP	ENDIX A DEVELOPMENT TOOLS	
APP	ENDIX A DEVELOPMENT TOOLS A.1 Software Package A.2 Language Processing Software	824
APP	ENDIX A DEVELOPMENT TOOLS A.1 Software Package A.2 Language Processing Software A.3 Control Software	
APP	ENDIX A DEVELOPMENT TOOLS A.1 Software Package A.2 Language Processing Software A.3 Control Software A.4 Debugging Tools (Hardware)	
APP	ENDIX A DEVELOPMENT TOOLS A.1 Software Package A.2 Language Processing Software A.3 Control Software A.4 Debugging Tools (Hardware) A.4.1 When using IECUBE QB-V850ESSX2	
APP	ENDIX A DEVELOPMENT TOOLS A.1 Software Package A.2 Language Processing Software A.3 Control Software A.4 Debugging Tools (Hardware)	
APP	ENDIX A DEVELOPMENT TOOLS A.1 Software Package. A.2 Language Processing Software. A.3 Control Software A.4 Debugging Tools (Hardware) A.4.1 When using IECUBE QB-V850ESSX2 A.4.2 When using MINICUBE QB-V850MINI A.4.3 When using MINICUBE2 QB-MINI2	824 826 826 826 826 827 827 827 830 830 831
APP	ENDIX A DEVELOPMENT TOOLS A.1 Software Package A.2 Language Processing Software	824 826 826 826 826 827 827 827 830 831 831 832
APP	 ENDIX A DEVELOPMENT TOOLS A.1 Software Package A.2 Language Processing Software A.3 Control Software A.4 Debugging Tools (Hardware) A.4.1 When using IECUBE QB-V850ESSX2 A.4.2 When using MINICUBE QB-V850MINI A.4.3 When using MINICUBE2 QB-MINI2 A.5 Debugging Tools (Software) A.6 Embedded Software 	824 826 826 826 827 827 827 830 831 831 832 833
APP	ENDIX A DEVELOPMENT TOOLS A.1 Software Package A.2 Language Processing Software	824 826 826 826 827 827 827 830 831 831 832 833
APP	 ENDIX A DEVELOPMENT TOOLS A.1 Software Package A.2 Language Processing Software A.3 Control Software A.4 Debugging Tools (Hardware) A.4.1 When using IECUBE QB-V850ESSX2 A.4.2 When using MINICUBE QB-V850MINI A.4.3 When using MINICUBE2 QB-MINI2 A.5 Debugging Tools (Software) A.6 Embedded Software 	824 826 826 826 827 827 830 831 831 832 833 833 833 834
ΑΡΡ	ENDIX A DEVELOPMENT TOOLS A.1 Software Package A.2 Language Processing Software A.3 Control Software A.4 Debugging Tools (Hardware) A.4.1 When using IECUBE QB-V850ESSX2 A.4.2 When using MINICUBE QB-V850MINI A.4.3 When using MINICUBE2 QB-MINI2 A.5 Debugging Tools (Software) A.6 Embedded Software A.7 Flash Memory Writing Tools	824 826 826 826 827 827 827 830 831 832 833 833 833 834 835
APP APP APP	ENDIX A DEVELOPMENT TOOLS A.1 Software Package	
APP APP APP	ENDIX A DEVELOPMENT TOOLS A.1 Software Package	
APP APP	ENDIX A DEVELOPMENT TOOLS A.1 Software Package	824 826 826 826 827 827 830 831 832 833 833 834 833 834 835 835 845 845 845 848
АРР АРР АРР	ENDIX A DEVELOPMENT TOOLS A.1 Software Package A.2 Language Processing Software A.3 Control Software A.3 Control Software A.4 Debugging Tools (Hardware) A.4.1 When using IECUBE QB-V850ESSX2 A.4.2 When using MINICUBE QB-V850MINI A.4.3 When using MINICUBE2 QB-MINI2 A.5 Debugging Tools (Software) A.6 Embedded Software A.7 Flash Memory Writing Tools ENDIX B REGISTER INDEX ENDIX C INSTRUCTION SET LIST C.1 Conventions C.2 Instruction Set (in Alphabetical Order)	824 826 826 826 827 827 830 831 832 833 833 834 833 834 835 835 845 845 845 845 845
APP APP APP	ENDIX A DEVELOPMENT TOOLS A.1 Software Package	

CHAPTER 1 INTRODUCTION

The V850ES/JG2 is one of the products in the NEC Electronics V850 single-chip microcontrollers designed for lowpower operation for real-time control applications.

1.1 General

The V850ES/JG2 is a 32-bit single-chip microcontroller that includes the V850ES CPU core and peripheral functions such as ROM/RAM, a timer/counter, serial interfaces, an A/D converter, and a D/A converter.

In addition to high real-time response characteristics and 1-clock-pitch basic instructions, the V850ES/JG2 features multiply instructions, saturated operation instructions, bit manipulation instructions, etc., realized by a hardware multiplier, as optimum instructions for digital servo control applications. Moreover, as a real-time control system, the V850ES/JG2 enables an extremely high cost-performance for applications that require low power consumption, such as home audio, printers, and digital home electronics.

Table 1-1 lists the products of the V850ES/JG2.

A model of the V850ES/JG2 with expanded I/O, timer/counter, and serial interface functions, V850ES/JJ2, is also available. See **Table 1-2 V850ES/JJ2 Product List**.

Table 1-1. V850ES/JG2 Produc	ct List
------------------------------	---------

	Part Number	μPD70F3715	μPD70F3716	μPD70F3717	μPD70F3718	μPD70F3719		
Internal	Flash memory	128 KB	256 KB	384 KB	512 KB	640 KB		
memory	RAM	12 KB	24 KB	32 KB	40 KB	48 KB		
Memory	Logical space			64 MB	·	·		
space	External memory area			16 MB				
External b	us interface	Address bus: 22 b Data bus: 8/16 bits Multiplex bus mod		de				
General-p	urpose register	32 bits \times 32 regist	ers					
Main clock	(oscillation frequency)				2.5 MHz (multiplied	l by 8),		
Subclock (oscillation frequency)	Crystal/external cl	ock (f _{XT} = 32.768 k	Hz)				
Internal os	cillator	f _R = 200 kHz (TYP	?)					
Minimum i	nstruction execution time	50 ns (main clock	(fxx) = 20 MHz)					
DSP funct	ion	$32 \times 32 = 64: 200 \text{ to } 250 \text{ ns } (at 20 \text{ MHz})$ $32 \times 32 + 32 = 32: 300 \text{ ns } (at 20 \text{ MHz})$ $16 \times 16 = 32: 50 \text{ to } 100 \text{ ns } (at 20 \text{ MHz})$ $16 \times 16 + 32 = 32: 150 \text{ ns } (at 20 \text{ MHz})$						
I/O port		I/O: 84 (5 V tolera	nt/N-ch open-drain	output selectable: 4	40)			
Timer		16-bit timer/event counter P: 6 channels 16-bit timer/event counter Q: 1 channel 16-bit interval timer M: 1 channel Watch timer: 1 channel						
Real-time	output port	Watchdog timer: 1 channel 6 bits × 1 channel						
A/D conve	•	10-bit resolution × 12 channels						
D/A conve	rter	8-bit resolution × 2 channels						
Serial inter	face	UART/CSI: 1 channel UART/I ² C bus: 2 channels CSI: 3 channels CSI/I ² C bus: 1 channel						
DMA conti	oller	4 channels (transfer target: on-chip peripheral I/O, internal RAM, external memory)						
Interrupt s	ource	External: 9 (9) ^{Note} , internal: 48						
Power sav	e function	HALT/IDLE1/IDLE2/STOP/subclock/sub-DLE mode						
Reset		RESET pin input, watchdog timer 2 (WDT2), clock monitor (CLM), low-voltage detector (LVI)						
DCU		Provided (RUN/break)						
Operating	power supply voltage	2.85 to 3.6 V						
Operating	ambient temperature	-40 to +85°C						
Package		100-pin plastic LQ	FP (fine pitch) (14	× 14 mm)	_			
		100-pin plastic QFP (14 \times 20 mm)						

Note The figure in parentheses indicates the number of external interrupts that can release STOP mode.

	Part Number	μPD70F3720	μPD70F3721	μPD70F3722	μPD70F3723	μPD70F3724		
Internal	Flash memory	128 KB	256 KB	384 KB	512 KB	640 KB		
memory	RAM	12 KB	24 KB	32 KB	40 KB	48 KB		
Memory	Logical space	64 MB						
space	External memory area	16 MB						
External b	us interface	Address bus: 24 b Data bus: 8/16 bit Multiplex bus moo Chip select signal	s le/separate bus mo	de				
General-p	urpose register	32 bits \times 32 regist	ers					
Main clock	(oscillation frequency)				2.5 MHz (multiplied	l by 8),		
Subclock (oscillation frequency)	Crystal/external c	lock (fx⊤ = 32.768 k	Hz)				
Internal os	scillator	f _R = 200 kHz (TYF	?)					
Minimum i	nstruction execution time	50 ns (main clock	(fxx) = 20 MHz)					
DSP funct	ion	$32 \times 32 = 64:200$ to 250 ns (at 20 MHz) $32 \times 32 + 32 = 32:300$ ns (at 20 MHz) $16 \times 16 = 32:50$ to 100 ns (at 20 MHz) $16 \times 16 + 32 = 32:150$ ns (at 20 MHz)						
I/O port		I/O: 128 (5 V toler	ant/N-ch open-drai	n output selectable	: 60)			
Timer		16-bit timer/event counter P: 9 channels 16-bit timer/event counter Q: 1 channel 16-bit interval timer M: 1 channel Watch timer: 1 channel Watchdog timer: 1 channel						
Real-time	output port	6 bits × 2 channels						
A/D conve	rter	10-bit resolution ×	16 channels					
D/A conve	rter	8-bit resolution ×	2 channels					
Serial inte	rface	UART/CSI: 1 UART/I ² C bus: 2 CSI: 4	channel channel channels channels channel					
DMA cont	roller	4 channels (transfer target: on-chip peripheral I/O, internal RAM, external memory)						
Interrupt s	ource	External: 10 (10) ^{Note} , internal: 61						
Power sav	e function	HALT/IDLE1/IDLE2/STOP/subclock/sub-IDLE mode						
Reset		RESET pin input, watchdog timer 2 (WDT2), clock monitor (CLM), low-voltage detector (LVI)						
DCU		Provided (RUN/break)						
Operating	power supply voltage	2.85 to 3.6 V						
Operating	ambient temperature	-40 to +85°C						
Package		144-pin plastic LQFP (fine pitch) (20×20 mm)						

Table 1-2. V850ES/JJ2 Product List

Note The figure in parentheses indicates the number of external interrupts that can release STOP mode.

1.2 Features

O Minimum instruction execution	on time: 50 ns (operating with main clock (fxx) of 20 MHz)				
O General-purpose registers:	32 bits \times 32 registers				
O CPU features:	Signed multiplication ($16 \times 16 \rightarrow 32$): 1 to 2 clocks				
	Signed multiplication ($32 \times 32 \rightarrow 64$): 1 to 5 clocks				
	Saturated operations (overflow and underflow detection functions included)				
	32-bit shift instruction: 1 clock				
	Bit manipulation instructions				
	Load/store instructions with long/short format				
O Memory space:	64 MB of linear address space (for programs and data)				
	External expansion: Up to 16 MB (including 1 MB used as internal ROM/RAM)				
Internal memory					
	Flash memory: 128/256/384/512/640 KB (see Table 1-1)				
External bus i	nterface: Separate bus/multiplexed bus output selectable				
	8/16 bit data bus sizing function				
	Wait function				
	 Programmable wait function 				
	External wait function				
	Idle state function				
	Bus hold function				
O Interrupts and exceptions:	Non-maskable interrupts: 2 sources				
	Maskable interrupts: 55 sources				
	Software exceptions: 32 sources				
	Exception trap: 2 sources				
O I/O lines:	I/O ports: 84				
O Timer function:	16-bit interval timer M (TMM): 1 channel				
	16-bit timer/event counter P (TMP): 6 channels				
	16-bit timer/event counter Q (TMQ): 1 channel				
	Watch timer: 1 channel				
	Watchdog timer: 1 channel				
O Real-time output port:	6 bits \times 1 channel				
O Serial interface:	Asynchronous serial interface A (UARTA)				
	3-wire variable-length serial interface B (CSIB)				
	I ² C bus interface (I ² C)				
	UARTA/CSIB: 1 channel				
	UARTA/I ² C: 2 channels				
	CSIB/I ² C: 1 channel				
	CSIB: 3 channels				
O A/D converter:	10-bit resolution: 12 channels				
O D/A converter:	8-bit resolution: 2 channels				
O DMA controller:	4 channels				
O DCU (debug control unit):	JTAG interface				
O Clock generator:	During main clock or subclock operation				
	7-level CPU clock (fxx, fxx/2, fxx/4, fxx/8, fxx/16, fxx/32, fxr)				
	Clock-through mode/PLL mode selectable				

- O Internal oscillation clock: 200 kHz (TYP.)
- O Power-save functions: HALT/IDLE1/IDLE2/STOP/subclock/sub-IDLE mode
 O Package: 100-pin plastic QFP (14 × 20) (μPD70F3715, 70F3716, 70F3717 only) 100-pin plastic LQFP (fine pitch) (14 × 14)

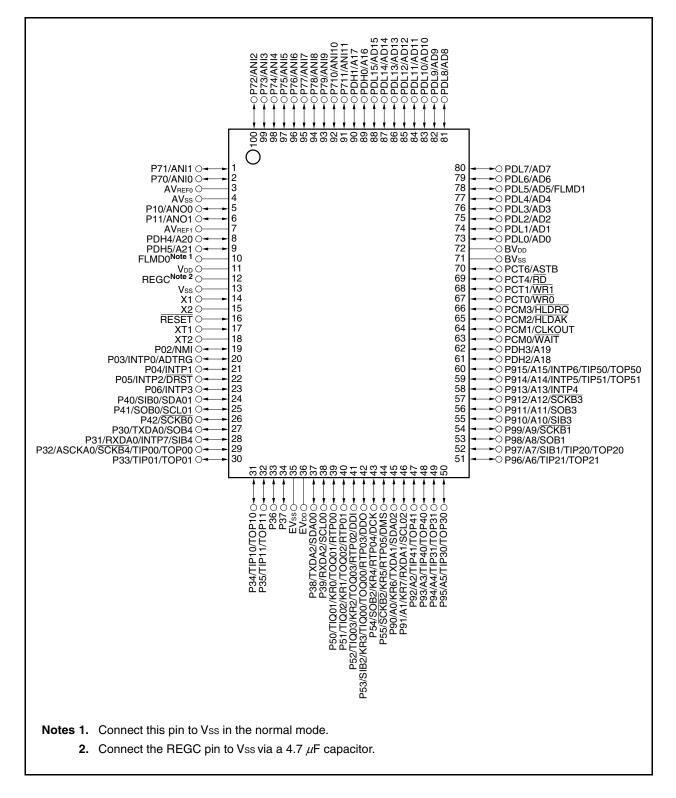
1.3 Application Fields

Home audio, printers, digital home electronics, other consumer devices

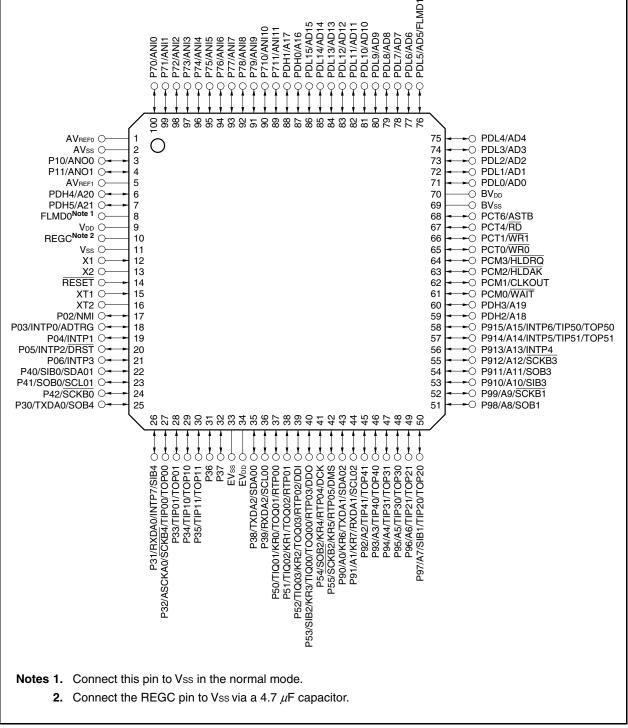
1.4 Ordering Information

Part Number	Package	Internal Flash Memory
μ PD70F3715GF-JBT-A	100-pin plastic QFP (14 \times 20)	128 KB
μ PD70F3715GC-8EA-A	100-pin plastic LQFP (fine pitch) (14 $ imes$ 14)	128 KB
μ PD70F3716GF-JBT-A	100-pin plastic QFP (14 $ imes$ 20)	256 KB
μPD70F3716GC-8EA-A	100-pin plastic LQFP (fine pitch) (14 $ imes$ 14)	256 KB
μ PD70F3717GF-JBT-A	100-pin plastic QFP (14 $ imes$ 20)	384 KB
μPD70F3717GC-8EA-A	100-pin plastic LQFP (fine pitch) (14 $ imes$ 14)	384 KB
μPD70F3718GC-8EA-A	100-pin plastic LQFP (fine pitch) (14 $ imes$ 14)	512 KB
μPD70F3719GC-8EA-A	100-pin plastic LQFP (fine pitch) (14 $ imes$ 14)	640 KB

Remark Products with -A at the end of the part number are lead-free products.

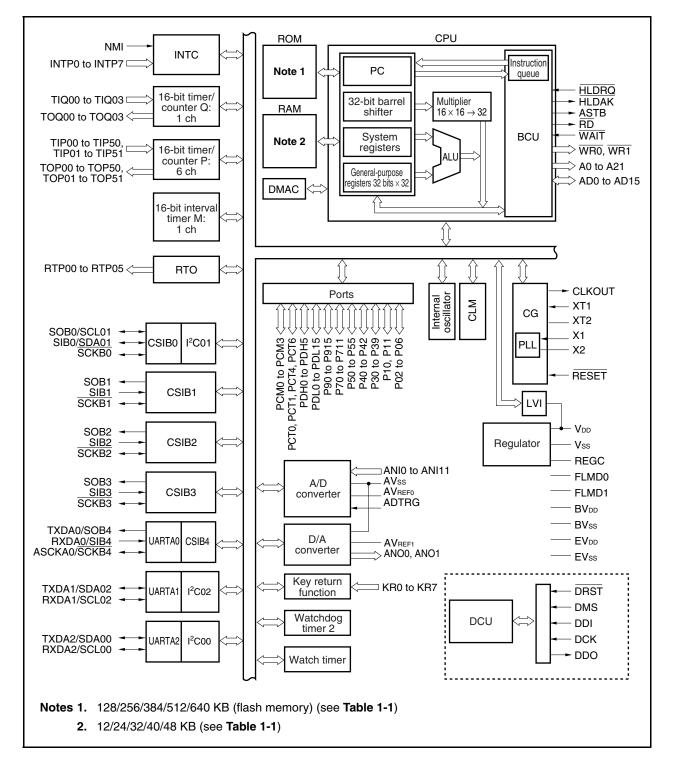

1.5 Pin Configuration (Top View)

100-pin plastic QFP (14 imes 20)


μPD70F3715GF-JBT-A

 μ PD70F3716GF-JBT-A

μPD70F3717GF-JBT-A



Pin names

A0 to A21:	Address bus	PDH0 to PDH5:	Port DH
AD0 to AD15:	Address/data bus	PDL0 to PDL15:	Port DL
ADTRG:	A/D trigger input	RD:	Read strobe
ANI0 to ANI11:	Analog input	REGC:	Regulator control
ANO0, ANO1:	Analog output	RESET:	Reset
ASCKA0:	Asynchronous serial clock	RTP00 to RTP05:	Real-time output port
ASTB:	Address strobe	RXDA0 to RXDA2:	Receive data
AVREF0, AVREF1:	Analog reference voltage	SCKB0 to SCKB4:	Serial clock
AVss:	Analog Vss	SCL00 to SCL02:	Serial clock
BVDD:	Power supply for bus interface	SDA00 to SDA02:	Serial data
BVss:	Ground for bus interface	SIB0 to SIB4:	Serial input
CLKOUT:	Clock output	SOB0 to SOB4:	Serial output
DCK:	Debug clock	TIP00, TIP01,	
DDI:	Debug data input	TIP10, TIP11,	
DDO:	Debug data output	TIP20, TIP21,	
DMS:	Debug mode select	TIP30, TIP31,	
DRST:	Debug reset	TIP40, TIP41,	
EVDD:	Power supply for port	TIP50, TIP51,	
EVss:	Ground for port	TIQ00 to TIQ03:	Timer input
FLMD0, FLMD1:	Flash programming mode	TOP00, TOP01,	
HLDAK:	Hold acknowledge	TOP10, TOP11,	
HLDRQ:	Hold request	TOP20, TOP21,	
INTP0 to INTP7:	External interrupt input	TOP30, TOP31,	
KR0 to KR7:	Key return	TOP40, TOP41,	
NMI:	Non-maskable interrupt request	TOP50, TOP51,	
P02 to P06:	Port 0	TOQ00 to TOQ03:	Timer output
P10, P11:	Port 1	TXDA0 to TXDA2:	Transmit data
P30 to P39:	Port 3	V _{DD} :	Power supply
P40 to P42:	Port 4	Vss:	Ground
P50 to P55:	Port 5	WAIT:	Wait
P70 to P711:	Port 7	WR0:	Lower byte write strobe
P90 to P915:	Port 9	WR1:	Upper byte write strobe
PCM0 to PCM3:	Port CM	X1, X2:	Crystal for main clock
PCT0, PCT1,		XT1, XT2:	Crystal for subclock
PCT4, PCT6:	Port CT		

1.6 Function Block Configuration

1.6.1 Internal block diagram

1.6.2 Internal units

(1) CPU

The CPU uses five-stage pipeline control to enable single-clock execution of address calculations, arithmetic logic operations, data transfers, and almost all other instruction processing.

Other dedicated on-chip hardware, such as a multiplier (16 bits \times 16 bits \rightarrow 32 bits) and a barrel shifter (32 bits) contribute to faster complex processing.

(2) Bus control unit (BCU)

The BCU starts a required external bus cycle based on the physical address obtained by the CPU. When an instruction is fetched from external memory space and the CPU does not send a bus cycle start request, the BCU generates a prefetch address and prefetches the instruction code. The prefetched instruction code is stored in an instruction queue.

(3) ROM

This is a 640/512/384/256/128 KB flash memory mapped to addresses 0000000H to 009FFFFH/0000000H to 007FFFFH/0000000H to 003FFFFH/0000000H to 001FFFFH. It can be accessed from the CPU in one clock during instruction fetch.

(4) RAM

This is a 48/40/32/24/12 KB RAM mapped to addresses 3FF3000H to 3FFEFFFH/3FF5000H to 3FFEFFFH/3FF7000H to 3FFEFFFH/3FF7000H to 3FFEFFFH/3FFC000H to 3FFEFFFH. It can be accessed from the CPU in one clock during data access.

(5) Interrupt controller (INTC)

This controller handles hardware interrupt requests (NMI, INTP0 to INTP7) from on-chip peripheral hardware and external hardware. Eight levels of interrupt priorities can be specified for these interrupt requests, and multiplexed servicing control can be performed.

(6) Clock generator (CG)

A main clock oscillator and subclock oscillator are provided and generate the main clock oscillation frequency (fx) and subclock frequency (fxT), respectively. There are two modes: In the clock-through mode, fx is used as the main clock frequency (fxx) as is. In the PLL mode, fx is used multiplied by 4 or 8.

The CPU clock frequency (fcPu) can be selected from among fxx, fxx/2, fxx/4, fxx/8, fxx/16, fxx/32, and fxt.

(7) Internal oscillator

An internal oscillator is provided on chip. The oscillation frequency is 200 kHz (TYP). The internal oscillator supplies the clock for watchdog timer 2 and timer M.

(8) Timer/counter

Six-channel 16-bit timer/event counter P (TMP), one-channel 16-bit timer/event counter Q (TMQ), and one-channel 16-bit interval timer M (TMM), are provided on chip.

(9) Watch timer

This timer counts the reference time period (0.5 s) for counting the clock (the 32.768 kHz subclock or the 32.768 kHz clock f_{BRG} from prescaler 3). The watch timer can also be used as an interval timer for the main clock.

(10) Watchdog timer 2

A watchdog timer is provided on chip to detect inadvertent program loops, system abnormalities, etc. The internal oscillation clock, the main clock, or the subclock can be selected as the source clock. Watchdog timer 2 generates a non-maskable interrupt request signal (INTWDT2) or a system reset signal (WDT2RES) after an overflow occurs.

(11) Serial interface

The V850ES/JG2 includes three kinds of serial interfaces: asynchronous serial interface A (UARTA), 3-wire variable-length serial interface B (CSIB), and an I^2C bus interface (I^2C).

In the case of UARTA, data is transferred via the TXDA0 to TXDA2 pins and RXDA0 to RXDA2 pins.

In the case of CSIB, data is transferred via the SOB0 to SOB4 pins, SIB0 to SIB4 pins, and SCKB0 to SCKB4 pins.

In the case of I²C, data is transferred via the SDA00 to SDA02 and SCL00 to SCL02 pins.

(12) A/D converter

This 10-bit A/D converter includes 12 analog input pins. Conversion is performed using the successive approximation method.

(13) D/A converter

A two-channel, 8-bit-resolution D/A converter that uses the R-2R ladder method is provided on chip.

(14) DMA controller

A 4-channel DMA controller is provided on chip. This controller transfers data between the internal RAM and on-chip peripheral I/O devices in response to interrupt requests sent by on-chip peripheral I/O.

(15) Key interrupt function

A key interrupt request signal (INTKR) can be generated by inputting a falling edge to the key input pins (8 channels).

(16) Real-time output function

The real-time output function transfers preset 6-bit data to output latches upon the occurrence of a timer compare register match signal.

(17) DCU (debug control unit)

An on-chip debug function that uses the JTAG (Joint Test Action Group) communication specifications is provided. Switching between the normal port function and on-chip debugging function is done with the control pin input level and the OCDM register.

(18) Ports

The following general-purpose port functions and control pin functions are available.

Port	I/O	Alternate Function	
P0	5-bit I/O	NMI, external interrupt, A/D converter trigger, debug reset	
P1	2-bit I/O	D/A converter analog output	
P3	10-bit I/O	External interrupt, serial interface, timer I/O	
P4	3-bit I/O	Serial interface	
P5	6-bit I/O	Timer I/O, real-time output, key interrupt input, serial interface, debug I/O	
P7	12-bit I/O	A/D converter analog input	
P9	16-bit I/O	External address bus, serial interface, key interrupt input, timer I/O, external interrupt	
PCM	4-bit I/O	External control signal	
PCT	4-bit I/O	External control signal	
PDH	6-bit I/O	External address bus	
PDL	16-bit I/O	External address/data bus	

CHAPTER 2 PIN FUNCTIONS

2.1 List of Pin Functions

The names and functions of the pins in the V850ES/JG2 are described below.

There are four types of pin I/O buffer power supplies: AVREF0, AVREF1, BVDD, and EVDD. The relationship between these power supplies and the pins is described below.

Power Supply	Corresponding Pins
AVREFO	Port 7
AV _{REF1}	Port 1
BVDD	Ports CM, CT, DH (bits 0 to 3), DL
EVDD	RESET, ports 0, 3 to 5, 9, DH (bits 4, 5)

Table 2-1. Pin I/O Buffer Power Supplies

(1) Port pins

	1		1	I	(1/3
Pin Name	Name Pin I	No.	I/O	Function	Alternate Function
	GF	GC			
P02	19	17	I/O	Port 0	NMI
P03	20	18		5-bit I/O port	INTP0/ADTRG
P04	21	19		Input/output can be specified in 1-bit units. N-ch open-drain output can be specified in 1-bit units.	INTP1
P05 ^{Note}	22	20		5 V tolerant.	INTP2/DRST
P06	23	21			INTP3
P10	5	3	I/O	Port 1	ANO0
P11	6	4		2-bit I/O port Input/output can be specified in 1-bit units.	ANO1
P30	27	25	I/O	Port 3	TXDA0/SOB4
P31	28	26		10-bit I/O port	RXDA0/INTP7/SIB4
P32	29	27		Input/output can be specified in 1-bit units. N-ch open-drain output can be specified in 1-bit units.	ASCKA0/SCKB4/TIP00/TOP00
P33	30	28		5 V tolerant.	TIP01/TOP01
P34	31	29			TIP10/TOP10
P35	32	30			TIP11/TOP11
P36	33	31			-
P37	34	32			-
P38	37	35			TXDA2/SDA00
P39	38	36			RXDA2/SCL00
P40	24	22	I/O	Port 4	SIB0/SDA01
P41	25	23		3-bit I/O port	SOB0/SCL01
P42	26	24		Input/output can be specified in 1-bit units. N-ch open-drain output can be specified in 1-bit units. 5 V tolerant.	SCKB0
P50	39	37	I/O	Port 5	TIQ01/KR0/TOQ01/RTP00
P51	40	38		6-bit I/O port	TIQ02/KR1/TOQ02/RTP01
P52	41	39		Input/output can be specified in 1-bit units. N-ch open-drain output can be specified in 1-bit units.	TIQ03/KR2/TOQ03/RTP02/DDI
P53	42	40		5 V tolerant.	SIB2/KR3/TIQ00/TOQ00/RTP03/ DDO
P54	43	41			SOB2/KR4/RTP04/DCK
P55	44	42			SCKB2/KR5/RTP05/DMS

Note Incorporates a pull-down resistor. It can be disconnected by clearing the OCDM.OCDM0 bit to 0.

User's Manual U17715EJ2V0UD

31

(1/3)

(2/3)

Pin Name	Pin	No.	I/O	Function	Alternate Function
	GF	GC			
P70	2	100	I/O	Port 7	ANIO
P71	1	99		12-bit I/O port	ANI1
P72	100	98		Input/output can be specified in 1-bit units.	ANI2
P73	99	97			ANI3
P74	98	96			ANI4
P75	97	95			ANI5
P76	96	94			ANI6
P77	95	93			ANI7
P78	94	92			ANI8
P79	93	91			ANI9
P710	92	90			ANI10
P711	91	89			ANI11
P90	45	43	I/O	Port 9	A0/KR6/TXDA1/SDA02
P91	46	44		16-bit I/O port	A1/KR7/RXDA1/SCL02
P92	47	45		Input/output can be specified in 1-bit units. N-ch open-drain output can be specified in 1-bit units.	A2/TIP41/TOP41
P93	48	46		5 V tolerant.	A3/TIP40/TOP40
P94	49	47			A4/TIP31/TOP31
P95	50	48			A5/TIP30/TOP30
P96	51	49			A6/TIP21/TOP21
P97	52	50			A7/SIB1/TIP20/TOP20
P98	53	51			A8/SOB1
P99	54	52			A9/SCKB1
P910	55	53			A10/SIB3
P911	56	54			A11/SOB3
P912	57	55			A12/SCKB3
P913	58	56			A13/INTP4
P914	59	57			A14/INTP5/TIP51/TOP51
P915	60	58			A15/INTP6/TIP50/TOP50
PCM0	63	61	I/O	Port CM	WAIT
PCM1	64	62	Input/output can be specified in 1-		CLKOUT
PCM2	65	63		input/output can be specified in 1-bit units.	HLDAK
PCM3	66	64			HLDRQ
PCT0	67	65	I/O	Port CT	WR0
PCT1	68	66		4-bit I/O port	WR1
PCT4	69	67		Input/output can be specified in 1-bit units.	RD
PCT6	70	68			ASTB

Pin Name	Pin Name Pin No.		I/O	Function	Alternate Function
	GF	GC			
PDH0	89	87	I/O	Port DH	A16
PDH1	90	88		6-bit I/O port	A17
PDH2	61	59		Input/output can be specified in 1-bit units.	A18
PDH3	62	60			A19
PDH4	8	6			A20
PDH5	9	7			A21
PDL0	73	71	I/O	Port DL	AD0
PDL1	74	72		16-bit I/O port	AD1
PDL2	75	73		Input/output can be specified in 1-bit units.	AD2
PDL3	76	74			AD3
PDL4	77	75			AD4
PDL5	78	76			AD5/FLMD1
PDL6	79	77			AD6
PDL7	80	78			AD7
PDL8	81	79			AD8
PDL9	82	2 80			AD9
PDL10	83	81			AD10
PDL11	84	82			AD11
PDL12	85	83			AD12
PDL13	86	84			AD13
PDL14	87	85			AD14
PDL15	88	86			AD15

(2) Non-port pins

Pin Name	Pin No.		I/O	Function	Alternate Function
	GF	GC			
A0	45	43	Output	utput Address bus for external memory (when using separate bus) N-ch open-drain output selectable. 5 V tolerant.	P90/KR6/TXDA1/SDA02
A1	46	44			P91/KR7/RXDA1/SCL02
A2	47	45			P92/TIP41/TOP41
A3	48	46			P93/TIP40/TOP40
A4	49	47			P94/TIP31/TOP31
A5	50	48			P95/TIP30/TOP30
A6	51	49	1		P96/TIP21/TOP21
A7	52	50			P97/SIB1/TIP20/TOP20
A8	53	51	1		P98/SOB1
A9	54	52			P99/SCKB1
A10	55	53			P910/SIB3
A11	56	54			P911/SOB3
A12	57	55			P912/SCKB3
A13	58	56			P913/INTP4
A14	59	57			P914/INTP5/TIP51/TOP51
A15	60	58			P915/INTP6/TIP50/TOP50
A16	89	87	Output	utput Address bus for external memory	PDH0
A17	90	88			PDH1
A18	61	59			PDH2
A19	62	60			PDH3
A20	8	6			PDH4
A21	9	7	1		PDH5
AD0	73	71	I/O	/O Address bus/data bus for external memory	PDL0
AD1	74	72	1		PDL1
AD2	75	73			PDL2
AD3	76	74			PDL3
AD4	77	75			PDL4
AD5	78	76			PDL5/FLMD1
AD6	79	77			PDL6
AD7	80	78			PDL7
AD8	81	79			PDL8
AD9	82	80			PDL9
AD10	83	81			PDL10
AD11	84	82			PDL11
AD12	85	83			PDL12
AD13	86	84			PDL13
AD14	87	85			PDL14
AD15	88	86			PDL15

RemarkGF: 100-pin plastic QFP (14×20)GC: 100-pin plastic LQFP (fine pitch) (14×14)

Pin Name	Pin No.		I/O	Function	Alternate Function
	GF	GC			
ADTRG	20	18	Input	A/D converter external trigger input. 5 V tolerant.	P03/INTP0
ANI0	2	100	Input	Analog voltage input for A/D converter	P70
ANI1	1	99			P71
ANI2	100	98			P72
ANI3	99	97			P73
ANI4	98	96			P74
ANI5	97	95			P75
ANI6	96	94			P76
ANI7	95	93			P77
ANI8	94	92			P78
ANI9	93	91			P79
ANI10	92	90			P710
ANI11	91	89			P711
ANO0	5	3	Output	Analog voltage output for D/A converter	P10
ANO1	6	4			P11
ASCKA0	29	27	Input	UARTA0 baud rate clock input. 5 V tolerant.	P32/SCKB4/TIP00/TOP00
ASTB	70	68	Output	Address strobe signal output for external memory	PCT6
AV _{REF0}	3	1	-	Reference voltage input for A/D converter/positive power supply for port 7	_
AV _{REF1}	7	5		Reference voltage input for D/A converter/positive power supply for port 1	_
AVss	4	2	-	Ground potential for A/D and D/A converters (same potential as Vss)	_
BVDD	72	70	-	Positive power supply pin for bus interface and alternate- function ports	_
BVss	71	69	-	Ground potential for bus interface and alternate-function ports	-
CLKOUT	64	62	Output	Internal system clock output	PCM1
DCK	43	41	Input	Debug clock input. 5 V tolerant.	P54/SOB2/KR4/RTP04
DDI	41	39	Input	Debug data input. 5 V tolerant.	P52/TIQ03/KR2/TOQ03/RTP02
DDO ^{Note}	42	40	Output	Debug data output. N-ch open-drain output selectable. 5 V tolerant.	P53/SIB2/KR3/TIQ00/TOQ00/ RTP03
DMS	44	42	Input	Debug mode select input. 5 V tolerant.	P55/SCKB2/KR5/RTP05
DRST	22	20	Input	Debug reset input. 5 V tolerant.	P05/INTP2
EVDD	36	34	-	Positive power supply for external (same potential as VDD)	-
EVss	35	33	-	Ground potential for external (same potential as Vss)	-
FLMD0	10	8	Input	Flash memory programming mode setting pin	-
FLMD1	78	76			PDL5/AD5
HLDAK	65	63	Output	Bus hold acknowledge output	PCM2
HLDRQ	66	64	Input	Bus hold request input	PCM3

Note In the on-chip debug mode, high-level output is forcibly set.

Remark GF: 100-pin plastic QFP (14×20)

GC: 100-pin plastic LQFP (fine pitch) (14 \times 14)

Pin Name	Pin No.		I/O	Function	Alternate Function
	GF	GC			
INTP0	20	18	Input	External interrupt request input (maskable, analog noise elimination). Analog noise elimination or digital noise elimination selectable for INTP3 pin. 5 V tolerant.	P03/ADTRG
INTP1	21	19			P04
INTP2	22	20			P05/DRST
INTP3	23	21			P06
INTP4	58	56			P913/A13
INTP5	59	57			P914/A14/TIP51/TOP51
INTP6	60	58			P915/A15/TIP50/TOP50
INTP7	28	26			P31/RXDA0/SIB4
KR0 ^{Note 1}	39	37	Input	Key interrupt input (on-chip analog noise eliminator). 5 V tolerant.	P50/TIQ01/TOQ01/RTP00
KR1 ^{Note 1}	40	38			P51/TIQ02/TOQ02/RTP01
KR2 ^{Note 1}	41	39			P52/TIQ03/TOQ03/RTP02/DDI
KR3 ^{Note 1}	42	40			P53/SIB2/TIQ00/TOQ00/ RTP03/DDO
KR4 ^{Note 1}	43	41			P54/SOB2/RTP04/DCK
KR5 ^{Note 1}	44	42			P55/SCKB2/RTP05/DMS
KR6 ^{Note 1}	45	43			P90/A0/TXDA1/SDA02
KR7 ^{Note 1}	46	44			P91/A1/RXDA1/SCL02
NMI ^{Note 2}	19	17	Input	External interrupt input (non-maskable, analog noise elimination). 5 V tolerant.	P02
RD	69	67	Output	Read strobe signal output for external memory	PCT4
REGC	12	10	-	Connection of regulator output stabilization capacitance (4.7 μ F)	-
RESET	16	14	Input	System reset input	-
RTP00	39	37	Output	Real-time output port. N-ch open-drain output selectable. 5 V tolerant.	P50/TIQ01/KR0/TOQ01
RTP01	40	38			P51/TIQ02/KR1/TOQ02
RTP02	41	39			P52/TIQ03/KR2/TOQ03/DDI
RTP03	42	40			P53/SIB2/KR3/TIQ00/TOQ00/ DDO
RTP04	43	41			P54/SOB2/KR4/DCK
RTP05	44	42			P55/SCKB2/KR5/DMS
RXDA0	28	26	Input	Serial receive data input (UARTA0 to UARTA2) 5 V tolerant.	P31/INTP7/SIB4
RXDA1	46	44			P91/A1/KR7/SCL02
RXDA2	38	36			P39/SCL00

Notes 1. Connect a pull-up resistor externally.

- 2. The NMI pin alternately functions as the P02 pin. It functions as the P02 pin after reset. To enable the NMI pin, set the PMC0.PMC02 bit to 1. The initial setting of the NMI pin is "No edge detected". Select the NMI pin valid edge using INTF0 and INTR0 registers.
- RemarkGF: 100-pin plastic QFP (14×20)GC: 100-pin plastic LQFP (fine pitch) (14×14)

Pin Name	Pin	No	1/0	Function	(4/6 Alternate Function
Pin Name	GF	GC	1/0	Function	Alternate Function
SCKB0	26	GC 24	I/O	Serial clock I/O (CSIB0 to CSIB4)	P42
SCKB0	20 54	24 52	1/0	N-ch open-drain output selectable.	P99/A9
SCKB1			-	5 V tolerant.	
	44	42			P55/KR5/RTP05/DMS
SCKB3	57	55			P912/A12
SCKB4	29	27			P32/ASCKA0/TIP00/TOP00
SCL00	38	36	I/O	Serial clock I/O (I ² C00 to I ² C02)	P39/RXDA2
SCL01	25	23		N-ch open-drain output selectable. 5 V tolerant.	P41/SOB0
SCL02	46	44		5 v tolerant.	P91/A1/KR7/RXDA1
SDA00	37	35	I/O	Serial transmit/receive data I/O (I ² C00 to I ² C02)	P38/TXDA2
SDA01	24	22		N-ch open-drain output selectable.	P40/SIB0
SDA02	45	43		5 V tolerant.	P90/A0/KR6/TXDA1
SIB0	24	22	Input	Serial receive data input (CSIB0 to CSIB4)	P40/SDA01
SIB1	52	50		5 V tolerant.	P97/A7/TIP20/TOP20
SIB2	42	40			P53/KR3/TIQ00/TOQ00/ RTP03/DDO
SIB3	55	53			P910/A10
SIB4	28	26			P31/RXDA0/INTP7
SOB0	25	23	Output	Serial transmit data output (CSIB0 to CSIB4)	P41/SCL01
SOB1	53	51		N-ch open-drain output selectable.	P98/A8
SOB2	43	41		5 V tolerant.	P54/KR4/RTP04/DCK
SOB3	56	54			P911/A11
SOB4	27	25	1		P30/TXDA0

Remark GF: 100-pin plastic QFP (14×20)

GC: 100-pin plastic LQFP (fine pitch) (14 \times 14)

37

			1		(5/6
Pin Name			I/O	Function	Alternate Function
	GF	GC			
TIP00	29	27	Input	External event count input/capture trigger input/external trigger input (TMP0). 5 V tolerant.	P32/ASCKA0/SCKB4/TOP00
TIP01	30	28		Capture trigger input (TMP0). 5 V tolerant.	P33/TOP01
TIP10	31	29		External event count input/capture trigger input/external trigger input (TMP1). 5 V tolerant.	P34/TOP10
TIP11	32	30		Capture trigger input (TMP1). 5 V tolerant.	P35/TOP11
TIP20	52	50		External event count input/capture trigger input/external trigger input (TMP2). 5 V tolerant.	P97/A7/SIB1/TOP20
TIP21	51	49		Capture trigger input (TMP2). 5 V tolerant.	P96/A6/TOP21
TIP30	50	48		External event count input/capture trigger input/external trigger input (TMP3). 5 V tolerant.	P95/A5/TOP30
TIP31	49	47		Capture trigger input (TMP3). 5 V tolerant.	P94/A4/TOP31
TIP40	48	46		External event count input/capture trigger input/external trigger input (TMP4). 5 V tolerant.	P93/A3/TOP40
TIP41	47	45		Capture trigger input (TMP4). 5 V tolerant.	P92/A2/TOP41
TIP50	60	58		External event count input/capture trigger input/external trigger input (TMP5). 5 V tolerant.	P915/A15/INTP6/TOP50
TIP51	59	57		Capture trigger input (TMP5). 5 V tolerant.	P914/A14/INTP5/TOP51
TIQ00	42	40		External event count input/capture trigger input/external trigger input (TMQ0). 5 V tolerant.	P53/SIB2/KR3/TOQ00/RTP03/ DDO
TIQ01	39	37		Capture trigger input (TMQ0). 5 V tolerant.	P50/KR0/TOQ01/RTP00
TIQ02	40	38			P51/KR1/TOQ02/RTP01
TIQ03	41	39			P52/KR2/TOQ03/RTP02/ DDI

					(6/6		
Pin Name		No.	I/O	Function	Alternate Function		
TODAA	GF	GC	<u> </u>				
TOP00	29	27	Output	Timer output (TMP0) N-ch open-drain output selectable. 5 V tolerant.	P32/ASCKA0/SCKB4/TIP00		
TOP01	30	28	+		P33/TIP01		
TOP10	31	29	+	Timer output (TMP1)	P34/TIP10		
TOP11	32	30	+	N-ch open-drain output selectable. 5 V tolerant.	P35/TIP11		
TOP20	52	50	-	Timer output (TMP2)	P97/A7/SIB1/TIP20		
TOP21	51	49	ļ	N-ch open-drain output selectable. 5 V tolerant.	P96/A6/TIP21		
TOP30	50	48		Timer output (TMP3)	P95/A5/TIP30		
TOP31	49	47		N-ch open-drain output selectable. 5 V tolerant.	P94/A4/TIP31		
TOP40	48	46		Timer output (TMP4)	P93/A3/TIP40		
TOP41	47	45		N-ch open-drain output selectable. 5 V tolerant.	P92/A2/TIP41		
TOP50	60	58	I	Timer output (TMP5)	P915/A15/INTP6/TIP50		
TOP51	59	57	1	N-ch open-drain output selectable. 5 V tolerant.	P914/A14/INTP5/TIP51		
TOQ00	42	40	Output	Timer output (TMQ0)	P53/SIB2/KR3/TIQ00/RTP03/		
				N-ch open-drain output selectable. 5 V tolerant.	DDO		
TOQ01	39	37	ļ		P50/TIQ01/KR0/RTP00		
TOQ02	40	38			P51/TIQ02/KR1/RTP01		
TOQ03	41	39			P52/TIQ03/KR2/RTP02/DDI		
TXDA0	27	25	Output	Serial transmit data output (UARTA0 to UARTA2)	P30/SOB4		
TXDA1	45	43	1	t	N-ch open-drain output selectable.		P90/A0/KR6/SDA02
TXDA2	37	35	I	5 V tolerant.	P38/SDA00		
VDD	11	9	_	Positive power supply pin for internal	-		
Vss	13	11	_	Ground potential for internal	-		
WAIT	63	61	Input	External wait input	PCM0		
WR0	67	65	Output	Write strobe for external memory (lower 8 bits)	PCT0		
WR1	68	66	1	Write strove for external memory (higher 8 bits)	PCT1		
X1	14	12	Input	Connection of resonator for main clock	-		
X2	15	13	_	1	-		
XT1	17	15	Input	Connection of resonator for subclock	-		
XT2	18	16	-	1	-		

2.2 Pin States

The operation states of pins in the various modes are described below.

Pin Name	When Power Is Turned On ^{Note 1}	During Reset (Except When Power Is Turned On)	HALT Mode ^{Note 2}	IDLE1, IDLE2, Sub-IDLE Mode ^{Note 2}	STOP Mode ^{Note 2}	Idle State ^{Note 3}	Bus Hold
P05/DRST	Pulled down	Pulled down ^{Note 4}	Held	Held	Held	Held	Held
P10/ANO0, P11/ANO1	Undefined	Hi-Z	Held	Held	Hi-Z	Held	Held
P53/DDO		Hi-Z ^{Note 5}	Held	Held	Held	Held	Held
AD0 to AD15	Hi-Z ^{Note 6}	Hi-Z ^{Note 6}	Notes 7, 8	Hi-Z	Hi-Z	Held	Hi-Z
A0 to A15			Undefined ^{Notes 7, 9}				
A16 to A21			Undefined ^{Note 7}				
WAIT			_	_	-	-	-
CLKOUT			Operating	L	L	Operating	Operating
WR0, WR1			H ^{Note 7}	н	Н	н	Hi-Z
RD							
ASTB							
HLDAK	1		Operating ^{Note 7}				L
HLDRQ				_	_	_	Operating
Other port pins	Hi-Z	Hi-Z	Held	Held	Held	Held	Held

Table 2-2.	Pin Operation	States in Various Modes
------------	---------------	-------------------------

Notes 1. Duration until 1 ms elapses after the supply voltage reaches the operating supply voltage range (lower limit) when the power is turned on.

- 2. Operates while an alternate function is operating.
- **3.** In separate bus mode, the state of the pins in the idle state inserted after the T2 state is shown. In multiplexed bus mode, the state of the pins in the idle state inserted after the T3 state is shown.
- **4.** Pulled down during external reset. During internal reset by the watchdog timer, clock monitor, etc., the state of this pin differs according to the OCDM.OCDM0 bit setting.
- 5. DDO output is specified in the on-chip debug mode.
- 6. The bus control pins function alternately as port pins, so they are initialized to the input mode (port mode).
- 7. Operates even in the HALT mode, during DMA operation.
- 8. In separate bus mode: Hi-Z
 - In multiplexed bus mode: Undefined
- 9. In separate bus mode
- Remark Hi-Z: High impedance

Held: The state during the immediately preceding external bus cycle is held.

- L: Low-level output
- H: High-level output
- -: Input without sampling (not acknowledged)

2.3 Pin I/O Circuit Types, I/O Buffer Power Supplies, and Connection of Unused Pins

Pin	Alternate Function	Pin No.		I/O Circuit Type	Recommended Connection		
		GF	GC				
P02	NMI	19	17	10-D	Input: Independently connect to EVDD or		
P03	INTP0/ADTRG	20	18		EVss via a resistor.		
P04	INTP1	21	19		Output: Leave open.		
P05	INTP2/DRST	22	20	10-N	Input: Independently connect to EVss via a resistor. Fixing to VDD level is prohibited. Output: Leave open. Internally pull-down after reset by RESET pin.		
P06	INTP3	23	21	10-D	Input: Independently connect to EV _{DD} or EV _{SS} via a resistor. Output: Leave open.		
P10, P11	ANO0, ANO1	5, 6	3, 4	12-D	Input: Independently connect to AV _{REF1} or AV _{SS} via a resistor. Output: Leave open.		
P30	TXDA0/SOB4	27	25	10-G	Input: Independently connect to EVDD or		
P31	RXDA0/INTP7/SIB4	28	26	10-D	EVss via a resistor.		
P32	ASCKA0/SCKB4/TIP00	29	27		Output: Leave open.		
P33	TIP01/TOP01	30	28				
P34	TIP10/TOP10	31	29				
P35	TIP11/TOP11	32	30				
P36	-	33	31	10-G			
P37	-	34	32				
P38	TXDA2/SDA00	37	35	10-D			
P39	RXDA2/SCL00	38	36				
P40	SIB0/SDA01	24	22				
P41	SOB0/SCL01	25	23				
P42	SCKB0	26	24				
P50	TIQ01/KR0/TOQ01/RTP00	39	37				
P51	TIQ02/KR1/TOQ02/RTP01	40	38				
P52	TIQ03/KR2/TOQ03/RTP02/DDI	41	39				
P53	SIB2/KR3/TIQ00/TOQ00/RTP03/ DDO	42	40				
P54	SOB2/KR4/RTP04/DCK	43	41				
P55	SCKB2/KR5/RTP05/DMS	44	42				
P70 to P711	ANI0 to ANI11	2, 1, 100-91	100-89	11-G	Input: Independently connect to AVREFO or AVss via a resistor. Output: Leave open.		

Remark GF: 100-pin plastic QFP (14×20)

GC: 100-pin plastic LQFP (fine pitch) (14×14)

Pin	Alternate Function	Iternate Function Pin No.		I/O Circuit Type	Recommended Connection		
		GF	GC				
P90	A0/KR6/TXDA1/SDA02	45	43	10-D	Input: Independently connect to EVDD or		
P91	A1/KR7/RXDA1/SCL02	46	44		EVss via a resistor.		
P92	A2/TIP41/TOP41	47	45		Output: Leave open.		
P93	A3/TIP40/TOP40	48	46				
P94	A4/TIP31/TOP31	49	47				
P95	A5/TIP30/TOP30	50	48				
P96	A6/TIP21/TOP21	51	49				
P97	A7/SIB1/TIP20/TOP20	52	50				
P98	A8/SOB1	53	51	10-G			
P99	A9/SCKB1	54	52	10-D			
P910	A10/SIB3	55	53				
P911	A11/SOB3	56	54	10-G			
P912	A12/SCKB3	57	55	10-D			
P913	A13/INTP4	58	56				
P914	A14/INTP5/TIP51/TOP51	59	57				
P915	A15/INTP6/TIP50/TOP50	60	58				
PCM0	WAIT	63	61	5	Input: Independently connect to BVDD or		
PCM1	CLKOUT	64	62		BVss via a resistor.		
PCM2	HLDAK	65	63		Output: Leave open.		
PCM3	HLDRQ	66	64				
PCT0, PCT1	$\overline{WR0},\overline{WR1}$	67, 68	65, 66				
PCT4	RD	69	67				
PCT6	ASTB	70	68				
PDH0 to	A16 to A19	89, 90	87, 88				
PDH3		61, 62	59, 60				
PDH4,	A20, A21	8, 9	6, 7		Input: Independently connect to EV _{DD} or		
PDH5					EVss via a resistor. Output: Leave open.		
PDL0 to PDL4	AD0 to AD4	73-77	71-75		Input: Independently connect to BV _{DD} or BV _{SS} via a resistor.		
PDL5	AD5/FLMD1	78	76		Output: Leave open.		
PDL6 to PDL15	AD6 to AD15	79-88	77-86				

Remark GF: 100-pin plastic QFP (14×20)

GC: 100-pin plastic LQFP (fine pitch) (14×14)

Pin	Alternate Function	Pin	No.	I/O Circuit Type	(3/ Recommended Connection	
		GF	GC			
AVREFO	-	3	1	_	Directly connect to VDD and always supply power.	
AV _{REF1}	-	7	5	-	Directly connect to VDD and always supply power.	
AVss	-	4	2	-	Directly connect to Vss and always supply power.	
BVDD	-	72	70	-	Directly connect to VDD and always supply power.	
BVss	-	71	69	-	Directly connect to Vss and always supply power.	
EVDD	_	36	34	_	_	
EVss	_	35	33	_	_	
FLMD0	_	10	8	-	Directly connect to V_{SS} in a mode other than the flash memory programming mode.	
REGC	-	12	10	-	Connect regulator output stabilization capacitance (4.7 μ F (preliminary value)).	
RESET	_	16	14	2	_	
Vdd	-	11	9	-	_	
Vss	-	13	11	-		
X1	_	14	12	_	_	
X2	_	15	13	_	_	
XT1		17	15	16	Connect to Vss.	
XT2	_	18	16	16	Leave open.	

Remark GF: 100-pin plastic QFP (14×20)

GC: 100-pin plastic LQFP (fine pitch) (14×14)

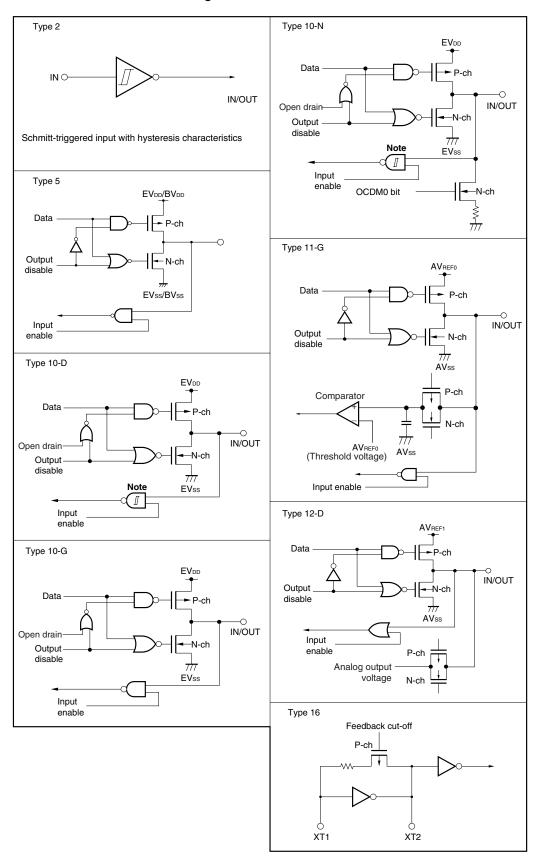


Figure 2-1. Pin I/O Circuits

Note Hysteresis characteristics are not available in port mode.

2.4 Cautions

When the power is turned on, the following pins may output an undefined level temporarily even during reset.

- P10/ANO0 pin
- P11/ANO1 pin
- P53/SIB2/KR3/TIQ00/TOQ00/RTP03/DDO pin

CHAPTER 3 CPU FUNCTION

The CPU of the V850ES/JG2 is based on RISC architecture and executes almost all instructions with one clock by using a 5-stage pipeline.

3.1 Features

○ Minimum instruction execution time: 50 ns (at 20 MHz operation)

30.5 μ s (with subclock (fxT) = 32.768 kHz operation)

 \bigcirc Memory space $\hfill \mbox{Program}$ (physical address) space: 64 MB linear

Data (logical address) space: 4 GB linear

- \bigcirc General-purpose registers: 32 bits \times 32 registers
- \bigcirc Internal 32-bit architecture
- \bigcirc 5-stage pipeline control
- \bigcirc Multiplication/division instruction
- \bigcirc Saturation operation instruction
- \bigcirc 32-bit shift instruction: 1 clock
- \bigcirc Load/store instruction with long/short format
- Four types of bit manipulation instructions
 - SET1
 - CLR1
 - NOT1
 - TST1

3.2 CPU Register Set

The registers of the V850ES/JG2 can be classified into two types: general-purpose program registers and dedicated system registers. All the registers are 32 bits wide.

For details, refer to the V850ES Architecture User's Manual.

(1) Program register set	(2) System register set
31 (<u>)</u> <u>31</u>
r0 (Zero register)	EIPC (Interrupt status saving register)
r1 (Assembler-reserved register)	EIPSW (Interrupt status saving register)
r2	
r3 (Stack pointer (SP))	FEPC (NMI status saving register)
r4 (Global pointer (GP))	FEPSW (NMI status saving register)
r5 (Text pointer (TP))	
r6	ECR (Interrupt source register)
r7	
r8	PSW (Program status word)
r9	
r10	CTPC (CALLT execution status saving register)
r11	CTPSW (CALLT execution status saving register)
r12	
r13	DDDC (Evention/debug tran status opting registe
r14	DBPC (Exception/debug trap status saving registe
r15	DBPSW (Exception/debug trap status saving registe
r16	
r17	CTBP (CALLT base pointer)
r18	
r19	-
r20	-
r21	-
r22	-
r23	4
r24	4
r25	4
r26	4
r27	
r28	
r29	
r30 (Element pointer (EP))	
r31 (Link pointer (LP))	J
31 (
PC (Program counter)	

3.2.1 Program register set

The program registers include general-purpose registers and a program counter.

(1) General-purpose registers (r0 to r31)

Thirty-two general-purpose registers, r0 to r31, are available. Any of these registers can be used to store a data variable or an address variable.

However, r0 and r30 are implicitly used by instructions and care must be exercised when these registers are used. r0 always holds 0 and is used for an operation that uses 0 or addressing of offset 0. r30 is used by the SLD and SST instructions as a base pointer when these instructions access the memory. r1, r3 to r5, and r31 are implicitly used by the assembler and C compiler. When using these registers, save their contents for protection, and then restore the contents after using the registers. r2 is sometimes used by the real-time OS. If the real-time OS does not use r2, it can be used as a register for variables.

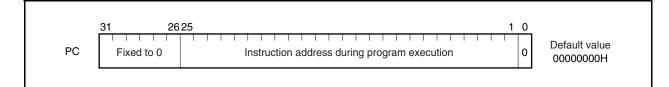

Name	Usage	Operation	
rO	Zero register	Always holds 0.	
r1	Assembler-reserved register	Used as working register to create 32-bit immediate data	
r2	Register for address/data variable (if real-time OS does not use r2)		
r3	Stack pointer	Used to create a stack frame when a function is called	
r4	Global pointer	Used to access a global variable in the data area	
r5	Text pointer	Used as register that indicates the beginning of a text area (area where program codes are located)	
r6 to r29	Register for address/data variable		
r30	Element pointer	Used as base pointer to access memory	
r31	Link pointer	Used when the compiler calls a function	
PC	Program counter	Holds the instruction address during program execution	

Table 3-1. Program Registers

Remark For further details on the r1, r3 to r5, and r31 that are used in the assembler and C compiler, refer to the CA850 (C Compiler Package) Assembly Language User's Manual.

(2) Program counter (PC)

The program counter holds the instruction address during program execution. The lower 32 bits of this register are valid. Bits 31 to 26 are fixed to 0. A carry from bit 25 to 26 is ignored even if it occurs. Bit 0 is fixed to 0. This means that execution cannot branch to an odd address.

3.2.2 System register set

The system registers control the status of the CPU and hold interrupt information.

These registers can be read or written by using system register load/store instructions (LDSR and STSR), using the system register numbers listed below.

System	System Register Name	Operand S	pecification
Register Number		LDSR Instruction	STSR Instruction
0	Interrupt status saving register (EIPC) ^{Note 1}	\checkmark	\checkmark
1	Interrupt status saving register (EIPSW) ^{Note 1}	\checkmark	\checkmark
2	NMI status saving register (FEPC) ^{Note 1}	\checkmark	\checkmark
3	NMI status saving register (FEPSW) ^{Note 1}	\checkmark	\checkmark
4	Interrupt source register (ECR)	×	\checkmark
5	Program status word (PSW)	\checkmark	\checkmark
6 to 15	Reserved for future function expansion (operation is not guaranteed if these registers are accessed)	×	×
16	CALLT execution status saving register (CTPC)	\checkmark	\checkmark
17	CALLT execution status saving register (CTPSW)	\checkmark	\checkmark
18	Exception/debug trap status saving register (DBPC)	√ ^{Note 2}	√ ^{Note 2}
19	Exception/debug trap status saving register (DBPSW)	√ ^{Note 2}	√ ^{Note 2}
20	CALLT base pointer (CTBP)	\checkmark	\checkmark
21 to 31	Reserved for future function expansion (operation is not guaranteed if these registers are accessed)	×	×

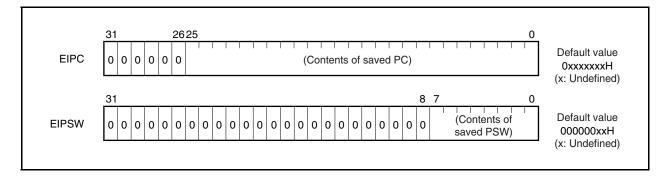
Table 3-2.	System	Register	Numbers
------------	--------	----------	---------

- **Notes 1.** Because only one set of these registers is available, the contents of these registers must be saved by program if multiple interrupts are enabled.
 - **2.** These registers can be accessed only during the interval between the execution of the DBTRAP instruction or illegal opcode and DBRET instruction execution.
- Caution Even if EIPC or FEPC, or bit 0 of CTPC is set to 1 by the LDSR instruction, bit 0 is ignored when execution is returned to the main routine by the RETI instruction after interrupt servicing (this is because bit 0 of the PC is fixed to 0). Set an even value to EIPC, FEPC, and CTPC (bit 0 = 0).
- **Remark** $\sqrt{}$: Can be accessed
 - $\times\!\!: \mbox{Access prohibited}$

(1) Interrupt status saving registers (EIPC and EIPSW)

EIPC and EIPSW are used to save the status when an interrupt occurs.

If a software exception or a maskable interrupt occurs, the contents of the program counter (PC) are saved to EIPC, and the contents of the program status word (PSW) are saved to EIPSW (these contents are saved to the NMI status saving registers (FEPC and FEPSW) if a non-maskable interrupt occurs).


The address of the instruction next to the instruction under execution, except some instructions (see **19.8 Periods in Which Interrupts Are Not Acknowledged by CPU**), is saved to EIPC when a software exception or a maskable interrupt occurs.

The current contents of the PSW are saved to EIPSW.

Because only one set of interrupt status saving registers is available, the contents of these registers must be saved by program when multiple interrupts are enabled.

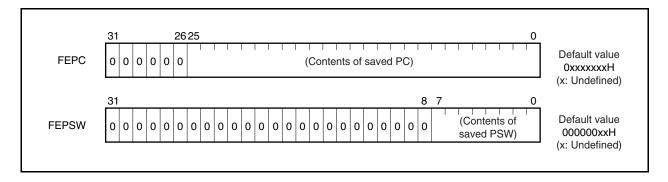
Bits 31 to 26 of EIPC and bits 31 to 8 of EIPSW are reserved for future function expansion (these bits are always fixed to 0).

The value of EIPC is restored to the PC and the value of EIPSW to the PSW by the RETI instruction.

(2) NMI status saving registers (FEPC and FEPSW)

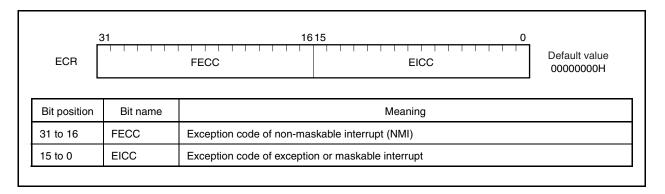
FEPC and FEPSW are used to save the status when a non-maskable interrupt (NMI) occurs.

If an NMI occurs, the contents of the program counter (PC) are saved to FEPC, and those of the program status word (PSW) are saved to FEPSW.


The address of the instruction next to the one of the instruction under execution, except some instructions, is saved to FEPC when an NMI occurs.

The current contents of the PSW are saved to FEPSW.

Because only one set of NMI status saving registers is available, the contents of these registers must be saved by program when multiple interrupts are enabled.


Bits 31 to 26 of FEPC and bits 31 to 8 of FEPSW are reserved for future function expansion (these bits are always fixed to 0).

The value of FEPC is restored to the PC and the value of FEPSW to the PSW by the RETI instruction.

(3) Interrupt source register (ECR)

The interrupt source register (ECR) holds the source of an exception or interrupt if an exception or interrupt occurs. This register holds the exception code of each interrupt source. Because this register is a read-only register, data cannot be written to this register using the LDSR instruction.

(4) Program status word (PSW)

The program status word (PSW) is a collection of flags that indicate the status of the program (result of instruction execution) and the status of the CPU.

If the contents of a bit of this register are changed by using the LDSR instruction, the new contents are validated immediately after completion of LDSR instruction execution. However if the ID flag is set to 1, interrupt requests will not be acknowledged while the LDSR instruction is being executed.

(1/2)

Bits 31 to 8 of this register are reserved for future function expansion (these bits are fixed to 0).

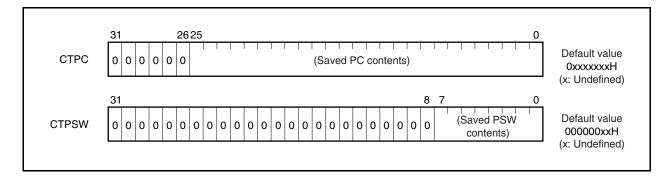
PSW		RFU NP EP ID SAT CY OV S Z Default value 00000020H
Bit position	Flag name	Meaning
31 to 8	RFU	Reserved field. Fixed to 0.
7	NP	 Indicates that a non-maskable interrupt (NMI) is being serviced. This bit is set to 1 when an NMI request is acknowledged, disabling multiple interrupts. 0: NMI is not being serviced. 1: NMI is being serviced.
6	EP	 Indicates that an exception is being processed. This bit is set to 1 when an exception occurs. Even if this bit is set, interrupt requests are acknowledged. 0: Exception is not being processed. 1: Exception is being processed.
5	ID	Indicates whether a maskable interrupt can be acknowledged. 0: Interrupt enabled 1: Interrupt disabled
4	SAT ^{Note}	Indicates that the result of a saturation operation has overflowed and is saturated. Because this is a cumulative flag, it is set to 1 when the result of a saturation operation instruction is saturated, and is not cleared to 0 even if the subsequent operation result is not saturated. Use the LDSR instruction to clear this bit. This flag is neither set to 1 nor cleared to 0 by execution of an arithmetic operation instruction. 0: Not saturated 1: Saturated
3	CY	Indicates whether a carry or a borrow occurs as a result of an operation.0: Carry or borrow does not occur.1: Carry or borrow occurs.
2	OV ^{Note}	Indicates whether an overflow occurs during operation. 0: Overflow does not occur. 1: Overflow occurs.
1	S ^{Note}	Indicates whether the result of an operation is negative. 0: The result is positive or 0. 1: The result is negative.
0	Z	Indicates whether the result of an operation is 0. 0: The result is not 0. 1: The result is 0.

(2/2)

Note The result of the operation that has performed saturation processing is determined by the contents of the OV and S flags. The SAT flag is set to 1 only when the OV flag is set to 1 when a saturation operation is performed.

Status of Operation Result		Result of Operation of		
	SAT	OV	S	Saturation Processing
Maximum positive value is exceeded	1	1	0	7FFFFFFH
Maximum negative value is exceeded	1	1	1	8000000H
Positive (maximum value is not exceeded)	Holds value	0	0	Operation result itself
Negative (maximum value is not exceeded)	before operation		1	

(5) CALLT execution status saving registers (CTPC and CTPSW)


CTPC and CTPSW are CALLT execution status saving registers.

When the CALLT instruction is executed, the contents of the program counter (PC) are saved to CTPC, and those of the program status word (PSW) are saved to CTPSW.

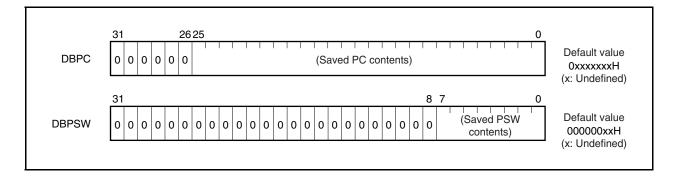
The contents saved to CTPC are the address of the instruction next to CALLT.

The current contents of the PSW are saved to CTPSW.

Bits 31 to 26 of CTPC and bits 31 to 8 of CTPSW are reserved for future function expansion (fixed to 0).

(6) Exception/debug trap status saving registers (DBPC and DBPSW)

DBPC and DBPSW are exception/debug trap status registers.


If an exception trap or debug trap occurs, the contents of the program counter (PC) are saved to DBPC, and those of the program status word (PSW) are saved to DBPSW.

The contents to be saved to DBPC are the address of the instruction next to the one that is being executed when an exception trap or debug trap occurs.

The current contents of the PSW are saved to DBPSW.

This register can be read or written only during the interval between the execution of the DBTRAP instruction or illegal opcode and the DBRET instruction.

Bits 31 to 26 of DBPC and bits 31 to 8 of DBPSW are reserved for future function expansion (fixed to 0). The value of DBPC is restored to the PC and the value of DBPSW to the PSW by the DBRET instruction.

(7) CALLT base pointer (CTBP)

The CALLT base pointer (CTBP) is used to specify a table address or generate a target address (bit 0 is fixed to 0).

Bits 31 to 26 of this register are reserved for future function expansion (fixed to 0).

СТВР	31 2625 0 0 0 0 0 (Base addre		
		(x: Undefined)	

3.3 Operation Modes

The V850ES/JG2 has the following operation modes.

(1) Normal operation mode

In this mode, each pin related to the bus interface is set to the port mode after system reset has been released. Execution branches to the reset entry address of the internal ROM, and then instruction processing is started.

(2) Flash memory programming mode

In this mode, the internal flash memory can be programmed by using a flash programmer.

(3) On-chip debug mode

The V850ES/JG2 is provided with an on-chip debug function that employs the JTAG (Joint Test Action Group) communication specifications.

For details, see CHAPTER 27 ON-CHIP DEBUG FUNCTION.

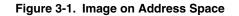
3.3.1 Specifying operation mode

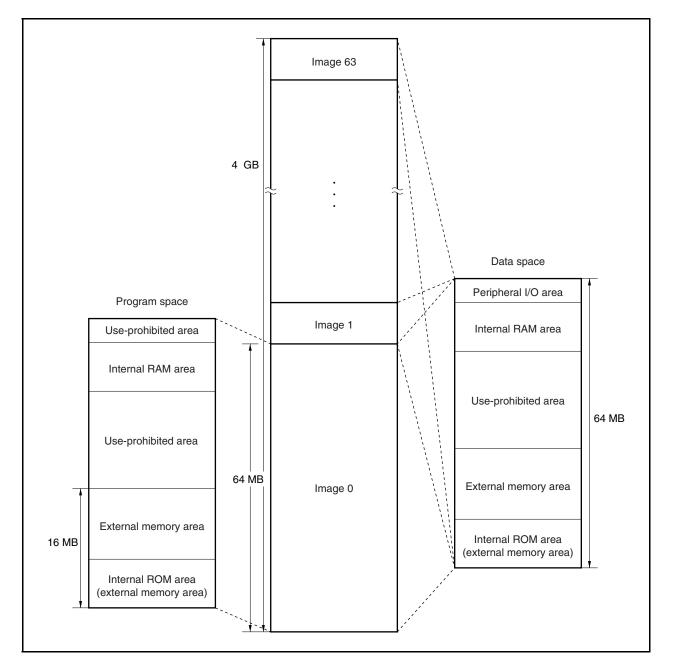
Specify the operation mode by using the FLMD0 and FLMD1 pins.

In the normal mode, make sure that a low level is input to the FLMD0 pin when reset is released.

In the flash memory programming mode, a high level is input to the FLMD0 pin from the flash programmer if a flash programmer is connected, but it must be input from an external circuit in the self-programming mode.

Operation When Reset Is Released		Operation Mode After Reset
FLMD0	FLMD1	
L	×	Normal operation mode
Н	L	Flash memory programming mode
н	Н	Setting prohibited

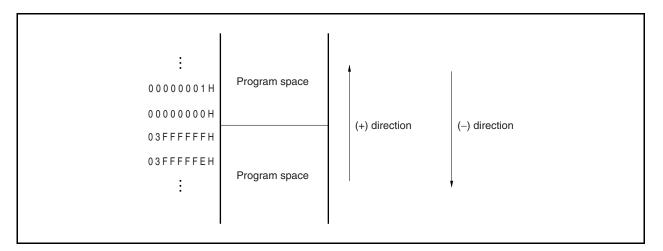

Remark L: Low-level input


- H: High-level input
- ×: Don't care

3.4 Address Space

3.4.1 CPU address space

For instruction addressing, up to a combined total of 16 MB of external memory area and internal ROM area, plus an internal RAM area, are supported in a linear address space (program space) of up to 64 MB. For operand addressing (data access), up to 4 GB of a linear address space (data space) is supported. The 4 GB address space, however, is viewed as 64 images of a 64 MB physical address space. This means that the same 64 MB physical address space is accessed regardless of the value of bits 31 to 26.


3.4.2 Wraparound of CPU address space

(1) Program space

Of the 32 bits of the PC (program counter), the higher 6 bits are fixed to 0 and only the lower 26 bits are valid. The higher 6 bits ignore a carry or borrow from bit 25 to 26 during branch address calculation.

Therefore, the highest address of the program space, 03FFFFFH, and the lowest address, 00000000H, are contiguous addresses. That the highest address and the lowest address of the program space are contiguous in this way is called wraparound.

Caution Because the 4 KB area of addresses 03FFF000H to 03FFFFFFH is an on-chip peripheral I/O area, instructions cannot be fetched from this area. Therefore, do not execute an operation in which the result of a branch address calculation affects this area.

(2) Data space

The result of an operand address calculation operation that exceeds 32 bits is ignored. Therefore, the highest address of the data space, FFFFFFFH, and the lowest address, 00000000H, are contiguous, and wraparound occurs at the boundary of these addresses.

: 00000001H	Data space	 ↓	
00000000H FFFFFFFH FFFFFFFH	F H (+) direction	(+) direction	(-) direction
:			•

3.4.3 Memory map

The areas shown below are reserved in the V850ES/JG2.

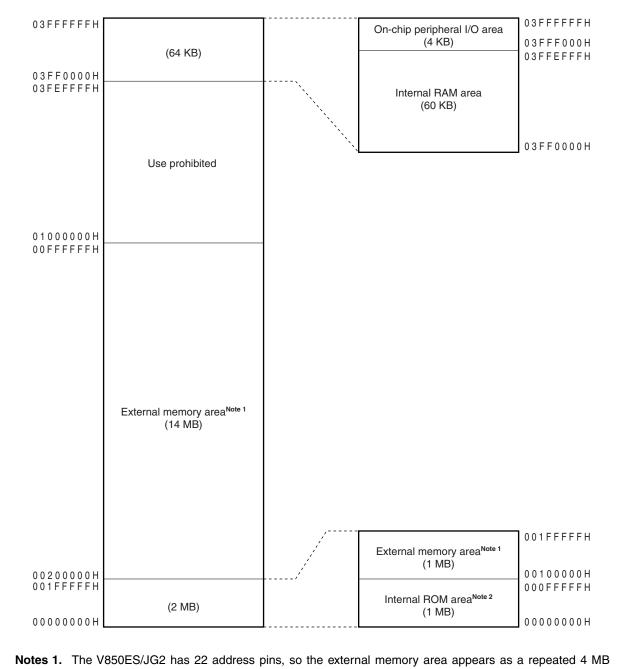


Figure 3-2. Data Memory Map (Physical Addresses)

The vocces/odz has 22 address pins, so the external memory area appears as a repeated 4 MB image.
 Fetch access and read access to addresses 00000000H to 000FFFFFH is made to the internal ROM

 Petch access and read access to addresses 00000000H to 000FFFFFH is made to the internal ROM area. However, data write access to these addresses is made to the external memory area.

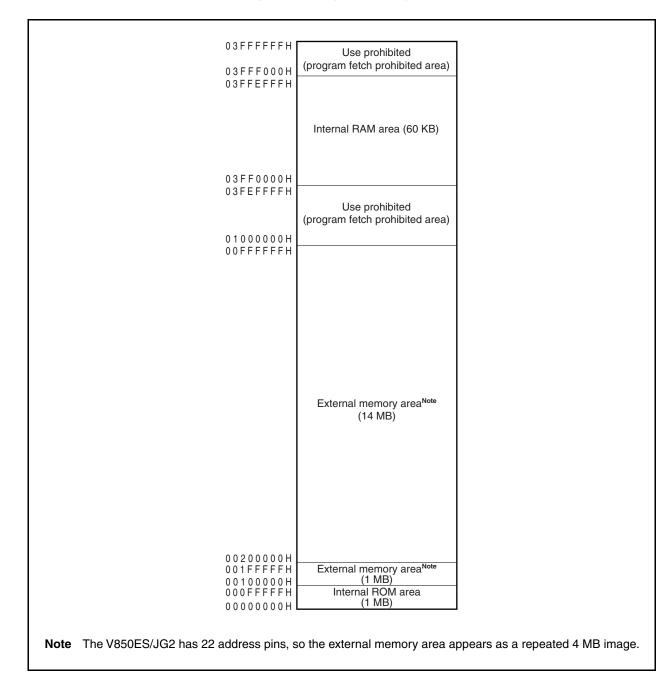


Figure 3-3. Program Memory Map

3.4.4 Areas

(1) Internal ROM area

Up to 1 MB is reserved as an internal ROM area.

(a) Internal ROM (128 KB)

128 KB are allocated to addresses 00000000H to 0001FFFFH in the μ PD70F3715. Accessing addresses 00020000H to 000FFFFFH is prohibited.

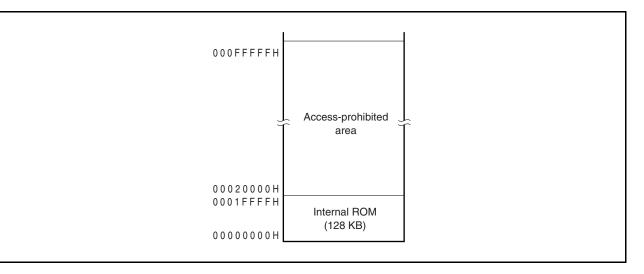
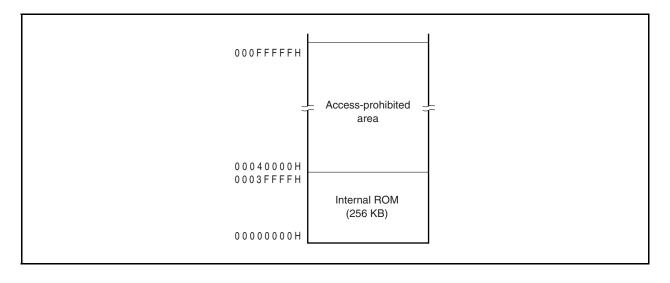



Figure 3-4. Internal ROM Area (128 KB)

(b) Internal ROM (256 KB)

256 KB are allocated to addresses 00000000H to 0003FFFFH in the μ PD70F3716. Accessing addresses 00040000H to 000FFFFFH is prohibited.

(c) Internal ROM (384 KB)

384 KB are allocated to addresses 00000000H to 0005FFFFH in the μ PD70F3717. Accessing addresses 00060000H to 000FFFFFH is prohibited.

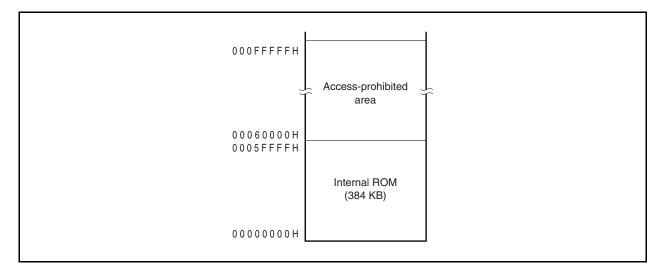
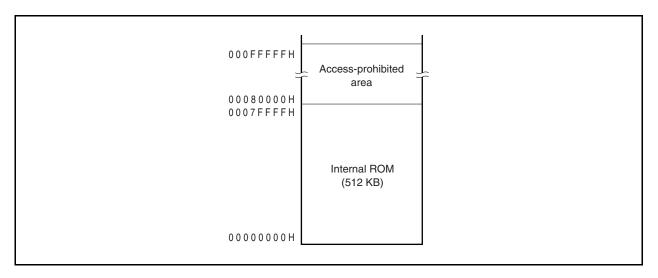
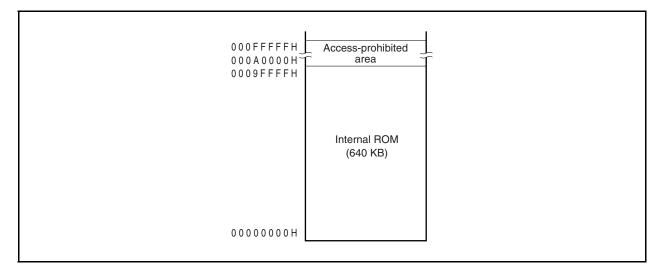



Figure 3-6. Internal ROM Area (384 KB)

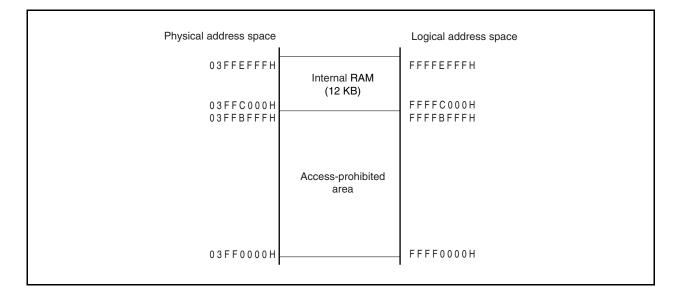
(d) Internal ROM (512 KB)


512 KB are allocated to addresses 00000000H to 0007FFFFH in the μ PD70F3718. Accessing addresses 00080000H to 000FFFFFH is prohibited.

(e) Internal ROM (640 KB)

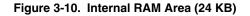
640 KB are allocated to addresses 0000000H to 0009FFFFH in the μ PD70F3719. Accessing addresses 000A000H to 000FFFFH is prohibited.

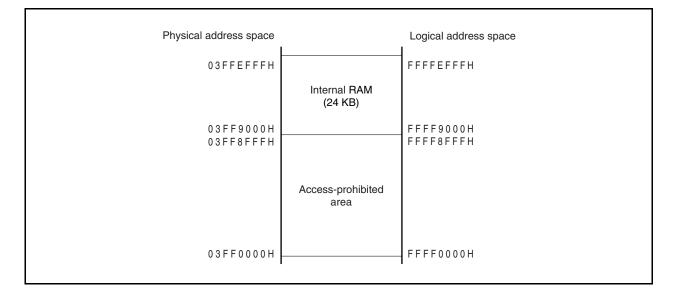
Figure 3-8. Internal ROM Area (640 KB)


(2) Internal RAM area

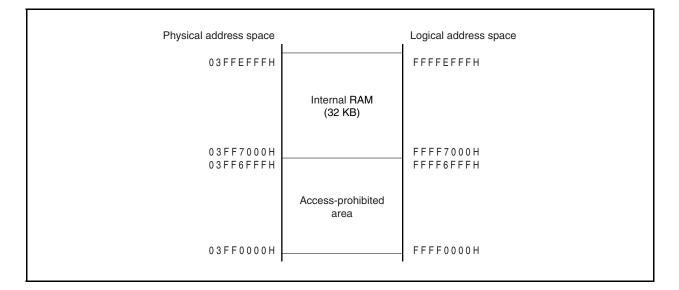
Up to 60 KB are reserved as the internal RAM area.

(a) Internal RAM (12 KB)


12 KB are allocated to addresses 03FFC000H to 03FFEFFFH of the μ PD70F3715. Accessing addresses 03FF0000H to 03FFBFFFH is prohibited.

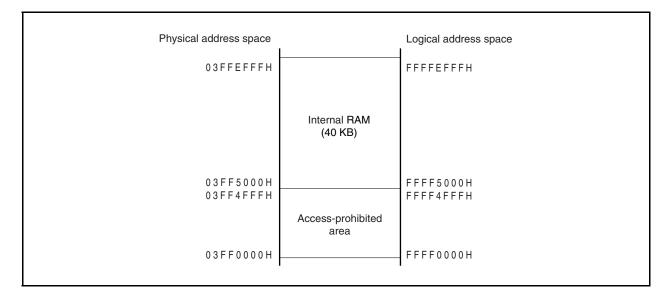

Figure 3-9. Internal RAM Area (12 KB)

(b) Internal RAM (24 KB)


24 KB are allocated to addresses 03FF9000H to 03FFEFFFH of the μ PD70F3716. Accessing addresses 03FF0000H to 03FF8FFFH is prohibited.

(c) Internal RAM (32 KB)

32 KB are allocated to addresses 03FF7000H to 03FFEFFFH of the μ PD70F3717. Accessing addresses 03FF0000H to 03FF6FFFH is prohibited.



(d) Internal RAM (40 KB)

40 KB are allocated to addresses 03FF5000H to 03FFEFFFH of the μ PD70F3718. Accessing addresses 03FF0000H to 03FF4FFFH is prohibited.

Figure 3-12. Internal RAM Area (40 KB)

(e) Internal RAM area (48 KB)

48 KB are allocated to addresses 03FF3000H to 03FFEFFFH of the μ PD70F3719. Accessing addresses 03FF0000H to 03FF2FFFH is prohibited.

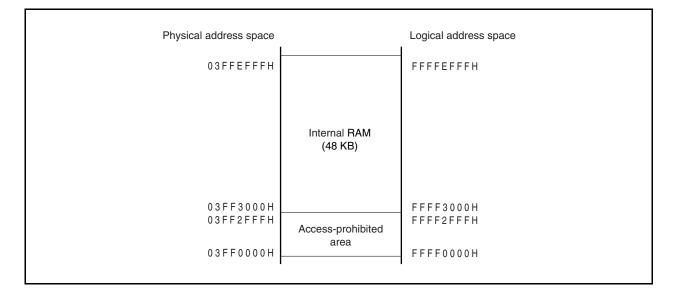
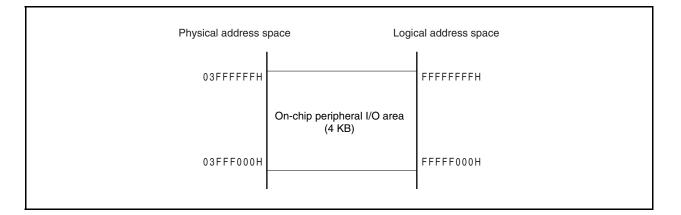



Figure 3-13. Internal RAM Area (48 KB)

(3) On-chip peripheral I/O area

4 KB of addresses 03FFF000H to 03FFFFFH are reserved as the on-chip peripheral I/O area.

Peripheral I/O registers that have functions to specify the operation mode for and monitor the status of the onchip peripheral I/O are mapped to the on-chip peripheral I/O area. Program cannot be fetched from this area.

- Cautions 1. When a register is accessed in word units, a word area is accessed twice in halfword units in the order of lower area and higher area, with the lower 2 bits of the address ignored.
 - 2. If a register that can be accessed in byte units is accessed in halfword units, the higher 8 bits are undefined when the register is read, and data is written to the lower 8 bits.
 - 3. Addresses not defined as registers are reserved for future expansion. The operation is undefined and not guaranteed when these addresses are accessed.

(4) External memory area

15 MB (00100000H to 00FFFFFFH) are allocated as the external memory area. For details, see **CHAPTER 5 BUS CONTROL FUNCTION**.

Caution The V850ES/JG2 has 22 address pins (A0 to A21), so the external memory area appears as a repeated 4 MB image. In the separate bus mode or when the A20 and A21 pins are used, it is necessary that EVDD = BVDD = VDD.

3.4.5 Recommended use of address space

The architecture of the V850ES/JG2 requires that a register that serves as a pointer be secured for address generation when operand data in the data space is accessed. The address stored in this pointer ±32 KB can be directly accessed by an instruction for operand data. Because the number of general-purpose registers that can be used as a pointer is limited, however, by keeping the performance from dropping during address calculation when a pointer value is changed, as many general-purpose registers as possible can be secured for variables, and the program size can be reduced.

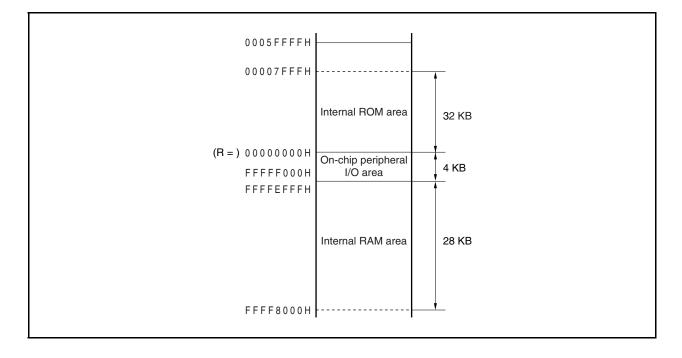
(1) Program space

Of the 32 bits of the PC (program counter), the higher 6 bits are fixed to 0, and only the lower 26 bits are valid. Regarding the program space, therefore, a 64 MB space of contiguous addresses starting from 00000000H unconditionally corresponds to the memory map.

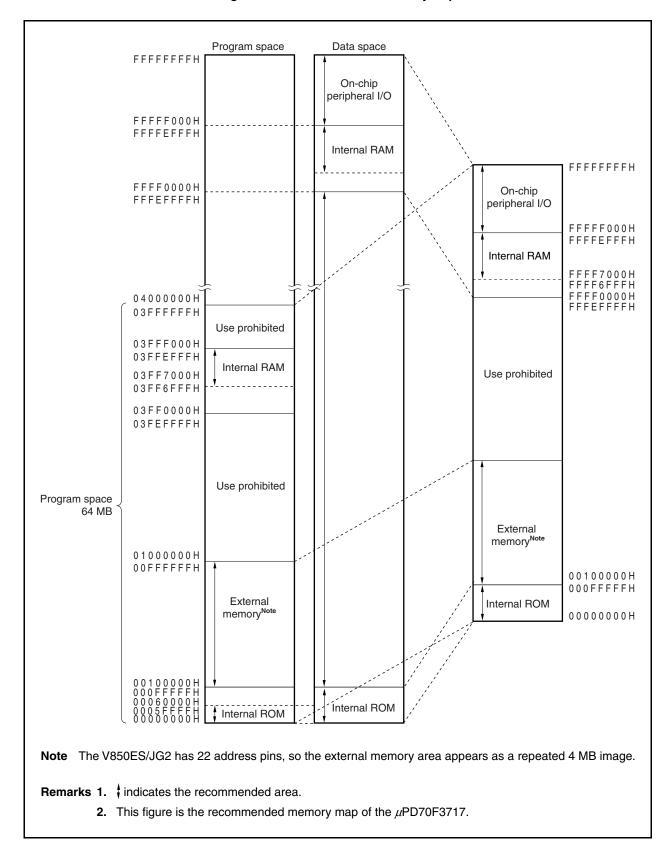
To use the internal RAM area as the program space, access the following addresses.

Caution If a branch instruction is at the upper limit of the internal RAM area, a prefetch operation (invalid fetch) straddling the on-chip peripheral I/O area does not occur.

RAM Size	Access Address
48 KB	03FF3000H to 03FFEFFH
40 KB	03FF5000H to 03FFEFFH
32 KB	03FF7000H to 03FFEFFH
24 KB	03FF9000H to 03FFEFFH
12 KB	03FFC000H to 03FFEFFFH


(2) Data space

With the V850ES/JG2, it seems that there are sixty-four 64 MB address spaces on the 4 GB CPU address space. Therefore, the least significant bit (bit 25) of a 26-bit address is sign-extended to 32 bits and allocated as an address.


(a) Application example of wraparound

If R = r0 (zero register) is specified for the LD/ST disp16 [R] instruction, a range of addresses 00000000H \pm 32 KB can be addressed by sign-extended disp16. All the resources, including the internal hardware, can be addressed by one pointer.

The zero register (r0) is a register fixed to 0 by hardware, and practically eliminates the need for registers dedicated to pointers.

Example: *µ*PD70F3717

3.4.6 Peripheral I/O registers

1 dd	Function Register Name	Ourseland I	Symbol R/W	Manipulatable Bits			(1/10 Default Value
Address	Function Register Name	Symbol	R/W	Manip 1	8	16 Bits	Default value
FFFFF004H	Port DL register	PDL	R/W	1	0	10 √	0000H ^{Note}
FFFFF004H	Port DL register L	PDL	n/ vv		V	N	0000H
FFFFF005H	Port DL register H	PDLH	-	√ √	v √		00H ^{Note}
FFFFF006H	Port DH register	PDH	-	v √	v √		00H ^{Note}
FFFFF00AH	Port CT register	PCT		V	v √		00H ^{Note}
FFFFF00CH	Port CM register	PCM		V	v √		00H ^{Note}
FFFFF024H	Port DL mode register	PMDL		v	v	V	FFFFH
FFFFF024H	Port DL mode register L	PMDLL				v	FFH
FFFFF025H	Port DL mode register H	PMDLH		V	v √		FFH
FFFFF026H	Port DH mode register	PMDEIT	-	v √	v √		FFH
FFFFF02AH		PMDT	-	√ √	v √		FFH
FFFFF02AH	Port CT mode register Port CM mode register	PMCT		v √	v √		FFH
FFFFF02CH	ő	PMCM		V	v	V	
FFFFF044H	Port DL mode control register			V	V	N	0000H
-	Port DL mode control register L	PMCDLL	-		N V		00H
FFFFF045H	Port DL mode control register H	PMCDLH	-	V			00H
FFFFF046H	Port DH mode control register	PMCDH		1			00H
FFFFF04AH	Port CT mode control register	PMCCT		1			00H
FFFFF04CH	Port CM mode control register	PMCCM			\checkmark	1	00H
FFFFF066H	Bus size configuration register	BSC	-				5555H
FFFFF06EH	System wait control register	VSWC					77H
FFFFF080H	DMA source address register 0L	DSA0L	-			V	Undefined
FFFFF082H	DMA source address register 0H	DSA0H					Undefined
FFFFF084H	DMA destination address register 0L	DDA0L					Undefined
FFFFF086H	DMA destination address register 0H	DDA0H					Undefined
FFFFF088H	DMA source address register 1L	DSA1L					Undefined
FFFF08AH	DMA source address register 1H	DSA1H				\checkmark	Undefined
FFFF08CH	DMA destination address register 1L	DDA1L				\checkmark	Undefined
FFFF68EH	DMA destination address register 1H	DDA1H				\checkmark	Undefined
FFFFF090H	DMA source address register 2L	DSA2L				\checkmark	Undefined
FFFFF092H	DMA source address register 2H	DSA2H				\checkmark	Undefined
FFFFF094H	DMA destination address register 2L	DDA2L					Undefined
FFFFF096H	DMA destination address register 2H	DDA2H				\checkmark	Undefined
FFFFF098H	DMA source address register 3L	DSA3L				\checkmark	Undefined
FFFFF09AH	DMA source address register 3H	DSA3H					Undefined
FFFFF09CH	DMA destination address register 3L	DDA3L			1		Undefined
FFFFF09EH	DMA destination address register 3H	DDA3H			1		Undefined
FFFFF0C0H	DMA transfer count register 0	DBC0					Undefined
FFFFF0C2H	DMA transfer count register 1	DBC1				√	Undefined
FFFFF0C4H	DMA transfer count register 2	DBC2			1	V	Undefined
FFFFF0C6H	DMA transfer count register 3	DBC3				V	Undefined
FFFFF0D0H	DMA addressing control register 0	DADC0				√ √	0000H

Note The output latch is 00H or 0000H. When these registers are in the input mode, the pin statuses are read.

Address	Function Register Name	Symbol	R/W	Manipulatable		le Bits	Default Value
				1	8	16	
FFFFF0D2H	DMA addressing control register 1	DADC1	R/W				0000H
FFFFF0D4H	DMA addressing control register 2	DADC2					0000H
FFFFF0D6H	DMA addressing control register 3	DADC3					0000H
FFFFF0E0H	DMA channel control register 0	DCHC0		\checkmark			00H
FFFFF0E2H	DMA channel control register 1	DCHC1		\checkmark	\checkmark		00H
FFFFF0E4H	DMA channel control register 2	DCHC2		\checkmark			00H
FFFFF0E6H	DMA channel control register 3	DCHC3		\checkmark			00H
FFFFF100H	Interrupt mask register 0	IMR0				\checkmark	FFFFH
FFFFF100H	Interrupt mask register 0L	IMROL		\checkmark			FFH
FFFFF101H	Interrupt mask register 0H	IMR0H		\checkmark			FFH
FFFFF102H	Interrupt mask register 1	IMR1					FFFFH
FFFFF102H	Interrupt mask register 1L	IMR1L					FFH
FFFFF103H	Interrupt mask register 1H	IMR1H		\checkmark			FFH
FFFFF104H	Interrupt mask register 2	IMR2		-			FFFFH
FFFFF104H	Interrupt mask register 2L	IMR2L		\checkmark			FFH
FFFFF105H	Interrupt mask register 2H	IMR2H		\checkmark			FFH
FFFFF106H	Interrupt mask register 3	IMR3					FFFFH
FFFFF106H	Interrupt mask register 3L	IMR3L		\checkmark			FFH
FFFFF107H	Interrupt mask register 3H	IMR3H		\checkmark			FFH
FFFFF110H	Interrupt control register	LVIIC		\checkmark			47H
FFFFF112H	Interrupt control register	PIC0		\checkmark			47H
FFFFF114H	Interrupt control register	PIC1		\checkmark			47H
FFFFF116H	Interrupt control register	PIC2		\checkmark			47H
FFFFF118H	Interrupt control register	PIC3		\checkmark			47H
FFFFF11AH	Interrupt control register	PIC4		\checkmark			47H
FFFFF11CH	Interrupt control register	PIC5		\checkmark			47H
FFFFF11EH	Interrupt control register	PIC6		\checkmark			47H
FFFFF120H	Interrupt control register	PIC7		\checkmark			47H
FFFFF122H	Interrupt control register	TQ0OVIC		\checkmark			47H
FFFFF124H	Interrupt control register	TQ0CCIC0					47H
FFFFF126H	Interrupt control register	TQ0CCIC1					47H
FFFFF128H	Interrupt control register	TQ0CCIC2					47H
FFFFF12AH	Interrupt control register	TQ0CCIC3					47H
FFFFF12CH	Interrupt control register	TP0OVIC					47H
FFFFF12EH	Interrupt control register	TPOCCICO					47H
FFFFF130H	Interrupt control register	TP0CCIC1					47H
FFFFF132H	Interrupt control register	TP10VIC					47H
FFFFF134H	Interrupt control register	TP1CCIC0	1				47H
FFFFF136H	Interrupt control register	TP1CCIC1		1	√		47H
FFFFF138H	Interrupt control register	TP2OVIC					47H
FFFFF13AH	Interrupt control register	TP2CCIC0	1				47H
FFFFF13CH	Interrupt control register	TP2CCIC1	1	1	√		47H
FFFFF13EH	Interrupt control register	TP3OVIC	1				47H

(3/1	0)
(ປ/ 1	U)

Address	Function Register Name	Symbol	R/W	Manipulatable Bits			(3/10 Default Value
				1	8	16	
FFFFF140H	Interrupt control register	TP3CCIC0	R/W				47H
FFFFF142H	Interrupt control register	TP3CCIC1		\checkmark			47H
FFFFF144H	Interrupt control register	TP40VIC		\checkmark			47H
FFFFF146H	Interrupt control register	TP4CCIC0					47H
FFFFF148H	Interrupt control register	TP4CCIC1					47H
FFFFF14AH	Interrupt control register	TP5OVIC		\checkmark			47H
FFFFF14CH	Interrupt control register	TP5CCIC0		\checkmark			47H
FFFFF14EH	Interrupt control register	TP5CCIC1		\checkmark	\checkmark		47H
FFFFF150H	Interrupt control register	TM0EQIC0		\checkmark	\checkmark		47H
FFFFF152H	Interrupt control register	CB0RIC/IICIC1		\checkmark	\checkmark		47H
FFFFF154H	Interrupt control register	CB0TIC		\checkmark			47H
FFFFF156H	Interrupt control register	CB1RIC		\checkmark			47H
FFFFF158H	Interrupt control register	CB1TIC					47H
FFFFF15AH	Interrupt control register	CB2RIC		\checkmark			47H
FFFFF15CH	Interrupt control register	CB2TIC		\checkmark			47H
FFFFF15EH	Interrupt control register	CB3RIC		\checkmark	\checkmark		47H
FFFFF160H	Interrupt control register	CB3TIC		\checkmark	\checkmark		47H
FFFFF162H	Interrupt control register	UA0RIC/CB4RIC		\checkmark	\checkmark		47H
FFFFF164H	Interrupt control register	UA0TIC/CB4TIC		\checkmark	\checkmark		47H
FFFFF166H	Interrupt control register	UA1RIC/IICIC2		\checkmark			47H
FFFFF168H	Interrupt control register	UA1TIC		\checkmark			47H
FFFFF16AH	Interrupt control register	UA2RIC/IICIC0		\checkmark	\checkmark		47H
FFFFF16CH	Interrupt control register	UA2TIC		\checkmark			47H
FFFFF16EH	Interrupt control register	ADIC		\checkmark	\checkmark		47H
FFFFF170H	Interrupt control register	DMAIC0		\checkmark	\checkmark		47H
FFFFF172H	Interrupt control register	DMAIC1		\checkmark	\checkmark		47H
FFFFF174H	Interrupt control register	DMAIC2		\checkmark	\checkmark		47H
FFFFF176H	Interrupt control register	DMAIC3		\checkmark	\checkmark		47H
FFFFF178H	Interrupt control register	KRIC		\checkmark	\checkmark		47H
FFFFF17AH	Interrupt control register	WTIIC		\checkmark	\checkmark		47H
FFFFF17CH	Interrupt control register	WTIC		\checkmark	\checkmark		47H
FFFFF1FAH	In-service priority register	ISPR	R	\checkmark	\checkmark		00H
FFFFF1FCH	Command register	PRCMD	W		\checkmark		Undefined
FFFFF1FEH	Power save control register	PSC	R/W	\checkmark	\checkmark		00H
FFFFF200H	A/D converter mode register 0	ADA0M0		\checkmark	\checkmark		00H
FFFFF201H	A/D converter mode register 1	ADA0M1		\checkmark	\checkmark		00H
FFFFF202H	A/D converter channel specification register	ADA0S		\checkmark	\checkmark		00H
FFFFF203H	A/D converter mode register 2	ADA0M2		\checkmark	\checkmark		00H
FFFFF204H	Power-fail compare mode register	ADA0PFM		\checkmark	\checkmark		00H
FFFFF205H	Power-fail compare threshold value register	ADA0PFT		\checkmark	\checkmark		00H
FFFFF210H	A/D conversion result register 0	ADA0CR0	R			\checkmark	Undefined
FFFFF211H	A/D conversion result register 0H	ADA0CR0H			\checkmark		Undefined
FFFFF212H	A/D conversion result register 1	ADA0CR1				\checkmark	Undefined
FFFFF213H	A/D conversion result register 1H	ADA0CR1H					Undefined

Address	Function Register Name	Symbol	R/W	Manip	oulatab	le Bits	Default Value
				1	8	16	
FFFFF214H	A/D conversion result register 2	ADA0CR2	R			\checkmark	Undefined
FFFFF215H	A/D conversion result register 2H	ADA0CR2H					Undefined
FFFFF216H	A/D conversion result register 3	ADA0CR3				\checkmark	Undefined
FFFFF217H	A/D conversion result register 3H	ADA0CR3H			\checkmark		Undefined
FFFFF218H	A/D conversion result register 4	ADA0CR4				\checkmark	Undefined
FFFFF219H	A/D conversion result register 4H	ADA0CR4H			\checkmark		Undefined
FFFFF21AH	A/D conversion result register 5	ADA0CR5				\checkmark	Undefined
FFFFF21BH	A/D conversion result register 5H	ADA0CR5H			\checkmark		Undefined
FFFFF21CH	A/D conversion result register 6	ADA0CR6				\checkmark	Undefined
FFFFF21DH	A/D conversion result register 6H	ADA0CR6H			\checkmark		Undefined
FFFFF21EH	A/D conversion result register 7	ADA0CR7				\checkmark	Undefined
FFFFF21FH	A/D conversion result register 7H	ADA0CR7H			\checkmark		Undefined
FFFFF220H	A/D conversion result register 8	ADA0CR8				\checkmark	Undefined
FFFFF221H	A/D conversion result register 8H	ADA0CR8H			\checkmark		Undefined
FFFFF222H	A/D conversion result register 9	ADA0CR9				\checkmark	Undefined
FFFFF223H	A/D conversion result register 9H	ADA0CR9H			\checkmark		Undefined
FFFFF224H	A/D conversion result register 10	ADA0CR10				\checkmark	Undefined
FFFFF225H	A/D conversion result register 10H	ADA0CR10H			\checkmark		Undefined
FFFFF226H	A/D conversion result register 11	ADA0CR11				\checkmark	Undefined
FFFFF227H	A/D conversion result register 11H	ADA0CR11H			\checkmark		Undefined
FFFFF280H	D/A conversion value setting register 0	DA0CS0	R/W		\checkmark		00H
FFFFF281H	D/A conversion value setting register 1	DA0CS1			\checkmark		00H
FFFFF282H	D/A converter mode register	DA0M		\checkmark	\checkmark		00H
FFFFF300H	Key return mode register	KRM		\checkmark	\checkmark		00H
FFFFF308H	Selector operation control register 0	SELCNT0		\checkmark	\checkmark		00H
FFFFF318H	Noise elimination control register	NFC			\checkmark		00H
FFFFF320H	Prescaler mode register 1	PRSM1		\checkmark	\checkmark		00H
FFFFF321H	Prescaler compare register 1	PRSCM1			\checkmark		00H
FFFFF324H	Prescaler mode register 2	PRSM2		\checkmark	\checkmark		00H
FFFFF325H	Prescaler compare register 2	PRSCM2			\checkmark		00H
FFFFF328H	Prescaler mode register 3	PRSM3		\checkmark	\checkmark		00H
FFFFF329H	Prescaler compare register 3	PRSCM3			\checkmark		00H
FFFFF340H	IIC division clock select register	OCKS0			\checkmark		00H
FFFFF344H	IIC division clock select register	OCKS1			\checkmark		00H
FFFFF400H	Port 0 register	P0		\checkmark	\checkmark		00H ^{Note}
FFFFF402H	Port 1 register	P1		\checkmark	\checkmark		00H ^{Note}
FFFFF406H	Port 3 register	P3				\checkmark	0000H ^{Note}
FFFFF406H	Port 3 register L	P3L		\checkmark	\checkmark		00H ^{Note}
FFFFF407H	Port 3 register H	РЗН		\checkmark	\checkmark		00H ^{Note}
FFFFF408H	Port 4 register	P4		\checkmark	\checkmark		00H ^{Note}
FFFFF40AH	Port 5 register	P5	7	\checkmark	\checkmark		00H ^{Note}
FFFFF40EH	Port 7 register L	P7L		\checkmark	\checkmark		00H ^{Note}
FFFFF40FH	Port 7 register H	P7H					00H ^{Note}

Note The output latch is 00H or 0000H. When these registers are input, the pin statuses are read.

(5	/1	0)

Address	Function Register Name	Symbol	R/W	Manip	Manipulatab		Default Value
				1	1 8		
FFFFF412H	Port 9 register	P9	R/W			\checkmark	0000H ^{Note}
FFFFF412H	Port 9 register L	P9L		\checkmark	\checkmark		00H ^{Note}
FFFFF413H	Port 9 register H P9H		\checkmark	\checkmark		00H ^{Note}	
FFFFF420H	Port 0 mode register	PM0		\checkmark	\checkmark		FFH
FFFFF422H	Port 1 mode register	PM1		\checkmark	\checkmark		FFH
FFFFF426H	Port 3 mode register	PM3				\checkmark	FFFFH
FFFFF426H	Port 3 mode register L	PM3L		\checkmark	\checkmark		FFH
FFFFF427H	Port 3 mode register H	РМЗН		\checkmark	\checkmark		FFH
FFFFF428H	Port 4 mode register	PM4		\checkmark	\checkmark		FFH
FFFFF42AH	Port 5 mode register	PM5		\checkmark	\checkmark		FFH
FFFFF42EH	Port 7 mode register L	PM7L		\checkmark	\checkmark		FFH
FFFFF42FH	Port 7 mode register H	PM7H		\checkmark	\checkmark		FFH
FFFFF432H	Port 9 mode register	PM9				\checkmark	FFFFH
FFFFF432H	Port 9 mode register L	PM9L		\checkmark	\checkmark		FFH
FFFFF433H	Port 9 mode register H	PM9H		\checkmark	\checkmark		FFH
FFFFF440H	Port 0 mode control register	PMC0			\checkmark		00H
FFFFF446H	Port 3 mode control register	PMC3				\checkmark	0000H
FFFFF446H	Port 3 mode control register L	PMC3L					00H
FFFFF447H	Port 3 mode control register H	РМСЗН		\checkmark	\checkmark		00H
FFFFF448H	Port 4 mode control register	PMC4		\checkmark	\checkmark		00H
FFFFF44AH	Port 5 mode control register	PMC5		\checkmark	\checkmark		00H
FFFFF452H	Port 9 mode control register	PMC9					0000H
FFFFF452H	Port 9 mode control register L	PMC9L			\checkmark		00H
FFFFF453H	Port 9 mode control register H	PMC9H		\checkmark	\checkmark		00H
FFFFF460H	Port 0 function control register	PFC0		\checkmark	\checkmark		00H
FFFFF466H	Port 3 function control register	PFC3					0000H
FFFFF466H	Port 3 function control register L	PFC3L			\checkmark		00H
FFFFF467H	Port 3 function control register H	PFC3H		\checkmark	\checkmark		00H
FFFFF468H	Port 4 function control register	PFC4		\checkmark	\checkmark		00H
FFFFF46AH	Port 5 function control register	PFC5					00H
FFFFF472H	Port 9 function control register	PFC9					0000H
FFFFF472H	Port 9 function control register L	PFC9L		\checkmark	\checkmark		00H
FFFFF473H	Port 9 function control register H	PFC9H		\checkmark	\checkmark		00H
FFFFF484H	Data wait control register 0	DWC0	1			\checkmark	7777H
FFFFF488H	Address wait control register	AWC	7			\checkmark	FFFFH
FFFFF48AH	Bus cycle control register	BCC	1				ААААН
FFFFF540H	TMQ0 control register 0	TQ0CTL0		\checkmark	\checkmark		00H
FFFFF541H	TMQ0 control register 1	TQ0CTL1		\checkmark	\checkmark		00H
FFFFF542H	Ŭ			\checkmark	\checkmark	1	00H
FFFFF543H	TMQ0 I/O control register 1	TQ0IOC0 TQ0IOC1	1		\checkmark	İ	00H
FFFFF544H	TMQ0 I/O control register 2	TQ0IOC2				l	00H

Note The output latch is 00H or 0000H. When these registers are input, the pin statuses are read.

Address	Function Register Name	Symbol	R/W	Manij	pulatab	Default Value	
				1	8	16	
FFFFF545H	TMQ0 option register 0	TQ0OPT0	R/W	\checkmark	\checkmark		00H
FFFFF546H	TMQ0 capture/compare register 0	TQ0CCR0				\checkmark	0000H
FFFFF548H	TMQ0 capture/compare register 1	TQ0CCR1				\checkmark	0000H
FFFFF54AH	TMQ0 capture/compare register 2	TQ0CCR2	7			\checkmark	0000H
FFFFF54CH	TMQ0 capture/compare register 3	TQ0CCR3	1			\checkmark	0000H
FFFFF54EH	TMQ0 counter read buffer register	TQ0CNT	R			\checkmark	0000H
FFFFF590H	TMP0 control register 0	TP0CTL0	R/W				00H
FFFFF591H	TMP0 control register 1	TP0CTL1					00H
FFFFF592H	TMP0 I/O control register 0	TP0IOC0					00H
FFFFF593H	TMP0 I/O control register 1	TP0IOC1					00H
FFFFF594H	TMP0 I/O control register 2	TP0IOC2					00H
FFFFF595H	TMP0 option register 0	TP0OPT0					00H
FFFFF596H	TMP0 capture/compare register 0	TP0CCR0	1				0000H
FFFFF598H	TMP0 capture/compare register 1	TP0CCR1	1				0000H
FFFFF59AH	TMP0 counter read buffer register	TPOCNT	R	1	1	√	0000H
FFFFF5A0H	TMP1 control register 0	TP1CTL0	R/W				00H
FFFFF5A1H	TMP1 control register 1	TP1CTL1	-	√	V		00H
FFFFF5A2H	TMP1 I/O control register 0	TP1IOC0		√	√		00H
FFFFF5A3H	TMP1 I/O control register 1	TP1IOC1	-		√ \		00H
FFFFF5A4H	TMP1 I/O control register 2	TP1IOC2	_	1	1		00H
FFFFF5A5H	TMP1 option register 0	TP1OPT0	-		√		00H
FFFFF5A6H	TMP1 capture/compare register 0	TP1CCR0	_	v	, v		0000H
FFFFF5A8H	TMP1 capture/compare register 1	TP1CCR1	_			√	0000H
FFFFF5AAH	TMP1 counter read buffer register	TP1CNT	R			√	0000H
FFFFF5B0H	TMP2 control register 0	TP2CTL0	R/W			v	00H
FFFFF5B1H	TMP2 control register 1	TP2CTL1			√		00H
FFFFF5B2H	TMP2 I/O control register 0	TP2IOC0	-	1	√ \		00H
FFFF5B3H	TMP2 I/O control register 1	TP2IOC1	-	1	v √		00H
FFFFF5B4H	TMP2 I/O control register 2	TP2IOC2	_	V	√		00H
FFFF5B5H	TMP2 option register 0	TP2OPT0	-	V	v √		00H
FFFFF5B6H	TMP2 capture/compare register 0	TP2CCR0	-				0000H
FFFFF5B8H	TMP2 capture/compare register 0	TP2CCR1	_			V	0000H
FFFF5BAH	TMP2 counter read buffer register	TP2CONT	R			V	0000H
FFFF5C0H	TMP3 control register 0	TP3CTL0	R/W			v	000011 00H
FFFFF5C1H	TMP3 control register 1	TP3CTL1		V	√		00H
FFFF5C2H	TMP3 I/O control register 0	TP3IOC0	-	V	v √		00H
FFFFF5C2H	TMP3 I/O control register 0	TP3IOC0	-	V	 √		00H
FFFFF5C3H	TMP3 I/O control register 1 TMP3 I/O control register 2	TP3IOC1 TP3IOC2	-	√ √	N √		00H 00H
			-	√ √	N √		
FFFFF5C5H	TMP3 option register 0	TP3OPT0	-	N	N	al	00H
FFFFF5C6H	TMP3 capture/compare register 0	TP3CCR0	-			V	0000H
FFFFF5C8H	TMP3 capture/compare register 1	TP3CCR1				V	0000H
FFFFF5CAH FFFFF5D0H	TMP3 counter read buffer register	TP3CNT	R				0000H
FFFFF5DUH	TMP4 control register 0	TP4CTL0	R/W				00H

Address	Function Register Name	Symbol	R/W	Manip	ulatable Bits		Default Value
				1	8	16	
FFFF5D2H	TMP4 I/O control register 0	TP4IOC0	R/W	\checkmark	\checkmark		00H
FFFF5D3H	TMP4 I/O control register 1	TP4IOC1		\checkmark	\checkmark		00H
FFFF5D4H	TMP4 I/O control register 2	TP4IOC2		\checkmark	\checkmark		00H
FFFFF5D5H	TMP4 option register 0	TP4OPT0		\checkmark	\checkmark		00H
FFFFF5D6H	TMP4 capture/compare register 0	TP4CCR0				\checkmark	0000H
FFFF5D8H	TMP4 capture/compare register 1	TP4CCR1				\checkmark	0000H
FFFF5DAH	TMP4 counter read buffer register	TP4CNT	R			\checkmark	0000H
FFFFF5E0H	TMP5 control register 0	TP5CTL0	R/W	\checkmark	\checkmark		00H
FFFFF5E1H	TMP5 control register 1	TP5CTL1		\checkmark	\checkmark		00H
FFFF5E2H	TMP5 I/O control register 0	TP5IOC0		\checkmark	\checkmark		00H
FFFFF5E3H	TMP5 I/O control register 1	TP5IOC1		\checkmark	\checkmark		00H
FFFF5E4H	TMP5 I/O control register 2	TP5IOC2		\checkmark	\checkmark		00H
FFFF5E5H	TMP5 option register 0	TP5OPT0		\checkmark	\checkmark		00H
FFFF5E6H	TMP5 capture/compare register 0	TP5CCR0				\checkmark	0000H
FFFF5E8H	TMP5 capture/compare register 1	TP5CCR1					0000H
FFFF5EAH	TMP5 counter read buffer register	TP5CNT	R			\checkmark	0000H
FFFFF680H	Watch timer operation mode register	WTM	R/W	\checkmark	\checkmark		00H
FFFFF690H	TMM0 control register 0	TMOCTLO		\checkmark	\checkmark		00H
FFFFF694H	TMM0 compare register 0	TM0CMP0				\checkmark	0000H
FFFF6C0H	Oscillation stabilization time select register	OSTS			\checkmark		06H
FFFFF6C1H	PLL lockup time specification register	PLLS			\checkmark		03H
FFFF6D0H	Watchdog timer mode register 2	WDTM2			\checkmark		67H
FFFF6D1H	Watchdog timer enable register	WDTE			\checkmark		9AH
FFFF6E0H	Real-time output buffer register 0L	RTBL0		\checkmark	\checkmark		00H
FFFF6E2H	Real-time output buffer register 0H	RTBH0		\checkmark	\checkmark		00H
FFFF6E4H	Real-time output port mode register 0	RTPM0		\checkmark	\checkmark		00H
FFFFF6E5H	Real-time output port control register 0	RTPC0		\checkmark	\checkmark		00H
FFFFF706H	Port 3 function control expansion register L	PFCE3L		\checkmark	\checkmark		00H
FFFFF70AH	Port 5 function control expansion register	PFCE5		\checkmark	\checkmark		00H
FFFFF712H	Port 9 function control expansion register	PFCE9					0000H
FFFFF712H	Port 9 function control expansion register L	PFCE9L		\checkmark	\checkmark		00H
FFFFF713H	Port 9 function control expansion register H	PFCE9H		\checkmark			00H
FFFFF802H	System status register	SYS		\checkmark	\checkmark		00H
FFFFF80CH	Internal oscillation mode register	RCM		\checkmark	\checkmark		00H
FFFFF810H	DMA trigger factor register 0	DTFR0		\checkmark			00H
FFFFF812H	DMA trigger factor register 1	DTFR1		\checkmark			00H
FFFFF814H	DMA trigger factor register 2	DTFR2		\checkmark	\checkmark	1	00H
FFFFF816H	DMA trigger factor register 3	DTFR3	1	\checkmark	\checkmark		00H
FFFFF820H	Power save mode register	PSMR	1	\checkmark	\checkmark	1	00H
FFFFF822H	Clock control register	СКС		\checkmark	\checkmark		0AH
FFFFF824H	Lock register	LOCKR	R	\checkmark	\checkmark	1	00H
FFFFF828H	Processor clock control register	PCC	R/W	\checkmark	\checkmark	1	03H
	PLL control register	PLLCTL	1	\checkmark			01H

Address	Function Register Name	Symbol	R/W	Manip	oulatab	le Bits	Default Value
				1	8	16	
FFFFF82EH	CPU operation clock status register	CCLS	R	\checkmark			00H
FFFFF870H	Clock monitor mode register	CLM	R/W				00H
FFFFF888H	Reset source flag register	RESF		\checkmark			00H
FFFFF890H	Low-voltage detection register	LVIM					00H
FFFFF891H	Low-voltage detection level select register	LVIS					00H
FFFFF892H	Internal RAM data status register	RAMS					01H
FFFFF8B0H	Prescaler mode register 0	PRSM0					00H
FFFFF8B1H	Prescaler compare register 0	PRSCM0					00H
FFFFF9FCH	On-chip debug mode register	OCDM		\checkmark			01H
FFFFF9FEH	Peripheral emulation register 1	PEMU1 ^{Note}		\checkmark			00H
FFFFFA00H	UARTA0 control register 0	UA0CTL0		\checkmark	\checkmark		10H
FFFFFA01H	UARTA0 control register 1	UA0CTL1			\checkmark		00H
FFFFFA02H	UARTA0 control register 2	UA0CTL2					FFH
FFFFFA03H	UARTA0 option control register 0	UA0OPT0					14H
FFFFFA04H	UARTA0 status register	UA0STR					00H
FFFFFA06H	UARTA0 receive data register	UA0RX	R				FFH
FFFFFA07H	UARTA0 transmit data register	UA0TX	R/W				FFH
FFFFFA10H	UARTA1 control register 0	UA1CTL0					10H
FFFFFA11H	UARTA1 control register 1	UA1CTL1					00H
FFFFFA12H	UARTA1 control register 2	UA1CTL2					FFH
FFFFFA13H	UARTA1 option control register 0	UA1OPT0					14H
FFFFFA14H	UARTA1 status register	UA1STR		\checkmark			00H
FFFFFA16H	UARTA1 receive data register	UA1RX	R				FFH
FFFFFA17H	UARTA1 transmit data register	UA1TX	R/W		\checkmark		FFH
FFFFFA20H	UARTA2 control register 0	UA2CTL0	ĺ	\checkmark			10H
FFFFFA21H	UARTA2 control register 1	UA2CTL1	1				00H
FFFFFA22H	UARTA2 control register 2	UA2CTL2	1				FFH
FFFFFA23H	UARTA2 option control register 0	UA2OPT0	1				14H
FFFFFA24H	UARTA2 status register	UA2STR	1				00H
FFFFFA26H	UARTA2 receive data register	UA2RX	R				FFH
FFFFFA27H	UARTA2 transmit data register	UA2TX	R/W				FFH
FFFFFC00H	External interrupt falling edge specification register 0	INTF0		\checkmark			00H
FFFFFC06H	External interrupt falling edge specification register 3	INTF3		\checkmark			00H
FFFFFC13H	External interrupt falling edge specification register 9H	INTF9H		\checkmark	\checkmark		00H
FFFFFC20H	External interrupt rising edge specification register 0	INTR0		\checkmark			00H
FFFFFC26H	External interrupt rising edge specification register 3	INTR3		\checkmark	\checkmark		00H
FFFFFC33H	External interrupt rising edge specification register 9H	INTR9H		\checkmark			00H
FFFFFC60H	Port 0 function register	PF0]	\checkmark	\checkmark		00H
FFFFFC66H	Port 3 function register	PF3]			\checkmark	0000H
FFFFFC66H	Port 3 function register L	PF3L	1	\checkmark	\checkmark		00H
FFFFFC67H	Port 3 function register H	PF3H	1	\checkmark	\checkmark		00H
FFFFC68H	Port 4 function register	PF4	1				00H

Note Only during emulation

Address	Function Register Name	Symbol	R/W	Manip	oulatab	le Bits	Default Value	
				1	8	16		
FFFFFC6AH	Port 5 function register	PF5	R/W	\checkmark			00H	
FFFFFC72H	Port 9 function register	PF9					0000H	
FFFFFC72H	Port 9 function register L	PF9L		\checkmark	\checkmark		00H	
FFFFFC73H	Port 9 function register H	PF9H		\checkmark	\checkmark		00H	
FFFFFD00H	CSIB0 control register 0	CB0CTL0		\checkmark	\checkmark		01H	
FFFFFD01H	CSIB0 control register 1	CB0CTL1		\checkmark	\checkmark		00H	
FFFFFD02H	CSIB0 control register 2	CB0CTL2			\checkmark		00H	
FFFFFD03H	CSIB0 status register	CB0STR		\checkmark	\checkmark		00H	
FFFFFD04H	CSIB0 receive data register	CB0RX	R			\checkmark	0000H	
FFFFFD04H	CSIB0 receive data register L	CB0RXL			\checkmark		00H	
FFFFFD06H	CSIB0 transmit data register	CB0TX	R/W			\checkmark	0000H	
FFFFFD06H	CSIB0 transmit data register L	CB0TXL			\checkmark		00H	
FFFFFD10H	CSIB1 control register 0	CB1CTL0		\checkmark	\checkmark		01H	
FFFFFD11H	CSIB1 control register 1	CB1CTL1		\checkmark	\checkmark		00H	
FFFFFD12H	CSIB1 control register 2	CB1CTL2			\checkmark		00H	
FFFFFD13H	CSIB1 status register	CB1STR		\checkmark	\checkmark		00H	
FFFFFD14H	CSIB1 receive data register	CB1RX	R				0000H	
FFFFFD14H	CSIB1 receive data register L	CB1RXL					00H	
FFFFFD16H	CSIB1 transmit data register	CB1TX	R/W				0000H	
FFFFFD16H	CSIB1 transmit data register L	CB1TXL					00H	
FFFFFD20H	CSIB2 control register 0	CB2CTL0		\checkmark			01H	
FFFFFD21H	CSIB2 control register 1	CB2CTL1		\checkmark			00H	
FFFFFD22H	CSIB2 control register 2	CB2CTL2					00H	
FFFFFD23H	CSIB2 status register	CB2STR		\checkmark			00H	
FFFFFD24H	CSIB2 receive data register	CB2RX	R			\checkmark	0000H	
FFFFFD24H	CSIB2 receive data register L	CB2RXL					00H	
FFFFFD26H	CSIB2 transmit data register	CB2TX	R/W				0000H	
FFFFFD26H	CSIB2 transmit data register L	CB2TXL			\checkmark		00H	
FFFFFD30H	CSIB3 control register 0	CB3CTL0		\checkmark			01H	
FFFFFD31H	CSIB3 control register 1	CB3CTL1		\checkmark	\checkmark		00H	
FFFFFD32H	CSIB3 control register 2	CB3CTL2			\checkmark		00H	
FFFFFD33H	CSIB3 status register	CB3STR		\checkmark	\checkmark		00H	
FFFFFD34H	CSIB3 receive data register	CB3RX	R				0000H	
FFFFD34H	CSIB3 receive data register L	CB3RXL			\checkmark		00H	
FFFFD36H	CSIB3 transmit data register	CB3TX	R/W				0000H	
FFFFFD36H	CSIB3 transmit data register L	CB3TXL	1				00H	
FFFFD40H	CSIB4 control register 0	CB4CTL0		\checkmark	\checkmark		01H	
FFFFFD41H	CSIB4 control register 1	CB4CTL1		\checkmark	\checkmark		00H	
FFFFD42H	CSIB4 control register 2	CB4CTL2	1				00H	
FFFFFD43H	CSIB4 status register	CB4STR		\checkmark			00H	
FFFFFD44H	CSIB4 receive data register	CB4RX	R				0000H	
FFFFFD44H	5		1	<u> </u>			00H	

							(10/10)
Address	Function Register Name	Symbol	R/W	Manip	oulatab	Default Value	
				1	8	16	
FFFFFD46H	CSIB4 transmit data register	CB4TX	R/W			\checkmark	0000H
FFFFFD46H	CSIB4 transmit data register L	CB4TXL			\checkmark		00H
FFFFFD80H	IIC shift register 0	IIC0			\checkmark		00H
FFFFFD82H	IIC control register 0	IICC0		\checkmark	\checkmark		00H
FFFFFD83H	Slave address register 0	SVA0			\checkmark		00H
FFFFFD84H	IIC clock select register 0	IICCL0		\checkmark	\checkmark		00H
FFFFFD85H	IIC function expansion register 0	IICX0		\checkmark	\checkmark		00H
FFFFFD86H	IIC status register 0	IICS0	R	\checkmark	\checkmark		00H
FFFFFD8AH	IIC flag register 0	IICF0	R/W	\checkmark	\checkmark		00H
FFFFFD90H	IIC shift register 1	IIC1			\checkmark		00H
FFFFFD92H	IIC control register 1	IICC1		\checkmark	\checkmark		00H
FFFFFD93H	Slave address register 1	SVA1			\checkmark		00H
FFFFFD94H	IIC clock select register 1	IICCL1		\checkmark	\checkmark		00H
FFFFFD95H	IIC function expansion register 1	IICX1		\checkmark	\checkmark		00H
FFFFFD96H	IIC status register 1	IICS1	R	\checkmark	\checkmark		00H
FFFFFD9AH	IIC flag register 1	IICF1	R/W	\checkmark	\checkmark		00H
FFFFFDA0H	IIC shift register 2	IIC2			\checkmark		00H
FFFFFDA2H	IIC control register 2	IICC2		\checkmark	\checkmark		00H
FFFFFDA3H	Slave address register 2	SVA2			\checkmark		00H
FFFFFDA4H	IIC clock select register 2	IICCL2		\checkmark	\checkmark		00H
FFFFFDA5H	IIC function expansion register 2	IICX2		\checkmark	\checkmark		00H
FFFFFDA6H	IIC status register 2	IICS2	R	\checkmark	\checkmark		00H
FFFFDAAH	IIC flag register 2	IICF2	R/W	\checkmark	\checkmark		00H
FFFFFDBEH	External bus interface mode control register	EXIMC		\checkmark			00H

3.4.7 Special registers

Special registers are registers that are protected from being written with illegal data due to a program hang-up. The V850ES/JG2 has the following eight special registers.

- Power save control register (PSC)
- Clock control register (CKC)
- Processor clock control register (PCC)
- Clock monitor mode register (CLM)
- Reset source flag register (RESF)
- Low-voltage detection register (LVIM)
- Internal RAM data status register (RAMS)
- On-chip debug mode register (OCDM)

In addition, the PRCDM register is provided to protect against a write access to the special registers so that the application system does not inadvertently stop due to a program hang-up. A write access to the special registers is made in a specific sequence, and an illegal store operation is reported to the SYS register.

(1) Setting data to special registers

Set data to the special registers in the following sequence.

- <1> Disable DMA operation.
- <2> Prepare data to be set to the special register in a general-purpose register.
- <3> Write the data prepared in <2> to the PRCMD register.
- <4> Write the setting data to the special register (by using the following instructions).
 - Store instruction (ST/SST instruction)
 - Bit manipulation instruction (SET1/CLR1/NOT1 instruction)

(<5> to <9> Insert NOP instructions (5 instructions).)^{Note}

<10> Enable DMA operation if necessary.

[Example] With PSC register (setting standby mode)

```
ST.B r11, PSMR[r0] ; Set PSMR register (setting IDLE1, IDLE2, and STOP modes).
<1>CLR1 0, DCHCn[r0]
                               ; Disable DMA operation. n = 0 to 3
<2>MOV0x02, r10
<3>ST.B r10, PRCMD[r0] ; Write PRCMD register.
<4>ST.B r10, PSC[r0]
                              ; Set PSC register.
<5>NOP<sup>Note</sup>
                               ; Dummy instruction
<6>NOP<sup>Note</sup>
                               ; Dummy instruction
< 7 > \text{NOP}^{Note}
                               ; Dummy instruction
<8>NOP<sup>Note</sup>
                               ; Dummy instruction
< 9 > \text{NOP}^{Note}
                               ; Dummy instruction
<10>SET1 0, DCHCn[r0] ; Enable DMA operation. n = 0 to 3
(next instruction)
```

There is no special sequence to read a special register.

- **Note** Five NOP instructions or more must be inserted immediately after setting the IDLE1 mode, IDLE2 mode, or STOP mode (by setting the PSC.STP bit to 1).
- Cautions 1. When a store instruction is executed to store data in the command register, interrupts are not acknowledged. This is because it is assumed that steps <3> and <4> above are performed by successive store instructions. If another instruction is placed between <3> and <4>, and if an interrupt is acknowledged by that instruction, the above sequence may not be established, causing malfunction.
 - Although dummy data is written to the PRCMD register, use the same general-purpose register used to set the special register (<4> in Example) to write data to the PRCMD register (<3> in Example). The same applies when a general-purpose register is used for addressing.

(2) Command register (PRCMD)

The PRCMD register is an 8-bit register that protects the registers that may seriously affect the application system from being written, so that the system does not inadvertently stop due to a program hang-up. The first write access to a special register is valid after data has been written in advance to the PRCMD register. In this way, the value of the special register can be rewritten only in a specific sequence, so as to protect the register from an illegal write access.

The PRCMD register is write-only, in 8-bit units (undefined data is read when this register is read).

7 6 5 4 3 2 1 0 PBCMD BEG7 BEG6 BEG5 BEG4 BEG3 BEG2 BEG1 BEG0	After rese	t: Undefine	ed W	Address	s: FFFFF1F	€СН			
PBCMD BEG7 BEG6 BEG5 BEG4 BEG3 BEG2 BEG1 BEG0		7	6	5	4	3	2	1	0
The field field field field field field	PRCMD	REG7	REG6	REG5	REG4	REG3	REG2	REG1	REG0

(3) System status register (SYS)

Status flags that indicate the operation status of the overall system are allocated to this register. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

After res	set: 00H	R/W	Address: F	FFFF802H	I				
	7	6	5	4	3	2	1	<0>	
SYS	0	0	0	0	0	0	0	PRERR	
	PRERR		Detects protection error						
	0	Protectio	Protection error did not occur						
	1	Protectio	Protection error occurred						

The PRERR flag operates under the following conditions.

(a) Set condition (PRERR flag = 1)

- (i) When data is written to a special register without writing anything to the PRCMD register (when <4> is executed without executing <3> in 3.4.7 (1) Setting data to special registers)
- (ii) When data is written to an on-chip peripheral I/O register other than a special register (including execution of a bit manipulation instruction) after writing data to the PRCMD register (if <4> in 3.4.7 (1) Setting data to special registers is not the setting of a special register)
- **Remark** Even if an on-chip peripheral I/O register is read (except by a bit manipulation instruction) between an operation to write the PRCMD register and an operation to write a special register, the PRERR flag is not set, and the set data can be written to the special register.

(b) Clear condition (PRERR flag = 0)

- (i) When 0 is written to the PRERR flag
- (ii) When the system is reset
- Cautions 1. If 0 is written to the PRERR bit of the SYS register, which is not a special register, immediately after a write access to the PRCMD register, the PRERR bit is cleared to 0 (the write access takes precedence).
 - 2. If data is written to the PRCMD register, which is not a special register, immediately after a write access to the PRCMD register, the PRERR bit is set to 1.

3.4.8 Cautions

(1) Registers to be set first

Be sure to set the following registers first when using the V850ES/JG2.

- System wait control register (VSWC)
- On-chip debug mode register (OCDM)
- Watchdog timer mode register 2 (WDTM2)

After setting the VSWC, OCDM, and WDTM2 registers, set the other registers as necessary.

When using the external bus, set each pin to the alternate-function bus control pin mode by using the portrelated registers after setting the above registers.

(a) System wait control register (VSWC)

The VSWC register controls wait of bus access to the on-chip peripheral I/O registers.

Three clocks are required to access an on-chip peripheral I/O register (without a wait cycle). The V850ES/JG2 requires wait cycles according to the operating frequency. Set the following value to the VSWC register in accordance with the frequency used.

The VSWC register can be read or written in 8-bit units (address: FFFFF06EH, default value: 77H).

Operating Frequency (fcLK)	Set Value of VSWC	Number of Waits
32 kHz ≤ fc∟к < 16.6 MHz	00H	0 (no waits)
16.6 MHz \leq fclk \leq 20 MHz	01H	1

(b) On-chip debug mode register (OCDM)

For details, see CHAPTER 27 ON-CHIP DEBUG FUNCTION.

(c) Watchdog timer mode register 2 (WDTM2)

The WDTM2 register sets the overflow time and the operation clock of watchdog timer 2. Watchdog timer 2 automatically starts in the reset mode after reset is released. Write the WDTM2 register to activate this operation.

For details, see CHAPTER 11 FUNCTIONS OF WATCHDOG TIMER 2.

(2) Accessing specific on-chip peripheral I/O registers

This product has two types of internal system buses.

One is a CPU bus and the other is a peripheral bus that interfaces with low-speed peripheral hardware.

The clock of the CPU bus and the clock of the peripheral bus are asynchronous. If an access to the CPU and an access to the peripheral hardware conflict, therefore, unexpected illegal data may be transferred. If there is a possibility of a conflict, the number of cycles for accessing the CPU changes when the peripheral hardware is accessed, so that correct data is transferred. As a result, the CPU does not start processing of the next instruction but enters the wait status. If this wait status occurs, the number of clocks required to execute an instruction increases by the number of wait clocks shown below.

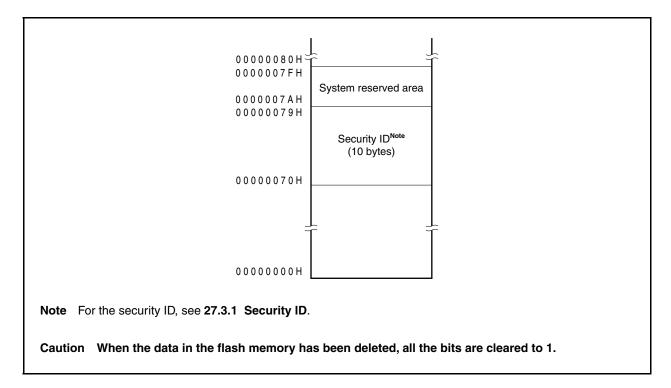
This must be taken into consideration if real-time processing is required.

When specific on-chip peripheral I/O registers are accessed, more wait states may be required in addition to the wait states set by the VSWC register.

The access conditions and how to calculate the number of wait states to be inserted (number of CPU clocks) at this time are shown below.

Peripheral Function	Register Name	Access	k
16-bit timer/event counter P (TMP)	TPnCNT	Read	1 or 2
(n = 0 to 5)	TPnCCR0, TPnCCR1	Write	1st access: No waitContinuous write: 3 or 4
		Read	1 or 2
16-bit timer/event counter Q (TMQ)	TQ0CNT	Read	1 or 2
	TQ0CCR0 to TQ0CCR3	Write	1st access: No waitContinuous write: 3 or 4
		Read	1 or 2
Watchdog timer 2 (WDT2)	WDTM2	Write (when WDT2 operating)	3
Real-time output function (RTO)	RTBL0, RTBH0	Write (RTPC0.RTPOE0 bit = 0)	1
A/D converter	ADA0M0	Read	1 or 2
	ADA0CR0 to ADA0CR11	Read	1 or 2
	ADA0CR0H to ADA0CR11H	Read	1 or 2
I ² C00 to I ² C02	IICS0 to IICS2	Read	1

Number of clocks necessary for access = $3 + i + j + (2 + j) \times k$


- Caution Accessing the above registers is prohibited in the following statuses. If a wait cycle is generated, it can only be cleared by a reset.
 - · When the CPU operates with the subclock and the main clock oscillation is stopped
 - When the CPU operates with the internal oscillation clock

Remark i: Values (0) of higher 4 bits of VSWC register

j: Values (0 or 1) of lower 4 bits of VSWC register

(3) System reserved area

In the V850ES/JG2, 0000007AH to 0000007FH is a system reserved area for function expansion, and therefore it is recommended that this area not be used.

(4) Restriction on conflict between sld instruction and interrupt request

(a) Description

If a conflict occurs between the decode operation of an instruction in <2> immediately before the sld instruction following an instruction in <1> and an interrupt request before the instruction in <1> is complete, the execution result of the instruction in <1> may not be stored in a register.

Instruction <1>

- Id instruction: Id.b, Id.h, Id.w, Id.bu, Id.hu
- sld instruction: sld.b, sld.h, sld.w, sld.bu, sld.hu
- Multiplication instruction: mul, mulh, mulhi, mulu

Instruction <2>

mov reg1, reg2	not reg1, reg2	satsubr reg1, reg2	satsub reg1, reg2
satadd reg1, reg2	satadd imm5, reg2	or reg1, reg2	xor reg1, reg2
and reg1, reg2	tst reg1, reg2	subr reg1, reg2	sub reg1, reg2
add reg1, reg2	add imm5, reg2	cmp reg1, reg2	cmp imm5, reg2
mulh reg1, reg2	shr imm5, reg2	sar imm5, reg2	shl imm5, reg2

<Example>

```
<i> ld.w [r11], r10
•
```

If the decode operation of the mov instruction <ii> immediately before the sld instruction <iii> and an interrupt request conflict before execution of the ld instruction <i> is complete, the execution result of instruction <i> may not be stored in a register.

<ii> mov r10, r28 <iii> sld.w 0x28, r10

(b) Countermeasure

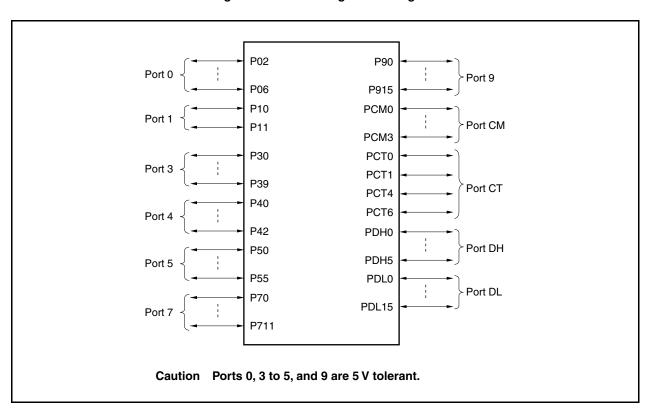
<1> When compiler (CA850) is used

Use CA850 Ver. 2.61 or later because generation of the corresponding instruction sequence can be automatically suppressed.

<2> For assembler

When executing the sld instruction immediately after instruction <ii>, avoid the above operation using either of the following methods.

- Insert a nop instruction immediately before the sld instruction.
- Do not use the same register as the sld instruction destination register in the above instruction <ii>executed immediately before the sld instruction.


CHAPTER 4 PORT FUNCTIONS

4.1 Features

- O I/O ports: 84
 - 5 V tolerant/N-ch open-drain output selectable: 40 (ports 0, 3 to 5, 9)
- O Input/output specifiable in 1-bit units

4.2 Basic Port Configuration

The V850ES/JG2 features a total of 84 I/O ports consisting of ports 0, 1, 3 to 5, 7, 9, CM, CT, DH, and DL. The port configuration is shown below.

Figure 4-1. Port Configuration Diagram

Table 4-1. I/O Buffer Power Supplies for Pins

Power Supply	Corresponding Pins
AVREFO	Port 7
AV _{REF1}	Port 1
BVDD	Ports CM, CT, DH (bits 0 to 3), DL
EVDD	RESET, ports 0, 3 to 5, 9, DH (bits 4, 5)

4.3 Port Configuration

Table 4-2.	Port Configuratio	n
------------	-------------------	---

ltem	Configuration
Control register	Port n mode register (PMn: n = 0, 1, 3 to 5, 7, 9, CD, CM, CT, DH, DL) Port n mode control register (PMCn: n = 0, 3 to 5, 9, CM, CT, DH, DL)
	Port n function control register (PFCn: $n = 0, 3 \text{ to } 5, 9)$
	Port n function control expansion register (PFCEn: $n = 3, 5, 9$) Port n function register (PFn: $n = 0, 3$ to 5, 9)
Ports	I/O: 84

(1) Port n register (Pn)

Data is input from or output to an external device by writing or reading the Pn register.

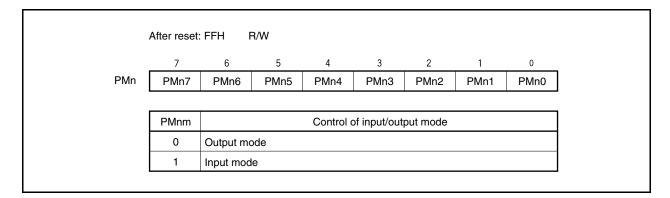
The Pn register consists of a port latch that holds output data, and a circuit that reads the status of pins.

Each bit of the Pn register corresponds to one pin of port n, and can be read or written in 1-bit units.

After reset: 00H (output latch) R/W												
	7	6	5	7	3	2	1	0				
Pn	Pn7	Pn6	Pn5	Pn4	Pn3	Pn2	Pn1	Pn0				
	Pnm		Co	ntrol of out	put data (ir	n output mo	ode)					
	0	Output 0.										
	v											

Data is written to or read from the Pn register as follows, regardless of the setting of the PMCn register.

Table 4-3. Writing/Reading Pn Register


Setting of PMn Register	Writing to Pn Register	Reading from Pn Register
Output mode (PMnm = 0)	Data is written to the output latch ^{Note} . In the port mode (PMCn = 0), the contents of the output latch are output from the pins.	The value of the output latch is read.
Input mode (PMnm = 1)	Data is written to the output latch. The pin status is not affected ^{Note} .	The pin status is read.

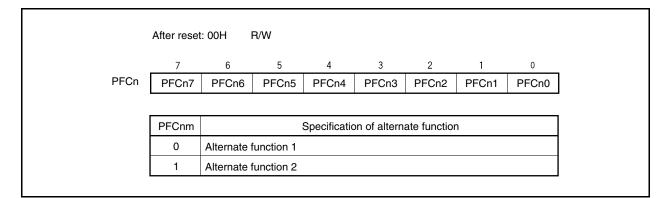
Note The value written to the output latch is retained until a new value is written to the output latch.

(2) Port n mode register (PMn)

The PMn register specifies the input or output mode of the corresponding port pin.

Each bit of this register corresponds to one pin of port n, and the input or output mode can be specified in 1-bit units.

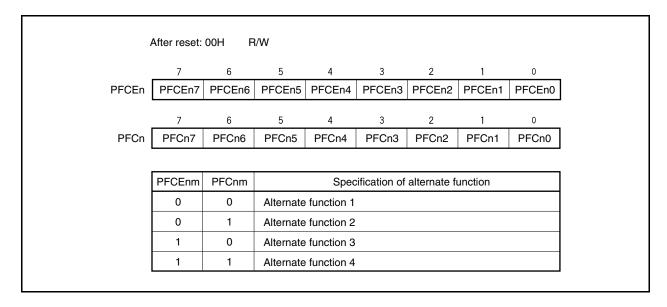
(3) Port n mode control register (PMCn)


The PMCn register specifies the port mode or alternate function.

Each bit of this register corresponds to one pin of port n, and the mode of the port can be specified in 1-bit units.

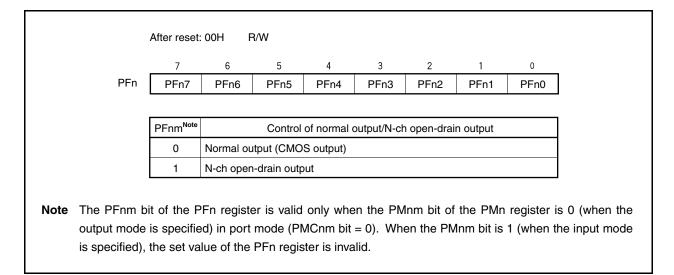
After reset: 00H R/W												
7	6	5	4	3	2	1	0					
PMCn7	PMCn6	PMCn5	PMCn4	PMCn3	PMCn2	PMCn1	PMCn0					
PMCnm			Specificati	on of opera	ation mode							
0	Port mode	•										
1	1 Alternate function mode											
F	7 PMCn7 PMCnm	7 6 PMCn7 PMCn6 PMCnm 0 Port mode	7 6 5 PMCn7 PMCn6 PMCn5 PMCnm 0 Port mode	7 6 5 4 PMCn7 PMCn6 PMCn5 PMCn4 PMCnm Specificati 0 Port mode	7 6 5 4 3 PMCn7 PMCn6 PMCn5 PMCn4 PMCn3 PMCnm Specification of operation of operation of operation 0 Port mode PMCn4	7 6 5 4 3 2 PMCn7 PMCn6 PMCn5 PMCn4 PMCn3 PMCn2 PMCnm Specification of operation mode 0 Port mode	7 6 5 4 3 2 1 PMCn7 PMCn6 PMCn5 PMCn4 PMCn3 PMCn2 PMCn1 PMCnm Specification of operation mode 0 Port mode Final sector of operation mode					

(4) Port n function control register (PFCn)


The PFCn register specifies the alternate function of a port pin to be used if the pin has two alternate functions. Each bit of this register corresponds to one pin of port n, and the alternate function of a port pin can be specified in 1-bit units.

(5) Port n function control expansion register (PFCEn)

The PFCEn register specifies the alternate function of a port pin to be used if the pin has three or more alternate functions.


Each bit of this register corresponds to one pin of port n, and the alternate function of a port pin can be specified in 1-bit units.

(6) Port n function register (PFn)

The PFn register specifies normal output or N-ch open-drain output.

Each bit of this register corresponds to one pin of port n, and the output mode of the port pin can be specified in 1-bit units.

(7) Port setting

Set a port as illustrated below.

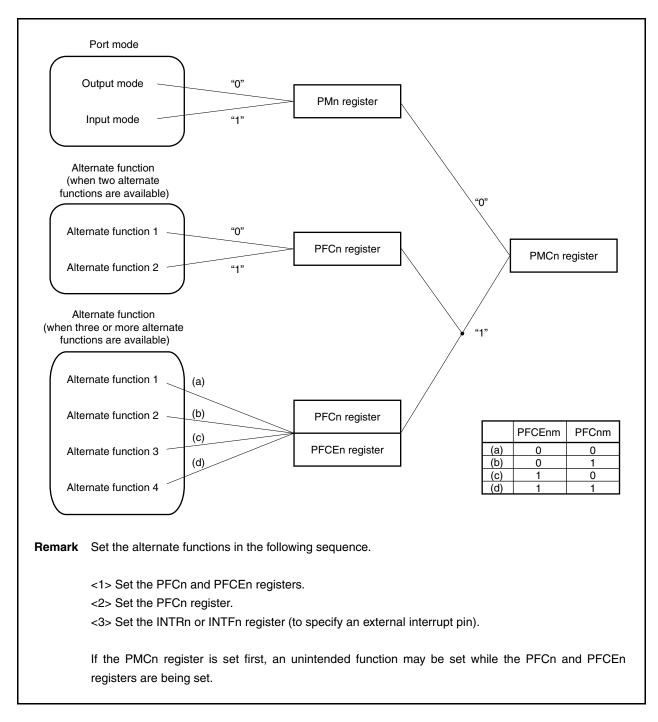


Figure 4-2. Setting of Each Register and Pin Function

4.3.1 Port 0

Port 0 is a 5-bit port for which I/O settings can be controlled in 1-bit units. Port 0 includes the following alternate-function pins.

Pin Name	Pin	No.	Alternate-Function Pin Name	I/O	Remark	Block Type
	GF	GC				
P02	19	17	NMI	Input	Selectable as N-ch open-drain output	L-1
P03	20	18	INTP0/ADTRG	Input		N-1
P04	21	19	INTP1	Input		L-1
P05	22	20	INTP2/DRST ^{Note}	Input		AA-1
P06	23	21	INTP3	Input		L-1

Table 4-4. Port 0 Alternate-Function Pins

Note The DRST pin is used for on-chip debugging.
 If on-chip debugging is not used, fix the P05/INTP2/DRST pin to low level between when the reset signal of the RESET pin is released and when the OCDM.OCDM0 bit is cleared (0).
 For details, see 4.6.3 Cautions on on-chip debug pins.

- Caution The P02 to P06 pins have hysteresis characteristics in the input mode of the alternate function, but do not have hysteresis characteristics in the port mode.
- (1) Port 0 register (P0)

After res	set: 00H (d	output latch)	R/W	Address	: FFFFF4	00H			
	7	6	5	4	3	2	1	0	
P0	0	P06	P05	P04	P03	P02	0	0	
	P0n		Output	data contro	ol (in output	t mode) (n	= 2 to 6)		
	0	Outputs 0							
	1	Outputs 1							
		·							

(2) Port 0 mode register (PM0)

After res	et: FFH	R/W	Address: F	FFFF420H	4					
	7	6	5	4	3	2	1	0		
PM0	1	PM06	PM05	PM04	PM03	PM02	1	1		
	PM0n			I/O mode	e control (n	= 2 to 6)				
	0	Output me	Dutput mode							
	1	Input mod	le							
		·								

(3) Port 0 mode control register (PMC0)

	7	6	5	4	3	2	1	0
PMC0	0	PMC06	PMC05	PMC04	PMC03	PMC02	0	0
		1						
	PMC06		Spe	ecification c	f P06 pin c	peration m	ode	
	0	I/O port						
	1	INTP3 inp	ut					
	PMC05		Spe	ecification c	f P05 pin c	peration m	ode	
	0	I/O port						
	1	INTP2 inp	ut					
	PMC04		Spe	ecification c	f P04 pin c	peration m	ode	
	0	I/O port						
	1	INTP1 in	out					
	PMC03		Spe	ecification c	f P03 pin c	peration m	ode	
	0	I/O port			•			
	1	INTP0 inp	ut/ADTRG	input				
	PMC02		Spe	ecification c	f P02 pin c	peration m	ode	
	0	I/O port						
	1	NMI input						

(4) Port 0 function control register (PFC0)

After res	set: 00H	R/W	Address: F	FFFF460	Н				
	7	6	5	4	3	2	1	0	
PFC0	0	0	0	0	PFC03	0	0	0	
	PFC03		Spee	cification of	of P03 pin alt	ternate fu	nction		
	0	INTP0 in	NTP0 input						
	1	ADTRG i	nput						

(5) Port 0 function register (PF0)

	7	6	5	4	3	2	1	0
PF0	0	PF06	PF05	PF04	PF03	PF02	0	0
	PF0n	Cor	ntrol of norn	nal output o	or N-ch ope	en-drain out	put (n = 2	to 6)
	0	Normal or	utput (CMO	S output)				
	1	N-ch oper	n drain outp	out				

4.3.2 Port 1

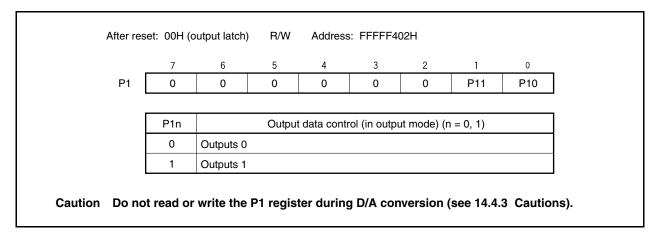

Port 1 is a 2-bit port for which I/O settings can be controlled in 1-bit units. Port 1 includes the following alternate-function pins.

Table 4-5. Port 1 Alternate-Function Pins	Table 4-5.	Port 1	Alternate-Function	Pins
---	------------	--------	---------------------------	------

Pin Name	Pin	No.	Alternate-Function Pin Name	I/O	Remark	Block Type
	GF	GC				
P10	5	3	ANO0	Output	_	A-2
P11	6	4	ANO1	Output	_	A-2

Caution When the power is turned on, the P10 and P11 pins may output an undefined level temporarily even during reset.

(1) Port 1 register (P1)

(2) Port 1 mode register (PM1)

1 1 1 1 1 1 PM11 PM				1	,	
	1 1	1	1	1	1	PM1
I/O mode control ($n = 0, 1$)	control (n = 0, 1)	O mode cor			PM1n	
utput mode			e	Output mo	0	
put mode				Input mode	1	
utput mode				Input mode	0 1	

4.3.3 Port 3

Port 3 is a 10-bit port for which I/O settings can be controlled in 1-bit units. Port 3 includes the following alternate-function pins.

Pin Name	Pin	No.	Alternate-Function Pin Name	I/O	Remark	Block Type
	GF	GC				
P30	27	25	TXDA0/SOB4	Output	Selectable as N-ch open-drain output	G-3
P31	28	26	RXDA0/INTP7/SIB4	Input		N-3
P32	29	27	ASCKA0/SCKB4/TIP00/TOP00	I/O		U-1
P33	30	28	TIP01/TOP01	I/O		G-1
P34	31	29	TIP10/TOP10	I/O		G-1
P35	32	30	TIP11/TOP11	I/O		G-1
P36	33	31	-	-		C-1
P37	34	32	-	-		C-1
P38	37	35	TXDA2/SDA00	I/O		G-12
P39	38	36	RXDA2/SCL00	I/O		G-6

Table 4-6. Port 3 Alternate-Function Pins

Caution The P31 to P35, P38, and P39 pins have hysteresis characteristics in the input mode of the alternate-function pin, but do not have the hysteresis characteristics in the port mode.

(1) Port 3 register (P3)

	15	14	13	12	11	10	9	8
P3 (P3H)	0	0	0	0	0	0	P39	P38
	7	6	5	4	3	2	1	0
(P3L)	P37	P36	P35	P34	P33	P32	P31	P30
	0	Outputs 0 Outputs 1						
bits 2. To re	vever, who as the P3	en using th 3L register, bits 8 to 1	ne higher P3 can b	8 bits of t e read or	he P3 reg written in	ister as th 8-bit or 1	-bit units.	egister and th

(2) Port 3 mode register (PM3)

After res	et: FFFF	H R/W	Address	: PM3 FF PM3L FI	FFF426H, FFFF426H,	PM3H FF	FFF427H				
	15	14	13	12	11	10	9	8			
PM3 (PM3H)	1	1	1	1	1	1	PM39	PM38			
	7	6	5	4	3	2	1	0	_		
(PM3L)	PM37	PM36	PM35	PM34	PM33	PM32	PM31	PM30			
	PM3n I/O mode control (n = 0 to 9)										
	0	Output mo	ode								
	1	Input mod	е								
lower 2. To rea	ver, wher 8 bits as 1	the PM3L the 8 to 15	e higher & register, F	B bits of t PM3 can b	the PM3 be read or	register a written in	8-bit or 1	-bit units.			

(3) Port 3 mode control register (PMC3)

PMC3 (PMC3H)	15	14	13	12	11	10	9	8				
	0	0	0	0	0	0	PMC39	PMC38				
	7	6	5	4	3	2	1	0				
(PMC3L)	0	0	PMC35	PMC34	PMC33	PMC32	PMC31	PMC30				
	PMC39		Spe	ecification o	of P39 pin c	peration m	node					
	0	I/O port										
	1	RXDA2 ir	nput/SCL00) I/O								
	PMC38		Specification of P38 pin operation mode									
	0	I/O port										
	1	TXDA2 o	utput/SDA0	00 I/O								
	PMC35		Spe	ecification of	of P35 pin o	operation m	node					
	0	I/O port										
	1	TIP11 inp	out/TOP11	output								
	PMC34		Specification of P34 pin operation mode									
	0	I/O port										
	1	TIP10 inp	TIP10 input/TOP10 output									
	PMC33	Specification of P33 pin operation mode										
	0	I/O port										
	1	TIP01 inp	out/TOP01	output								
	PMC32	Specification of P32 pin operation mode										
	0	I/O port										
	1	ASCKA0	input/SCK		0 input/TO	P00 output	t					
	PMC31		Spe	ecification of	of P31 pin o	operation m	node					
	0	I/O port										
	1	RXDA0 ir	nput/SIB4 ir	nput/INTP7	input							
	PMC30		Spe	ecification of	of P30 pin o	operation m	node					
	0	I/O port										
	1	TXDA0 o	utput/SOB4	loutput								
Caution Be sure to					6-bit units							
Remarks 1. The Pl												
Remarks 1. The Pl Howev	-	using the	higher 8 k	oits of the	PMC3 re	gister as	the PMC3	BH register a				

(4) Port 3 function control register (PFC3)

After res	et: 0000H	R/W	Address	: PFC3 FF PFC3L F	,	, PFC3L F	FFFF467H	
	15	14	13	12	11	10	9	8
PFC3 (PFC3H)	0	0	0	0	0	0	PFC39	PFC38
	7	6	5	4	3	2	1	0
(PFC3L)	0	0	PFC35	PFC34	PFC33	PFC32	PFC31	PFC30
Remarks 1. For de		Iternate	function s	pecificatio	on, see 4	.3.3 (6)	Port 3	alternate
	ications.			-			Port 3	alternate
specif 2. The Pf Howev	i cations . FC3 registe er, when u	er can be using the	read or w higher 8	ritten in 1 bits of the	6-bit units e PFC3 re	egister as	the PFC	alternate 3H registe d 1-bit uni

(5) Port 3 function control expansion register L (PFCE3L)

After res	set: 00H	R/W	Address: I	FFFF706H					
	7	6	5	4	3	2	1	0	
PFCE3L	0	0	0	0	0	PFCE32	0	0	
Remark For de specifi	tails of a cations .	alternate	function	specificati	on, see	4.3.3 (6)	Port 3	3 alterna	te function

(6) Port 3 alternate function specifications

PFC39	Specification of P39 pin alternate function
0	RXDA2 input
1	SCL00 I/O

PFC38	Specification of P38 pin alternate function
0	TXDA2 output
1	SDA00 I/O

PFC35	Specification of P35 pin alternate function
0	TIP11 input
1	TOP11 output

PFC34	Specification of P34 pin alternate function
0	TIP10 input
1	TOP10 output

PFC33	Specification of P33 pin alternate function
0	TIP01 input
1	TOP01 output

PFCE32	PFC32	Specification of P32 pin alternate function
0	0	ASCKA0 input
0	1	SCKB4 I/O
1	0	TIP00 input
1	1	TOP00 output

PFC31	Specification of P31 pin alternate function
0	RXDA0 input/INTP7 ^{Note} input
1	SIB4 input

PFC30	Specification of P30 pin alternate function
0	TXDA0 output
1	SOB4 output

Note INTP7 and RXDA0 are alternate functions. When using the pin as the RXDA0 pin, disable edge detection for the INTP7 alternate-function pin. (Clear the INTF3.INTF31 bit and the INTR3.INTR31 bit to 0.) When using the pin as the INTP7 pin, stop UARTA0 reception. (Clear the UA0CTL0.UA0RXE bit to 0.)

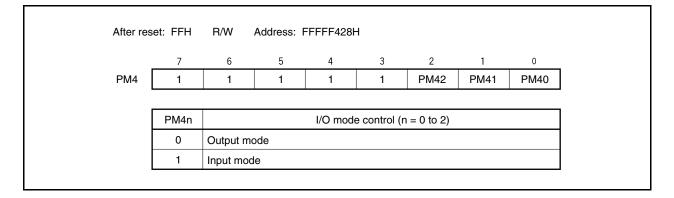
(7) Port 3 function register (PF3)

	set: 0000H	I R/W	Address	: PF3 FFF PF3L FFI	,	PF3H FFF	FFC67H	
	15	14	13	12	11	10	9	8
PF3 (PF3H)	0	0	0	0	0	0	PF39	PF38
	7	6	5	4	3	2	1	0
(PF3L)	PF37	PF36	PF35	PF34	PF33	PF32	PF31	PF30
		•						
	PF3n	Cor	trol of norn	nal output o	or N-ch ope	en-drain ou	tput (n = 0	to 9)
	0	Normal ou	tput (CMO	S output)				
	1	N-ch oper	-drain outp	out				
Caution When a	pull-up re	esistor at	EVDD or	higher is	connecte	ed to an o	output pir	n, be sure to
PF3n bit Remarks 1. The I Howe 8 bits	PF3 regist ever, wher as the P	n using the F3L regist	e higher 8 er, PF3 ca	bits of the an be read	e PF3 reg or writter	ister as th n in 8-bit c	or 1-bit un	egister and th its. iy them as bit

4.3.4 Port 4

Port 4 is a 3-bit port that controls I/O in 1-bit units. Port 4 includes the following alternate-function pins.

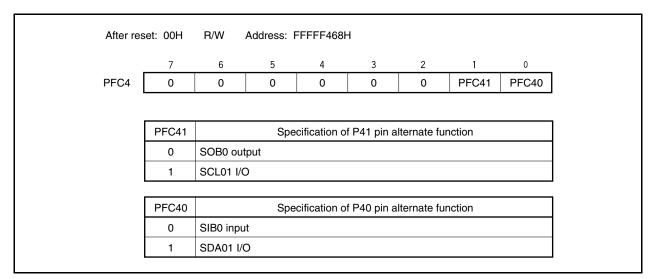
Pin Name	Pin	No.	Alternate-Function Pin Name	I/O	Remark	Block Type
	GF	GC				
P40	24	22	SIB0/SDA01	I/O	Selectable as N-ch open-drain output	G-6
P41	25	23	SOB0/SCL01	I/O		G-12
P42	26	24	SCKB0	I/O		E-3


Caution The P40 to P42 pins have hysteresis characteristics in the input mode of the alternate-function pin, but do not have the hysteresis characteristics in the port mode.

RemarkGF: 100-pin plastic QFP (14×20)GC: 100-pin plastic LQFP (fine pitch) (14×14)

(1) Port 4 register (P4)

After res	set: 00H (d	output latch)	R/W	Address	: FFFFF4(08H		
	7	6	5	4	3	2	1	0
P4	0	0	0	0	0	P42	P41	P40
	P4n		Output	data contro	ol (in output	t mode) (n	= 0 to 2)	
	0	Outputs 0						
	1	Outputs 1						


(2) Port 4 mode register (PM4)

(3)	Port 4	mode	control	register	(PMC4)
\ -/			•••••••		······································

After res	et: 00H	R/W	Address: F	FFFF448H						
	7	6	5	4	3	2	1	0		
PMC4	0	0	0	0	0	PMC42	PMC41	PMC40		
	PMC42		Spe	cification of	P42 pin	operation m	node			
	0	I/O port								
	1	SCKB0 I/C)							
	PMC41		Specification of P41 pin operation mode							
	0	I/O port	/O port							
	1	SOB0 out	SOB0 output/SCL01 I/O							
	PMC40		Spe	cification of	P40 pin	operation m	node			
	0	I/O port								
	1	SIB0 input	/SDA01 I/C)						

(4) Port 4 function control register (PFC4)

(5) Port 4 function register (PF4)

	7	6	5	4	3	2	1	0
PF4	0	0	0	0	0	PF42	PF41	PF40
	PF4n	Cor	trol of norm	nal output o	r N-ch ope	en-drain ou	tput (n = 0	to 2)
	0	Normal ou	utput (CMO	S output)				
	1	N-ch oper	n-drain outp	out				

4.3.5 Port 5

Port 5 is a 6-bit port that controls I/O in 1-bit units. Port 5 includes the following alternate-function pins.

Pin Name	Pin	No.	Alternate-Function Pin Name	I/O	Remark	Block Type
	GF	GC				
P50	39	37	TIQ01/KR0/TOQ01/RTP00	I/O	Selectable as N-ch open-drain output	U-5
P51	40	38	TIQ02/KR1/TOQ02/RTP01	I/O		U-5
P52	41	39	TIQ03/KR2/TOQ03/RTP02/DDI ^{Note}	I/O		U-6
P53	42	40	SIB2/KR3/TIQ00/TOQ00/RTP03/DDO ^{Note}	I/O		U-7
P54	43	41	SOB2/KR4/RTP04/DCK ^{Note}	I/O		U-8
P55	44	42	SCKB2/KR5/RTP05/DMS ^{Note}	I/O		U-9

Table 4-8. Port 5 Alternate-Function Pins

Note The DDI, DDO, DCK, and DMS pins are used for on-chip debugging.
 If on-chip debugging is not used, fix the P05/INTP2/DRST pin to low level between when the reset signal of the RESET pin is released and when the OCDM.OCDM0 bit is cleared (0).
 For details, see 4.6.3 Cautions on on-chip debug pins.

- Cautions 1. When the power is turned on, the P53 pin may output undefined level temporarily even during reset.
 - 2. The P50 to P55 pins have hysteresis characteristics in the input mode of the alternate function, but do not have hysteresis characteristics in the port mode.
- RemarkGF: 100-pin plastic QFP (14×20)GC: 100-pin plastic LQFP (fine pitch) (14×14)
- (1) Port 5 register (P5)

After res	set: 00H (output latch)	R/W	Address	: FFFFF4(DAH		
	7	6	5	4	3	2	1	0
P5	0	0	P55	P54	P53	P52	P51	P50
	P5n		Output	data contro	ol (in output	t mode) (n	= 0 to 5)	
	0	Outputs 0						
	1	Outputs 1						

(2) Port 5 mode register (PM5)

After res	set: FFH	R/W	Address: F	FFFF42AI	4			
	7	6	5	4	3	2	1	0
PM5	1	1	PM55	PM54	PM53	PM52	PM51	PM50
	PM5n			I/O mode	e control (n	= 0 to 5)		
	0	Output m	node					
	1	Input mo	de					

(3) Port 5 mode control register (PMC5)

After re	set: 00H	R/W	Address: F	-FFFF44AF	1			
	7	6	5	4	3	2	1	0
PMC5	0	0	PMC55	PMC54	PMC53	PMC52	PMC51	PMC50
		1						
	PMC55	PMC55 Specification of P55 pin operation mode						
	0	I/O port						
	1	SCKB2 I/	O/KR5 inpl	it/RTP05 o	utput			
	PMC54		Spe	ecification o	of P54 pin c	peration m	ode	
	0	I/O port						
	1 SOB2 output/KR4 input/RTP04 output							
	PMC53	MC53 Specification of P53 pin operation mode						
	0	0 I/O port						
	1	SIB2 inpu	ut/KR3 inpu	t/TIQ00 inp	ut/TOQ00	output/RTF	03 output	
	PMC52		Spe	ecification o	of P52 pin c	peration m	ode	
	0	I/O port						
	1	TIQ03 inp	out/KR2 inp	ut/TOQ03	output/RTP	02 output		
	PMC51		Spe	ecification o	of P51 pin c	peration m	ode	
	0	I/O port						
	1	TIQ02 inp	out/KR1 inp	ut/TOQ02 (output/RTP	01 output		
	PMC50		Spe	ecification o	of P50 pin c	peration m	ode	
	0	I/O port						
	1	TIQ01 in	out/KR0 inp	ut/TOQ01	output/RTP	00 output		

(4) Port 5 function control register (PFC5)

After res	set: 00H	R/W	Address: F	FFFF46AH	4				
	7	6	5	4	3	2	1	0	
PFC5	0	0	PFC55	PFC54	PFC53	PFC52	PFC51	PFC50	
Remark For d spec it	etails of fications .	alternate	function	specifica	tion, see	4.3.5 (6	6) Port	5 altern	ate function

(5) Port 5 function control expansion register (PFCE5)

After res	et: 00H	R/W	Address: F	FFFF70AH	ł				
	7	6	5	4	3	2	1	0	
PFCE5	0	0	PFCE55	PFCE54	PFCE53	PFCE52	PFCE51	PFCE50	
Remark For de specif i	etails of a cations.	alternate	function	specificat	ion, see	4.3.5 (6) Port	5 alterna	te function

(6) Port 5 alternate function specifications

PFCE55	PFC55	Specification of P55 pin alternate function
0	0	SCKB2 I/O
0	1	KR5 input
1	0	Setting prohibited
1	1	RTP05 output

PFCE54	PFC54	Specification of P54 pin alternate function
0	0	SOB2 output
0	1	KR4 input
1	0	Setting prohibited
1	1	RTP04 output

PFCE53	PFC53	Specification of P53 pin alternate function					
0	0	SIB2 input					
0	1	TIQ00 input/KR3 ^{№te} input					
1	0	TOQ00 output					
1	1	RTP03 output					

PFCE52	PFC52	Specification of P52 pin alternate function
0	0	Setting prohibited
0	1	TIQ03 input/KR2 ^{№te} input
1	0	TOQ03 input
1	1	RTP02 output

PFCE51	PFC51	Specification of P51 pin alternate function
0	0	Setting prohibited
0	1	TIQ02 input/KR1 ^{™™} input
1	0	TOQ02 output
1	1	RTP01 output

PFCE50	PFC50	Specification of P50 pin alternate function
0	0	Setting prohibited
0	1	TIQ01 input/KR0 ^{№™} input
1	0	TOQ01 output
1	1	RTP00 output

Note KRn and TIQ0m are alternate functions. When using the pin as the TIQ0m pin, disable KRn pin key return detection, which is the alternate function. (Clear the KRM.KRMn bit to 0.) Also, when using the pin as the KRn pin, disable TIQ0m pin edge detection, which is the alternate function (n = 0 to 3, m = 0 to 3).

Pin Name	Use as TIQ0m Pin	Use as KRn Pin
KR0/TIQ01	KRM.KRM0 bit = 0	TQ0IOC1. TQ0TIG2, TQ0IOC1. TQ0TIG3 bits = 0
KR1/TIQ02	KRM.KRM1 bit = 0	TQ0IOC1.TQ0TIG4, TQ0IOC1.TQ0TIG5 bits = 0
KR2/TIQ03	KRM.KRM2 bit = 0	TQ0IOC1.TQ0TIG6, TQ0IOC1.TQ0TIG7 bits = 0
KR3/TIQ00	KRM.KRM3 bit = 0	TQ0IOC1.TQ0TIG0, TQ0IOC1.TQ0TIG1 bits = 0
		TQ0IOC2.TQ0EES0, TQ0IOC2.TQ0EES1 bits = 0
		TQ0IOC2.TQ0ETS0, TQ0IOC2.TQ0ETS1 bits = 0

(7) Port 5 function register (PF5)

	7	6	5	4	3	2	1	0			
PF5	0	0	PF55	PF54	PF53	PF52	PF51	PF50			
	PF5n	Cor	Control of normal output or N-ch open-drain output (n = 0 to 5)								
	0	Normal output (CMOS output)									
	1	N-ch ope	n-drain outp	out							
	1	1 N-ch open-drain output									

4.3.6 Port 7

Port 7 is a 12-bit port for which I/O settings can be controlled in 1-bit units. Port 7 includes the following alternate-function pins.

Pin Name	Pin	No.	Alternate-Function Pin Name	I/O	Remark	Block Type
	GF	GC				
P70	2	100	ANIO	Input	_	A-1
P71	1	99	ANI1	Input		A-1
P72	100	98	ANI2	Input		A-1
P73	99	97	ANI3	Input		A-1
P74	98	96	ANI4	Input		A-1
P77	97	95	ANI5	Input		A-1
P76	96	94	ANI6	Input		A-1
P77	95	93	ANI7	Input		A-1
P78	94	92	ANI8	Input		A-1
P79	93	91	ANI9	Input		A-1
P710	92	90	ANI10	Input		A-1
P711	91	89	ANI11	Input		A-1

Table 4-9. Port 7 Alternate-Function Pins

(1) Port 7 register H, port 7 register L (P7H, P7L)

	After res	et: 00H (d	output latch)) R/W	Address	8: P7L FFF	FF40EH, F	97H FFFF	40FH	
		7	6	5	4	3	2	1	0	
	P7H	0	0	0	0	P711	P710	P79	P78	
		7	6	5	4	3	2	1	0	
	P7L	P77	P76	P75	P74	P73	P72	P71	P70	I
			1							
		P7n		Output da	ta control	(in output n	node) (n = 0	0 to 11)		
		0	Outputs 0							
		1	Outputs 1							
Caution Remark	Altern These	register		pe access	sed in 16	-bit units	as the P			(see 13.6 (4) an be read or

(2) Port 7 mode register H, port 7 mode register L (PM7H, PM7L)

	7	6	5	4	3	2	1	0			
PM7H	1	1	1	1	PM711	PM710	PM79	PM78			
	7	6	5	4	3	2	1	0			
PM7L	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70			
	PM7n	n I/O mode control (n = 0 to 11)									
	0	Output mode									
	1	Input mod	le								
aution When	using th	e P7n pin	as its alt	ernate fu	nction (A	NIn pin),	set the P	M7n bit to 1.			

4.3.7 Port 9

Port 9 is a 16-bit port for which I/O settings can be controlled in 1-bit units. Port 9 includes the following alternate-function pins.

Pin Name	Pin	No.	Alternate-Function Pin Name	I/O	Remark	Block Type
	GF	GC				
P90	45	43	A0/KR6/TXDA1/SDA02	I/O	Selectable as N-ch open-drain output	U-10
P91	46	44	A1/KR7/RXDA1/SCL02	I/O		U-11
P92	47	45	A2/TIP41/TOP41	I/O		U-12
P93	48	46	A3/TIP40/TOP40	I/O		U-12
P94	49	47	A4/TIP31/TOP31	I/O		U-12
P95	50	48	A5/TIP30/TOP30	I/O		U-12
P96	51	49	A6/TIP21/TOP21	I/O		U-13
P97	52	50	A7/SIB1/TIP20/TOP20	I/O		U-14
P98	53	51	A8/SOB1	Output		G-3
P99	54	52	A9/SCKB1	I/O		G-5
P910	55	53	A10/SIB3	I/O		G-2
P911	56	54	A11/SOB3	Output		G-3
P912	57	55	A12/SCKB3	I/O		G-5
P913	58	56	A13/INTP4	I/O		N-2
P914	59	57	A14/INTP5/TIP51/TOP51	I/O		U-15
P915	60	58	A15/INTP6/TIP50/TOP50	I/O		U-15

Table 4-10. Port 9 Alternate-Function Pins

- Caution The P90 to P97, P99, P910, and P912 to P915 pins have hysteresis characteristics in the input mode of the alternate-function pin, but do not have the hysteresis characteristics in the port mode.
- RemarkGF: 100-pin plastic QFP (14×20) GC: 100-pin plastic LQFP (fine pitch) (14×14)

(1) Port 9 register (P9)

	15	14	13	12	11	10	9	8
P9 (P9H)	P915	P914	P913	P912	P911	P910	P99	P98
	7	6	5	4	3	2	1	0
(P9L)	P97	P96	P95	P94	P93	P92	P91	P90
	0	Outputs 0 Outputs 1						
bits 2. To r	vever, whe as the P9	en using th L register, bits 8 to 1	ne higher P9 can b	8 bits of t e read or	he P9 reg written in	jister as th 8-bit or 1∙	bit units.	gister and th

(2) Port 9 mode register (PM9)

After res	et: FFFF	I R/W	Address	: PM9 FFI PM9L FF	,	PM9H FF	FFF433H		
	15	14	13	12	11	10	9	8	
PM9 (PM9H)	PM915	PM914	PM913	PM912	PM911	PM910	PM99	PM98	
	7	6	5	4	3	2	1	0	
(PM9L)	PM97	PM96	PM95	PM94	PM93	PM92	PM91	PM90	
	PM9n 0 1	Output mod		I/O mode	control (n	= 0 to 15)			
lower 2. To rea	M9 registe ver, when 8 bits as t	using the he PM9L ts 8 to 15	read or wr e higher 8 register, P	3 bits of t M9 can b	he PM9 i e read or	register a written in	8-bit and	9H registe 1-bit units y them as	

(3) Port 9 mode control register (PMC9)

	15	14	13	12	11	H, PMC9H 10	9	8					
PMC9 (PMC9H)	PMC915	PMC914	PMC913	PMC912	PMC911	PMC910	PMC99	PMC98					
	7	6	5	4	3	2	1	0					
(PMC9L)	PMC97	PMC96	PMC95	PMC94	PMC93	PMC92	PMC91	PMC90					
	PMC915		Spee	cification of	P915 pin	operation n	node						
	0	I/O port			-	-							
	1	A15 outpu	it/INTP6 inp	out/TIP50 ii	nput/TOP5	0 output							
	PMC914		Specification of P914 pin operation mode										
	0	I/O port	/O port										
	1	A14 outpu	A14 output/INTP5 input/TIP51 input/TOP51 output										
	PMC913	Specification of P913 pin operation mode											
	0	I/O port											
	1	A13 outpu	it/INTP4 inp	out									
	PMC912	Specification of P912 pin operation mode											
	0	I/O port	•										
	1	A12 output/SCKB3 I/O											
	PMC911	Specification of P911 pin operation mode											
	0	I/O port											
	1	A11 outpu	t/SOB3 out										
	PMC910		Spec	cification of	P910 pin	operation n	node						
	0	I/O port	t/SIB3 inpu	+									
			•										
	PMC99 0	I/O port	Spe	cification o	r P99 pin c	peration m	ode						
	1		SCKB1 I/O	1									
	PMC98		Spe	cification c	f P98 pin c	peration m	ode						
	0	I/O port	-										
	1	A8 output/	/SOB1 outp	out									
narks 1. The P													

2. To read/write bits 8 to 15 of the PMC9 register in 8-bit or 1-bit units, specify them as bits 0 to 7 of the PMC9H register.

Г

(2/2)

PMC97	Specification of P97 pin operation mode
0	I/O port
1	A7 output/SIB1 input/TIP20 input/TOP20 output
PMC96	Specification of P96 pin operation mode
0	I/O port
1	A6 output/TIP21 input/TOP21 output
PMC95	Specification of P95 pin operation mode
0	I/O port
1	A5 output/TIP30 input/TOP30 output
PMC94	Specification of P94 pin operation mode
0	I/O port
1	A4 output/TIP31 input/TOP31 output
PMC93	Specification of P93 pin operation mode
	I/O port
0	
0	A3 output/TIP40 input/TOP40 output
-	
1	A3 output/TIP40 input/TOP40 output
1 PMC92	A3 output/TIP40 input/TOP40 output Specification of P92 pin operation mode
1 PMC92 0	A3 output/TIP40 input/TOP40 output Specification of P92 pin operation mode I/O port
1 PMC92 0 1	A3 output/TIP40 input/TOP40 output Specification of P92 pin operation mode I/O port A2 output/TIP41 input/TOP41 output
1 PMC92 0 1 PMC91	A3 output/TIP40 input/TOP40 output Specification of P92 pin operation mode I/O port A2 output/TIP41 input/TOP41 output Specification of P91 pin operation mode
1 PMC92 0 1 PMC91 0	A3 output/TIP40 input/TOP40 output Specification of P92 pin operation mode I/O port A2 output/TIP41 input/TOP41 output Specification of P91 pin operation mode I/O port
1 PMC92 0 1 PMC91 0 1	A3 output/TIP40 input/TOP40 output Specification of P92 pin operation mode I/O port A2 output/TIP41 input/TOP41 output Specification of P91 pin operation mode I/O port A1 output/KR7 input/RXDA1 input/SCL02 I/O

(4) Port 9 function control register (PFC9)

Caution When performing separate address bus output (A0 to A15), set the PMC9 register to FFFFH for all 16 bits at once after clearing the PFC9 register to 0000H.

After re	set: 0000H	R/W	Address		FFFF472H FFFFF472I		FFFF473I	н	
	15	14	13	12	11	10	9	8	
PFC9 (PFC9H)	PFC915	PFC914	PFC913	PFC912	PFC911	PFC910	PFC99	PFC98	
	7	6	5	4	3	2	1	0	
(PFC9L)	PFC97	PFC96	PFC95	PFC94	PFC93	PFC92	PFC91	PFC90	
Remarks 1. For de	etails of a	lternate f	unction s	pecificatio	on. see 4	.3.7 (6)	Port 9 a	alternate	funct
•	ications.				·		Port 9 a	alternate	funct
specif 2. The Pl	ications . FC9 registe	er can be	read or w	ritten in 10	6-bit units				
specif 2. The Pl	ications.	er can be	read or w	ritten in 10	6-bit units				
specif 2. The Pi Howev	ications . FC9 registe	er can be using the	read or w higher 8	ritten in 10 bits of the	6-bit units e PFC9 re	gister as	the PFCS	9H register	r and

(5) Port 9 function control expansion register (PFCE9)

Aller fe	After reset: 0000H		Address		FFFFF712F FFFFF712	,	H FFFF7	13H
	15	14	13	12	11	10	9	8
PFCE9 (PFCE9H)	PFCE915	PFCE914	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
(PFCE9L) Remarks 1. For det	PFCE97	PFCE96 ernate fu	PFCE95		PFCE93	PFCE92	PFCE91	PFCE90
Remarks 1. For det specific 2. The PF Howeve	ails of alt cations. CE9 regist r, when us bits as the	ernate fu er can be sing the hi PFCE9L	nction sp read or w gher 8 bit register, I	ecificatior rritten in 1 s of the P PFCE9 ca	n, see 4. 6-bit units FCE9 reg In be read	3.7 (6) ister as th or writter	Port 9 al ne PFCE9 n in 8-bit c	Iternate fu H register or 1-bit unit

(6) Port 9 alternate function specifications

PFCE915	PFC915	Specification of P915 pin alternate function
0	0	A15 output
0	1	INTP6 input
1	0	TIP50 input
1	1	TOP50 output

PFCE914	PFC914	Specification of P914 pin alternate function
0	0	A14 output
0	1	INTP5 input
1	0	TIP51 input
1	1	TOP51 output

PFC913	Specification of P913 pin alternate function
0	A13 output
1	INTP4 input

PFC912	Specification of P912 pin alternate function
0	A12 output
1	SCKB3 I/O

PFC911	Specification of P911 pin alternate function
0	A11 output
1	SOB3 output

PFC910	Specification of P910 pin alternate function
0	A10 output
1	SIB3 input

PFC99	Specification of P99 pin alternate function
0	A9 output
1	SCKB1 I/O

PFC98	Specification of P98 pin alternate function
0	A8 output
1	SOB1 output

PFCE97	PFC97	Specification of P97 pin alternate function
0	0	A7 output
0	1	SIB1 input
1	0	TIP20 input
1	1	TOP20 output

PFCE96	PFC96	Specification of P96 pin alternate function
0	0	A6 output
0	1	Setting prohibited
1	0	TIP21 input
1	1	TOP21 output
PFCE95	PFC95	Specification of P95 pin alternate function
0	0	A5 output
0	1	TIP30 input
1	0	TOP30 output
1	1	Setting prohibited
PFCE94	PFC94	Specification of P94 pin alternate function
0	0	A4 output
0	1	TIP31 input
1	0	TOP31 output
1	1	Setting prohibited
I	I	Setting prohibited
PFCE93	PFC93	Specification of P93 pin alternate function
0	0	A3 output
0	1	TIP40 input
1	0	TOP40 output
1	1	Setting prohibited
PFCE92	PFC92	Specification of P92 pin alternate function
0	0	A2 output
0	1	TIP41 input
1	0	TOP41 output
1	1	Setting prohibited
PFCE91	PFC91	Specification of DO1 pin alternate function
0	0	Specification of P91 pin alternate function A1 output
0	1	KR7 input
		RXDA1 input/KR7 input ^{Note}
1	0	
1	1	SCL02 I/O
PFCE90	PFC90	Specification of P90 pin alternate function
0	0	A0 output
0	1	KR6 input
	0	TXDA1 output
1	0	

Note The RXDA1 and KR7 pins must not be used at the same time. When using the RXDA1 pin, do not use the KR7 pin. When using the KR7 pin, do not use the RXDA1 pin (it is recommended to set the PFC91 bit to 1 and clear the PFCE91 bit to 0).

(7) Port 9 function register (PF9)

	set: 0000H	R/W	Address	PF3 FFF PF9L FF		PF9H FFF	FFC73H	
	15	14	13	12	11	10	9	8
PF9 (PF9H)	PF915	PF914	PF913	PF912	PF911	PF910	PF99	PF98
	7	6	5	4	3	2	1	0
(PF9L)	PF97	PF96	PF95	PF94	PF93	PF92	PF91	PF90
	PF9n	Cont	rol of norm	al output o	r N-ch opei	n-drain out	out (n = 0 t	o 15)
	0	Normal ou	tput (CMO	S output)				
	1	N-ch open	-drain outp	out				
Caution When a PF9n bit		esistor at	EVDD or I	nigher is	connecte	ed to an c	output pir	n, be sure to
Remarks 1. The I Howe	•						e PF9H r	egister and th
Howe 8 bits	ever, wher as the Pl	using the	e higher 8 er, PF9 ca	bits of the n be read	e PF9 reg or writter	ister as th n in 8-bit o	r 1-bit uni	-

4.3.8 Port CM

Port CM is a 4-bit port for which I/O settings can be controlled in 1-bit units. Port CM includes the following alternate-function pins.

Pin Name	Pin	No.	Alternate-Function Pin Name	I/O	Remark	Block Type
	GF	GC				
PCM0	63	61	WAIT	Input	_	D-1
PCM1	64	62	CLKOUT	Output		D-2
PCM2	65	63	HLDAK	Output		D-2
PCM3	66	64	HLDRQ	Input		D-1

(1) Port CM register (PCM)

7 6 5 4 3 2 1 0 PCM 0 0 0 PCM3 PCM2 PCM1 PCM0 PCMn Output data control (in output mode) (n = 0 to 3) 0 Outputs 0 Output data control (in output mode) (n = 0 to 3)	After res	et: 00H (c	output latch)	R/W	Address	: FFFFF0	OCH		
PCMn Output data control (in output mode) (n = 0 to 3)		7	6	5	4	3	2	1	0
	PCM	0	0	0	0	PCM3	PCM2	PCM1	PCM0
0 Outputs 0		PCMn		Output	data contr	ol (in outpu	ut mode) (n	= 0 to 3)	
		0	Outputs 0						
1 Outputs 1		1	Outpute 1						

(2) Port CM mode register (PMCM)

After res	set: FFH	R/W	Address:	FFFFF02C	н						
	7	6	5	4	3	2	1	0			
PMCM	1	1	1	1	PMCM3	PMCM2	PMCM1	PMCM0			
	PMCMn		I/O mode control (n = 0 to 3)								
	0	Output r	node								
	1	Input mo	ode								

(3) Port CM mode control register (PMCCM)

After re	set: 00H	R/W	Address: I	FFFF04Cł	4							
	7	6	5	4	3	2	1	0				
PMCCM	0	0	0	0	PMCCM3	PMCCM2	PMCCM1	PMCCM0				
	РМССМЗ		Specification of PCM3 pin operation mode									
	0	I/O port										
	1	HLDRQ input										
	PMCCM2	MCCM2 Specification of PCM2 pin operation mode										
	0	I/O port										
	1	HLDAK o	utput									
	PMCCM1		Spe	cification of	PCM1 pin	operation r	node					
	0	I/O port	I/O port									
	1	CLKOUT	output									
	PMCCM0		Spe	cification of	PCM0 pin	operation r	node					
	0	I/O port										
	1	WAIT inp	ut									

4.3.9 Port CT

Port CT is a 4-bit port for which I/O settings can be controlled in 1-bit units. Port CT includes the following alternate-function pins.

Table 4-12. Port CT Alternate-Function Pin
--

Pin Name	Pin	No.	Alternate-Function Pin Name	I/O	Remark	Block Type
	GF	GC				
PCT0	67	65	WR0	Output	_	D-2
PCT1	68	66	WR1	Output		D-2
PCT4	69	67	RD	Output		D-2
PCT6	70	68	ASTB	Output		D-2

(1) Port CT register (PCT)

7 6 5 4 3 2 1 0 PCT 0 PCT6 0 PCT4 0 0 PCT1 PCT0
PCT 0 PCT6 0 PCT4 0 0 PCT1 PCT0
PCTn Output data control (in output mode) (n = 0, 1, 4, 6)
0 Outputs 0
1 Outputs 1

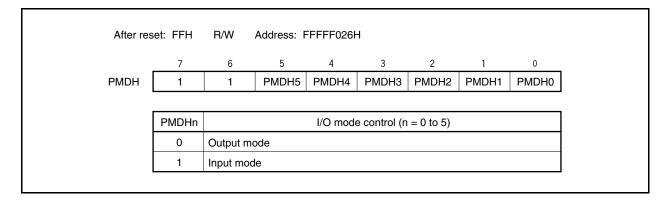
(2) Port CT mode register (PMCT)

After res	set: FFH	R/W	Address:	FFFF02AH	I							
	7	6	5	4	3	2	1	0				
PMCT	1	PMCT6	1	PMCT4	1	1	PMCT1	PMCT0				
	PMCTn		I/O mode control (n = 0, 1, 4, 6)									
	0	Output mo	de									
	1	Input mod	e									

(3) Port CT mode control register (PMCCT)

After re	set: 00H	R/W A	ddress:	FFFFF04AH				
	7	6	5	4	3	2	1	0
PMCCT	0	PMCCT6	0	PMCCT4	0	0	PMCCT1	PMCCT0
	РМССТ6			aification of	DOTE nin	anaration	mada	
			She	ecification of	FCTOPIII	operation	moue	
	0	I/O port						
	1	ASTB outp	ut					
	PMCCT4		Spe	ecification of	PCT4 pin	operation	mode	
	0	I/O port						
	1	RD output						
	PMCCT1		Spe	ecification of	PCT1 pin	operation	mode	
	0	I/O port						
	1	WR1 outpu	ıt					
	PMCCT0		Spe	ecification of	PCT0 pin	operation	mode	
	0	I/O port						
	1	WR0 outpu	ıt					

4.3.10 Port DH


Port DH is a 6-bit port for which I/O settings can be controlled in 1-bit units. Port DH includes the following alternate-function pins.

Pin Name	Pin	No.	Alternate-Function Pin Name	I/O	Remark	Block Type
	GF	GC				
PDH0	89	87	A16	Output	_	D-2
PDH1	90	88	A17	Output		D-2
PDH2	61	59	A18	Output		D-2
PDH3	62	60	A19	Output		D-2
PDH4	8	6	A20	Output		D-2
PDH5	9	7	A21	Output		D-2

(1) Port DH register (PDH)

After res	set: 00H (c	output latch)	R/W	Address	: FFFFF00)6H		
	7	6	5	4	3	2	1	0
PDH	0	0	PDH5	PDH4	PDH3	PDH2	PDH1	PDH0
	PDHn		Output	data contro	l (in output	mode) (n	= 0 to 5)	
	0	Outputs 0						
	1	Outputs 1						
		•						

(2) Port DH mode register (PMDH)

(3) Port DH mode control register (PMCDH)

After res	et: 00H	R/W	Address: F	FFFF046F	ł			
	7	6	5	4	3	2	1	0
PMCDH	0	0	PMCDH5	PMCDH4	PMCDH3	PMCDH2	PMCDH1	PMCDH0
	PMCDHn		Specificati	on of PDH	n pin opera	tion mode	(n = 0 to 5)	
	0	I/O port						
	1	Am outpu	t (address l	ous output)	(m = 16 to	21)		

4.3.11 Port DL

Port DL is a 16-bit port for which I/O settings can be controlled in 1-bit units. Port DL includes the following alternate-function pins.

Pin Name	Pin	No.	. Alternate-Function Pin Name		Remark	Block Type
	GF	GC				
PDL0	73	71	AD0	I/O	_	D-3
PDL1	74	72	AD1	I/O		D-3
PDL2	75	73	AD2	I/O		D-3
PDL3	76	74	AD3	I/O		D-3
PDL4	77	75	AD4	I/O		D-3
PDL5	78	76	AD5/FLMD1 ^{Note}	I/O		D-3
PDL6	79	77	AD6	I/O		D-3
PDL7	80	78	AD7	I/O		D-3
PDL8	81	79	AD8	I/O		D-3
PDL9	82	80	AD9	I/O		D-3
PDL10	83	81	AD10	I/O		D-3
PDL11	84	82	AD11	I/O		D-3
PDL12	85	83	AD12	I/O		D-3
PDL13	86	84	AD13	I/O		D-3
PDL14	87	85	AD14	I/O		D-3
PDL15	88	86	AD15	I/O		D-3

Table 4-14. Port DL Alternate-Function Pins

Note Since this pin is set in the flash memory programming mode, it does not need to be manipulated with the port control register. For details, see **CHAPTER 26 FLASH MEMORY**.

(1) Port DL register (PDL)

After res	et: 0000H	(output late	ch) R/V	/ Addre		FFFF004H FFFFF004	,	FFFF005H			
	15	14	13	12	11	10	9	8			
PDL (PDLH)	PDL15	PDL14	PDL13	PDL12	PDL11	PDL10	PDL9	PDL8			
	7	6	5	4	3	2	1	0			
(PDLL)	PDL7	PDL6	PDL5	PDL4	PDL3	PDL2	PDL1	PDL0			
	PDLn	Output data control (in output mode) (n = 0 to 15)									
	0	Outputs 0									
	1	Outputs 1									
וכ 2. די	owever, v ower 8 bits o read/wr	vhen using as the PI	g the high DLL regis o 15 of th	er 8 bits (ter, PDL c	of the PD an be rea	L register d or writte	n in 8-bit	DLH register ar or 1-bit units. pecify them as			

(2) Port DL mode register (PMDL)

After res	set: FFFFH	R/W	Address	: PMDL F		, H, PMDLH	FFFFF025	ίΗ				
	15	14	13	12	11	10	9	8				
PMDL (PMDLH)	PMDL15	PMDL14	PMDL13	PMDL12	PMDL11	PMDL10	PMDL9	PMDL8				
	7	6	5	4	3	2	1	0				
(PMDLL)	PMDL7	PMDL6	PMDL5	PMDL4	PMDL3	PMDL2	PMDL1	PMDL0				
	PMDLn	PMDLn I/O mode control (n = 0 to 15)										
	0	0 Output mode										
	1	Input mode										
the un 2. To	wever, wh e lower 8 its.	en using bits as th bits 8 to	the highe e PMDLL 15 of the	r 8 bits of . register,	the PMD PMDL ca	L register an be rea	d or writt	MDLH reg en in 8-bi pecify the	t or 1-bit			

(3) Port DL mode control register (PMCDL)

After re	eset: 0000H	R/W	Address	PMCDL F		H, IH, PMCDL	.H FFFF0	45H
	15	14	13	12	11	10	9	8
PMCDL (PMCDLH)	PMCDL15	PMCDL14	PMCDL13	PMCDL12	PMCDL11	PMCDL10	PMCDL9	PMCDL8
	7	6	5	4	3	2	1	0
(PMCDLL)	PMCDL7	PMCDL6	PMCDL5	PMCDL4	PMCDL3	PMCDL2	PMCDL1	PMCDL0
	PMCDLn 0	I/O port	Specificatio	on of PDLn	pin operat	ion mode (i	n = 0 to 15)
	1	•	address/da	ta bus I/O)				
				-	•••			e BS30 to BS AD15 pins.
Remarks 1. The	PMCDL r	egister ca	n be read	or written	in 16-bit	units.		
and		•	•			•		PMCDLH regis itten in 8-bit or
	read/write I o 7 of the P			MCDL reg	jister in 8-	bit or 1-bi	t units, sp	ecify them as b

4.4 Block Diagrams

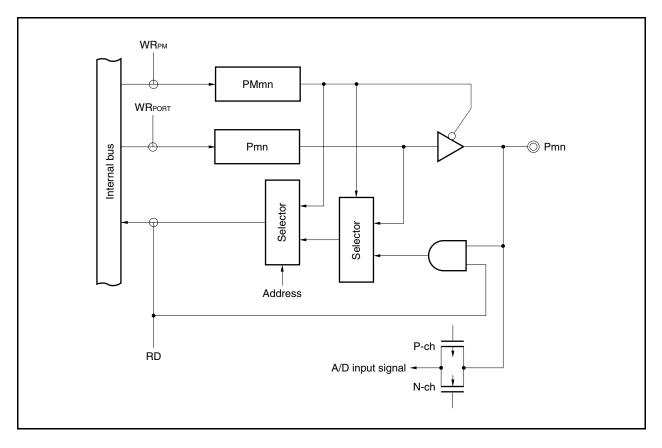


Figure 4-3. Block Diagram of Type A-1

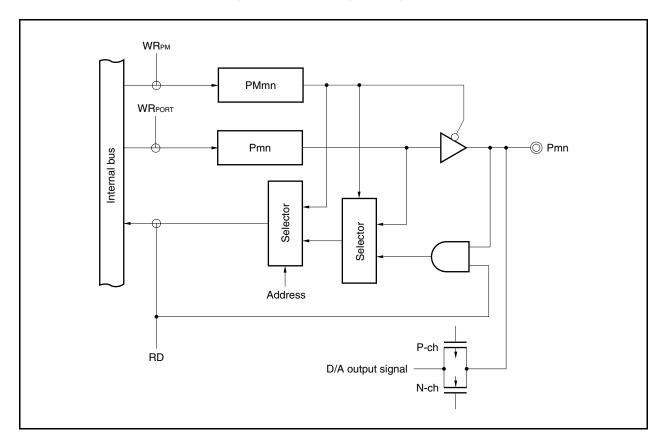


Figure 4-4. Block Diagram of Type A-2

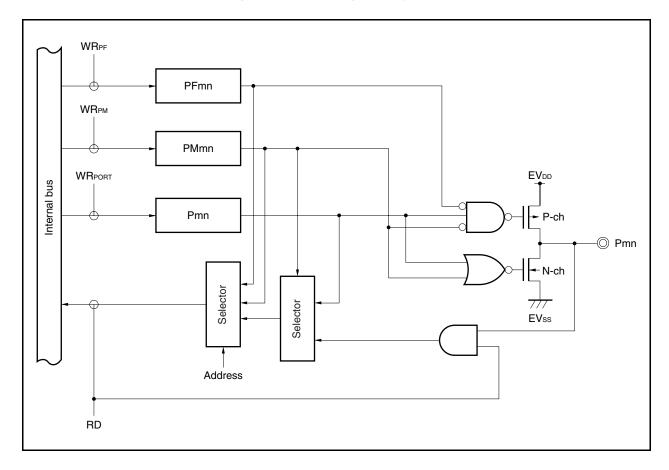


Figure 4-5. Block Diagram of Type C-1

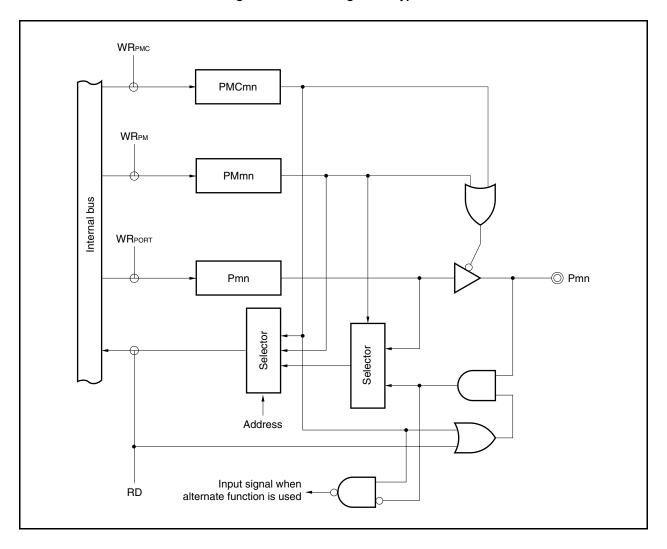


Figure 4-6. Block Diagram of Type D-1

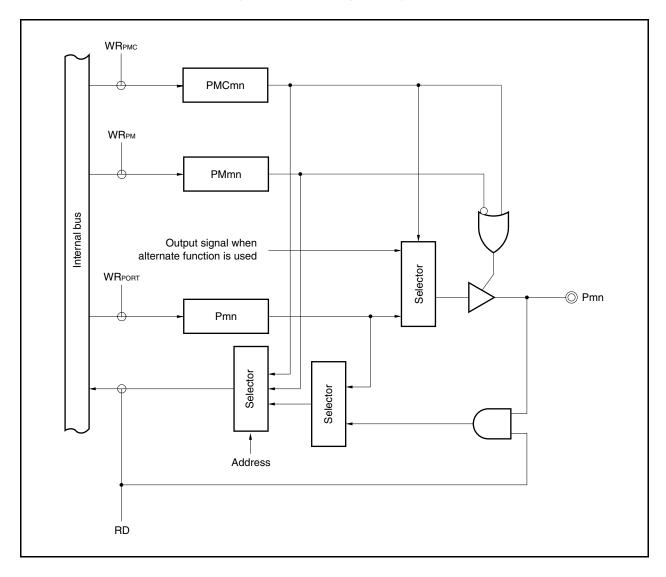


Figure 4-7. Block Diagram of Type D-2

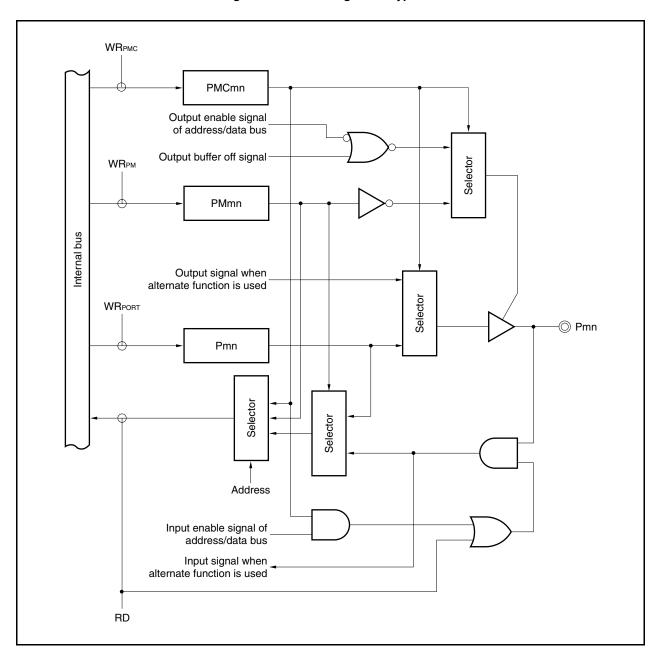


Figure 4-8. Block Diagram of Type D-3

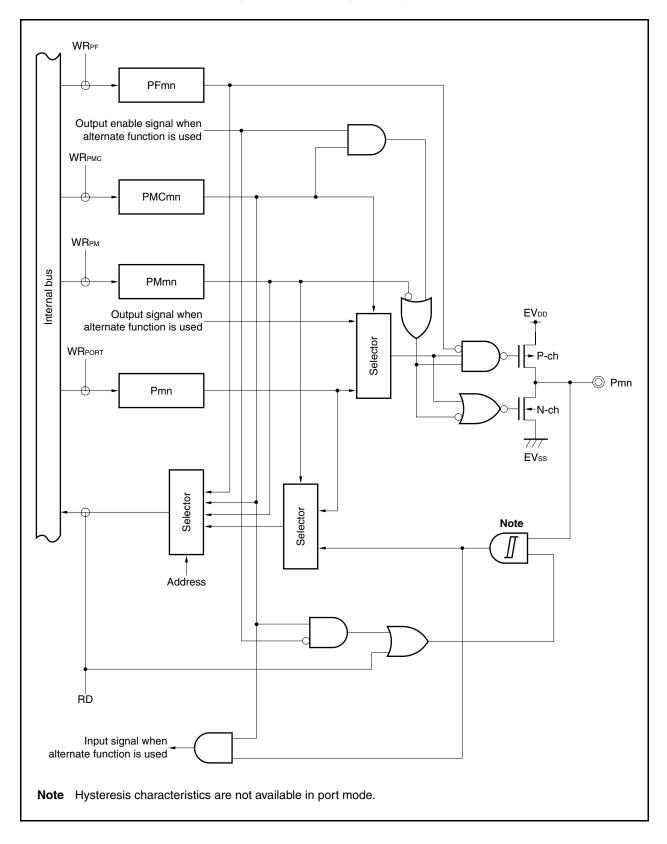


Figure 4-9. Block Diagram of Type E-3

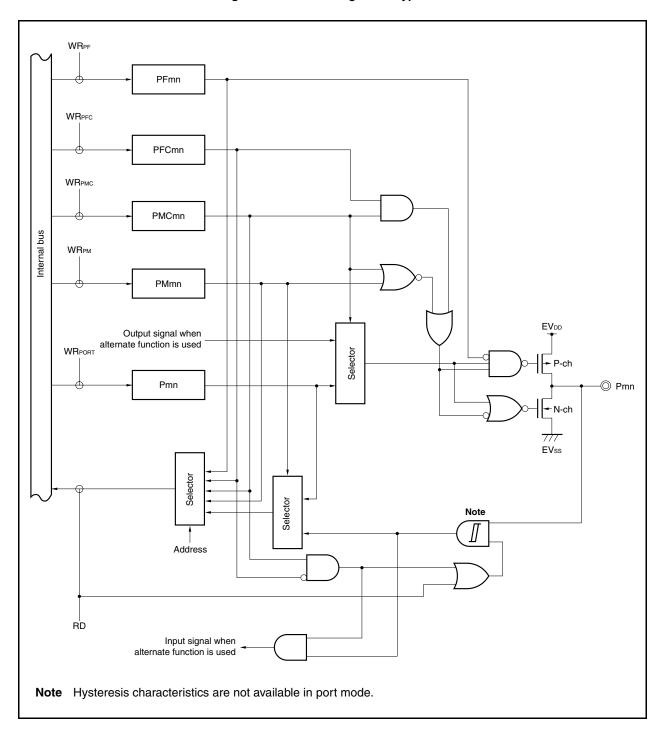


Figure 4-10. Block Diagram of Type G-1

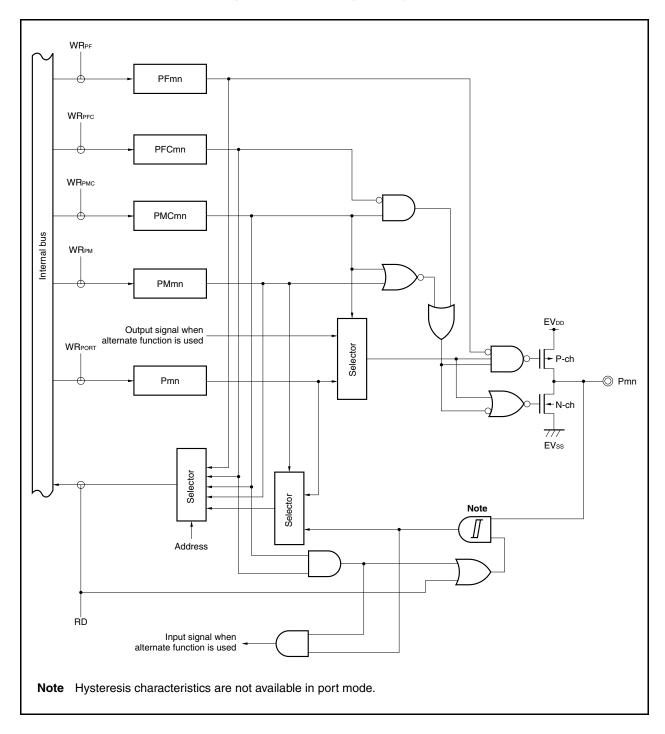


Figure 4-11. Block Diagram of Type G-2

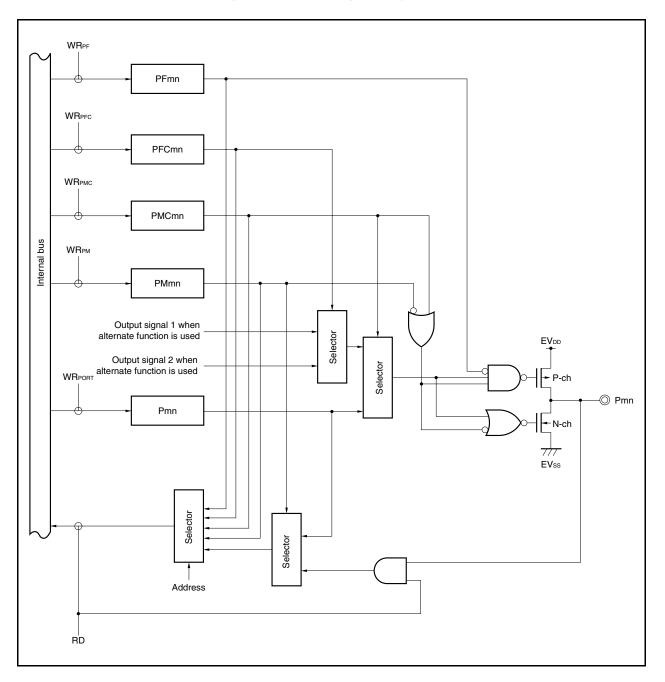


Figure 4-12. Block Diagram of Type G-3

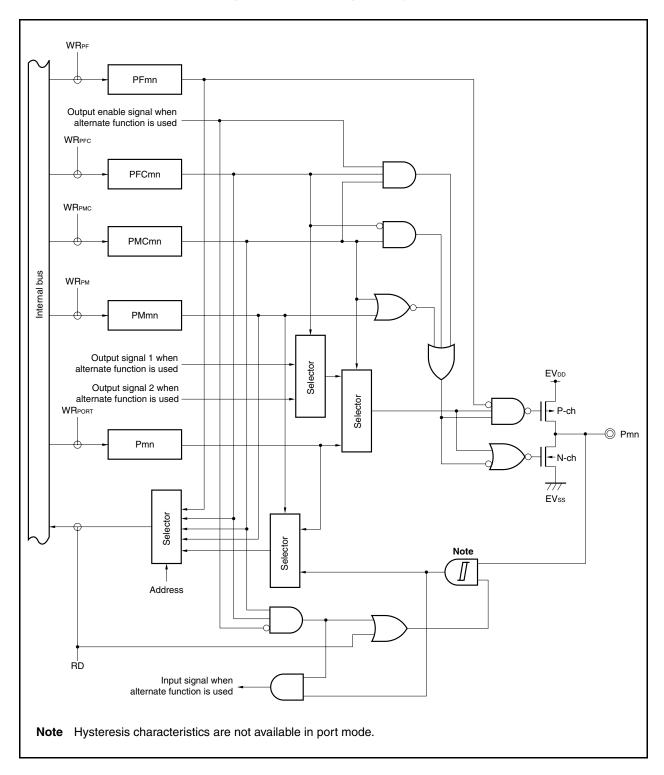


Figure 4-13. Block Diagram of Type G-5

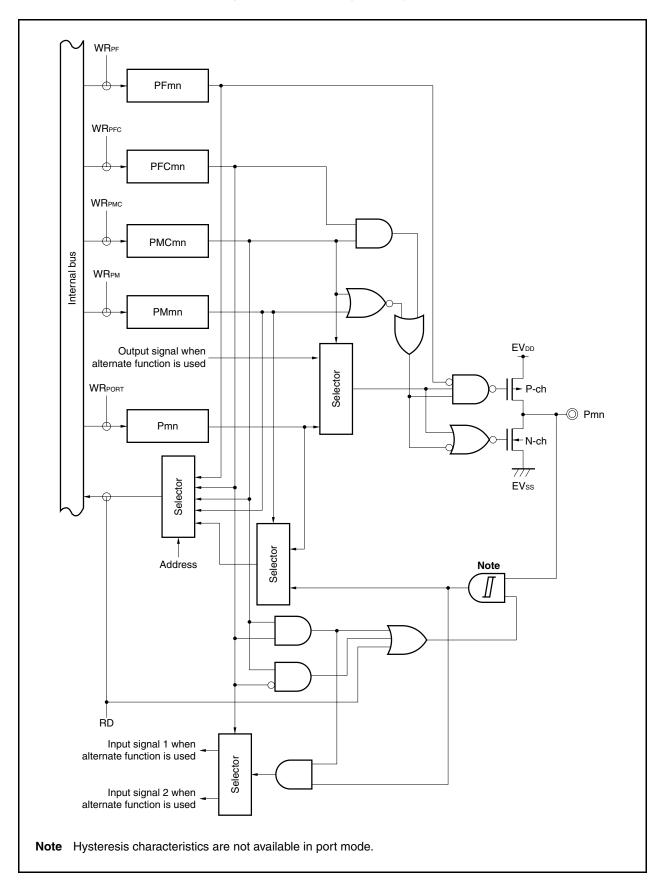


Figure 4-14. Block Diagram of Type G-6

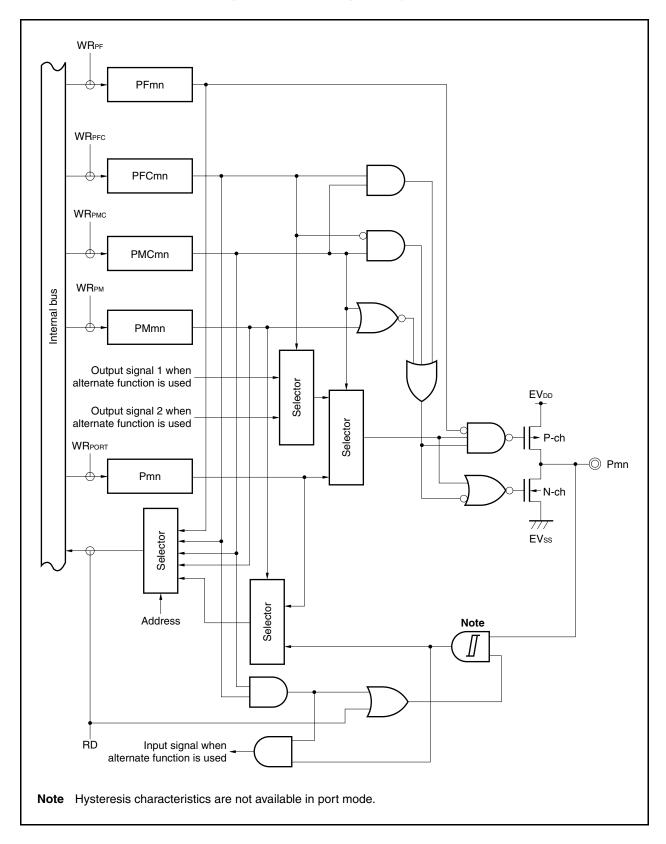


Figure 4-15. Block Diagram of Type G-12

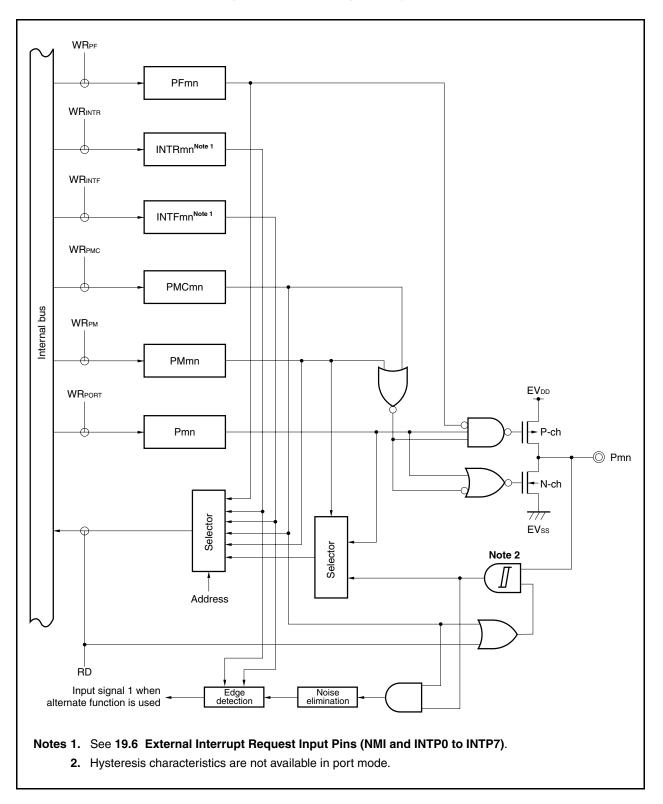


Figure 4-16. Block Diagram of Type L-1

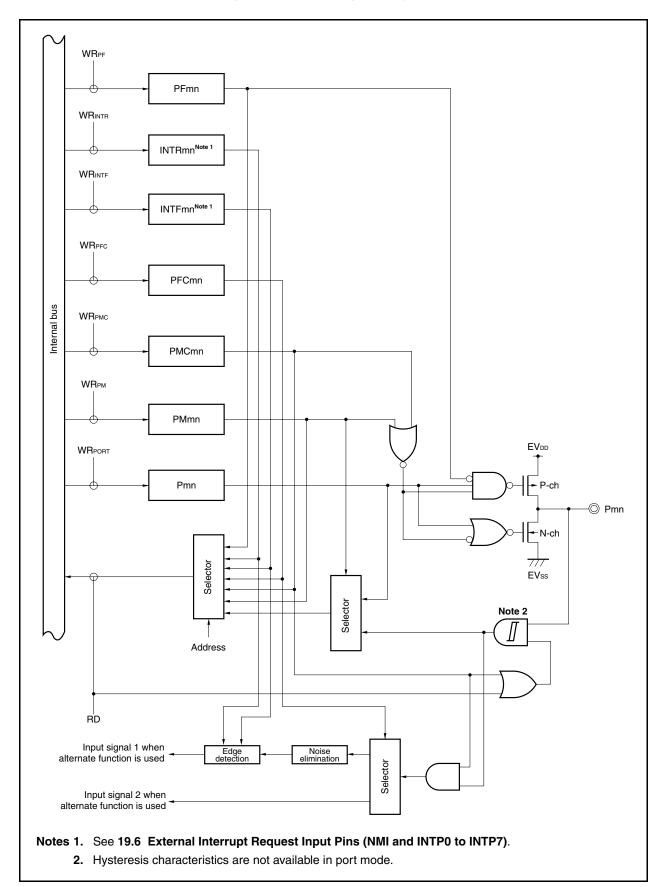
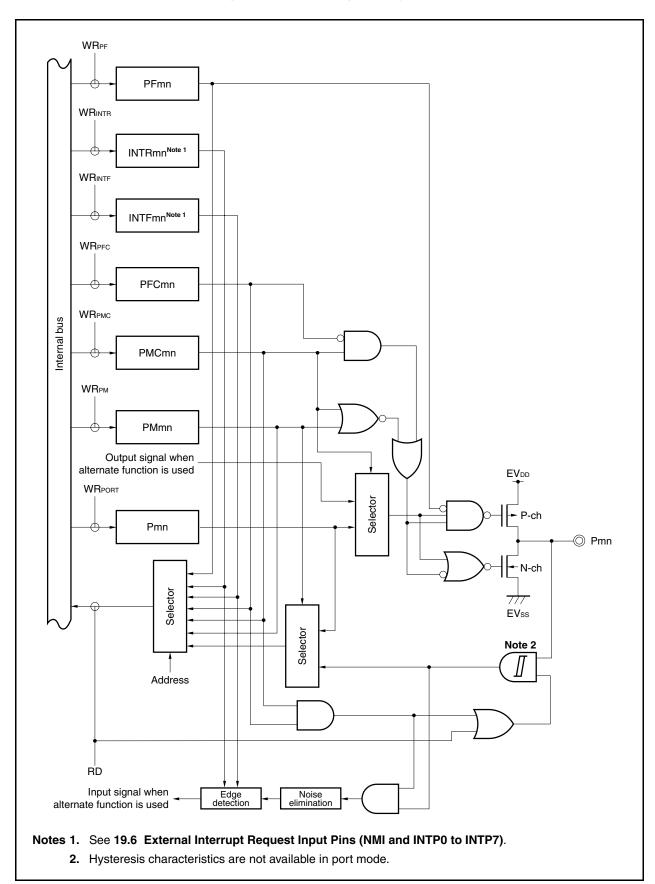



Figure 4-17. Block Diagram of Type N-1

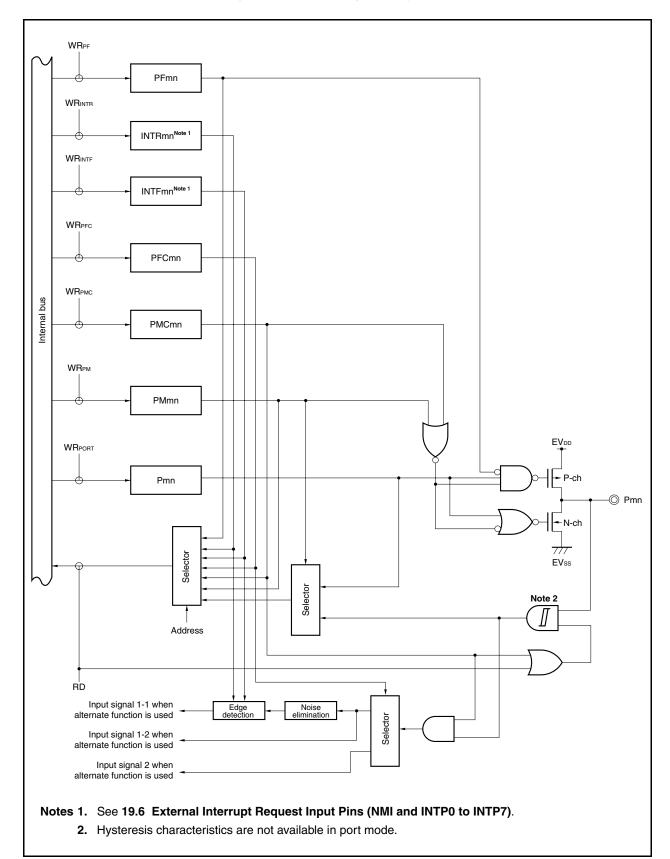
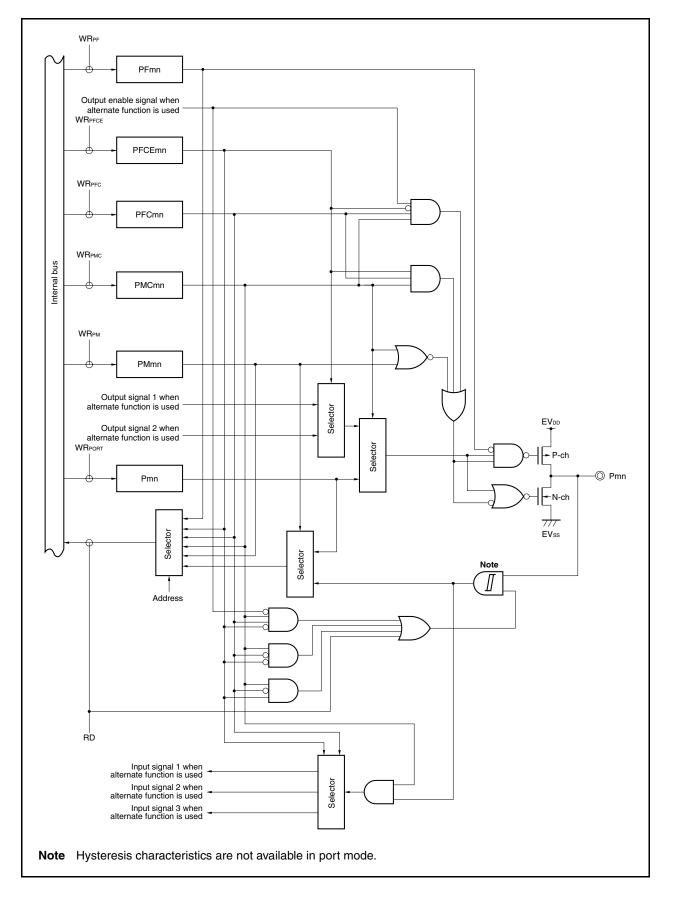



Figure 4-19. Block Diagram of Type N-3

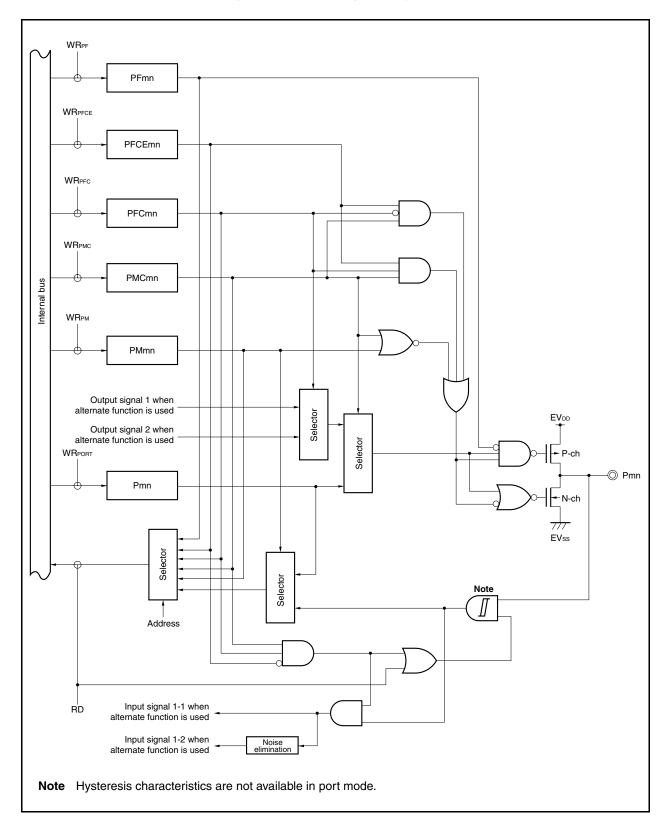


Figure 4-21. Block Diagram of Type U-5

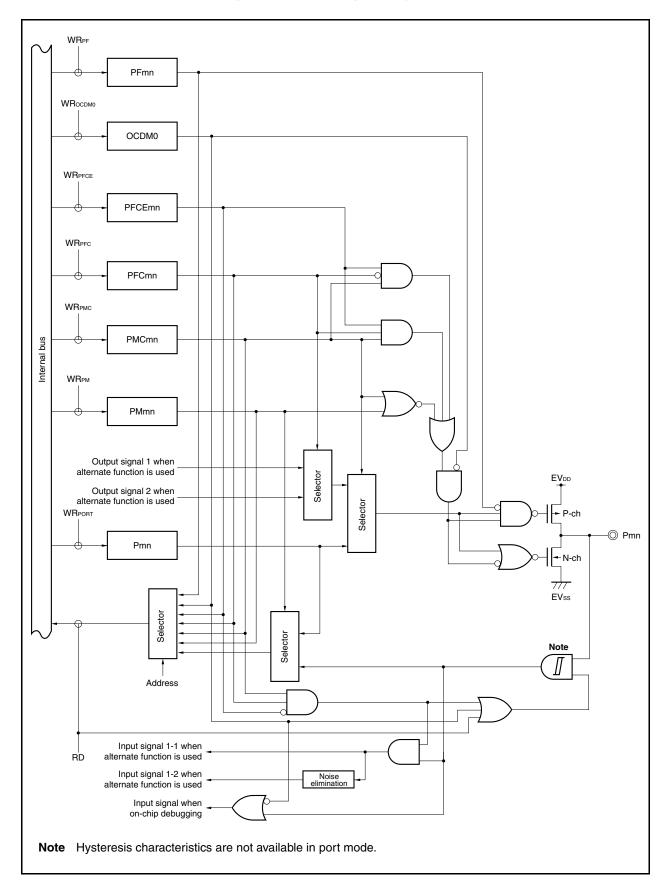


Figure 4-22. Block Diagram of Type U-6

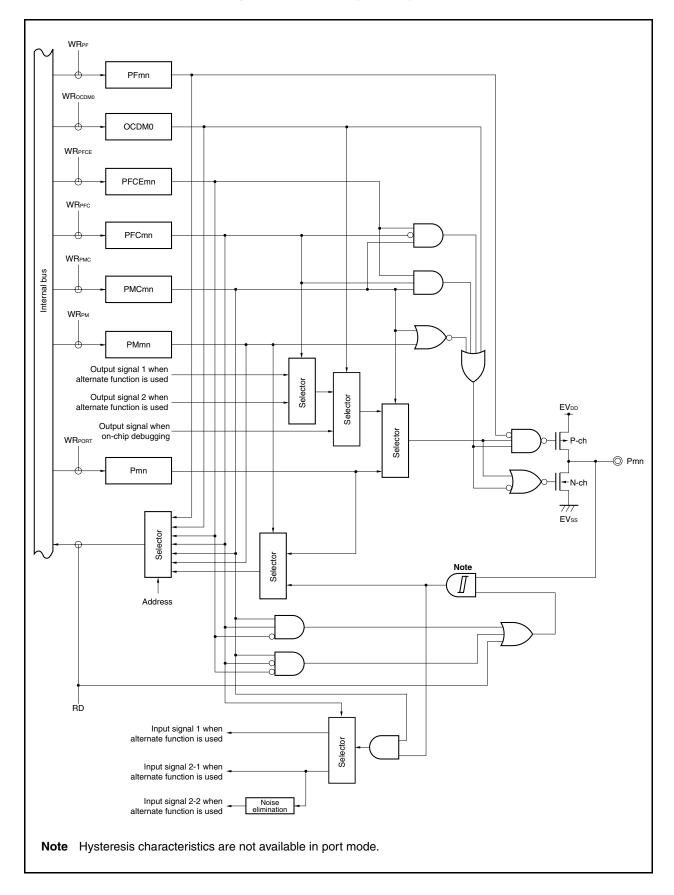


Figure 4-23. Block Diagram of Type U-7

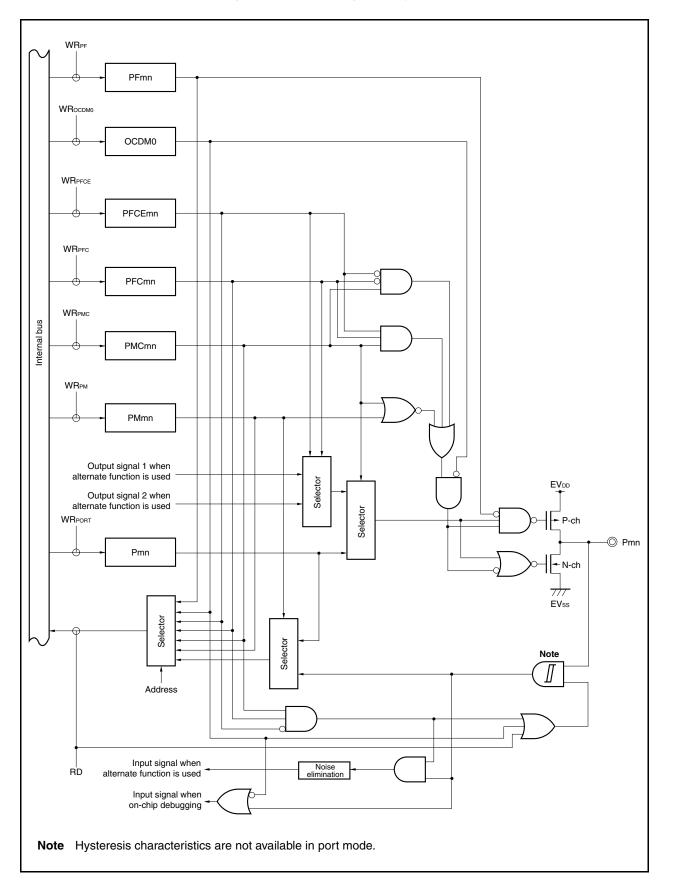


Figure 4-24. Block Diagram of Type U-8

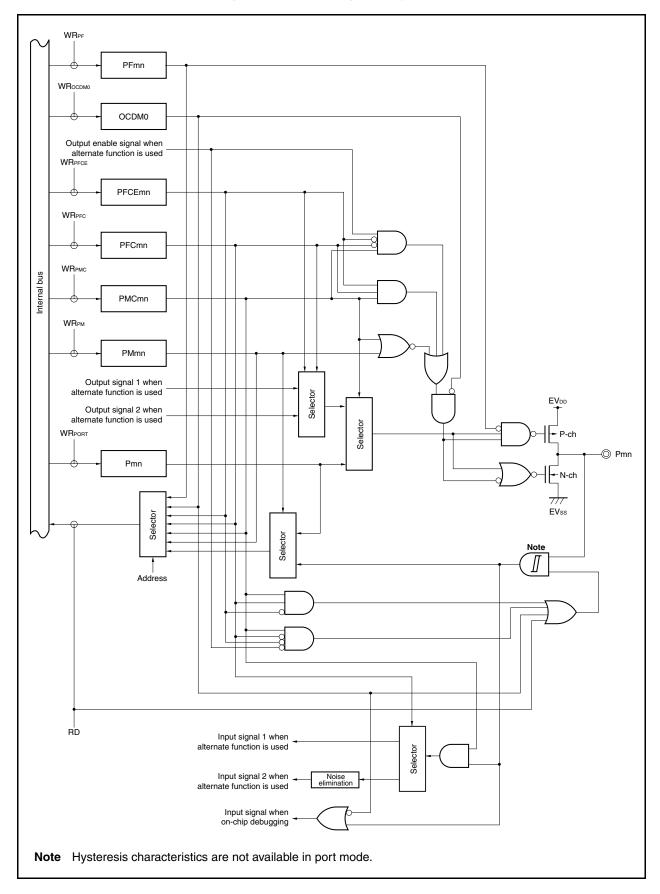
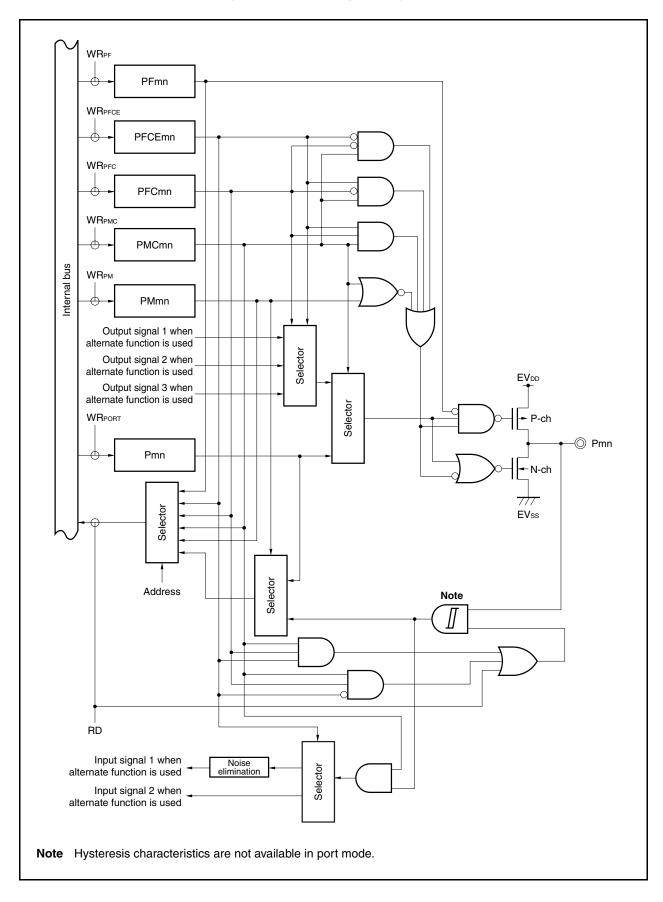
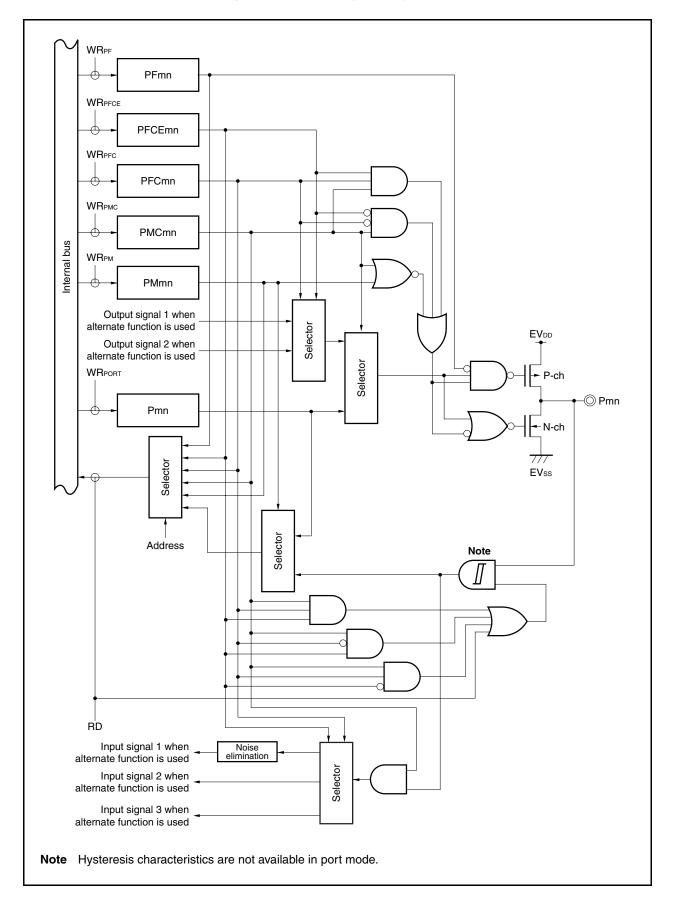
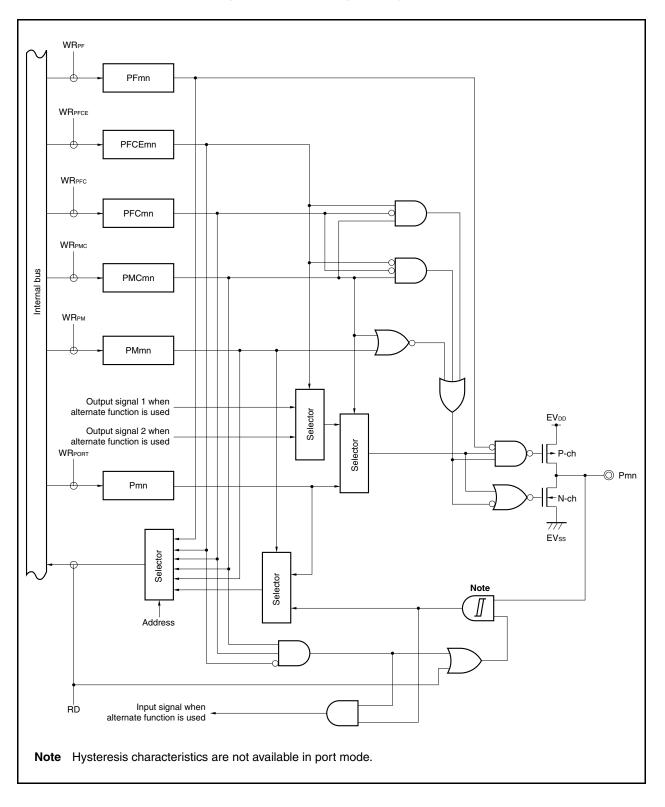
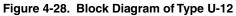
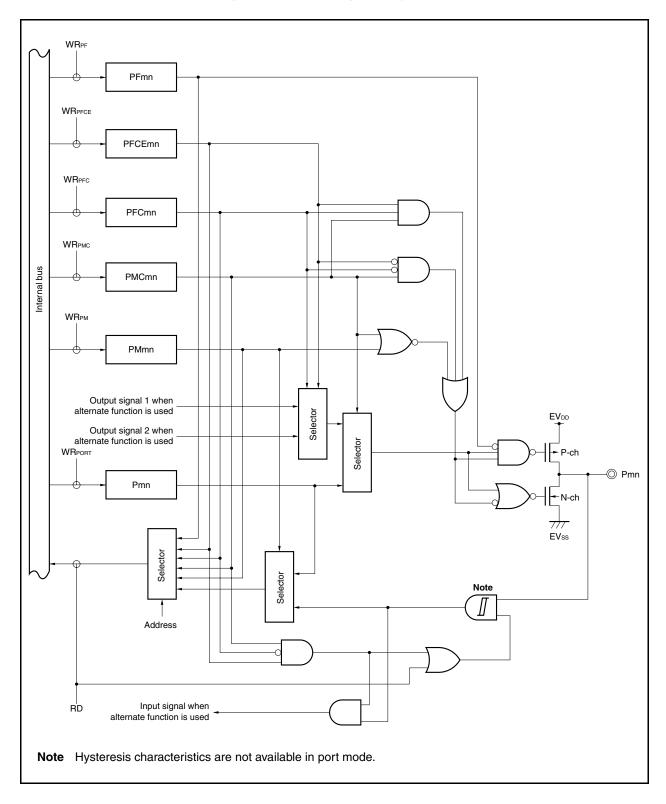


Figure 4-25. Block Diagram of Type U-9


Figure 4-26. Block Diagram of Type U-10

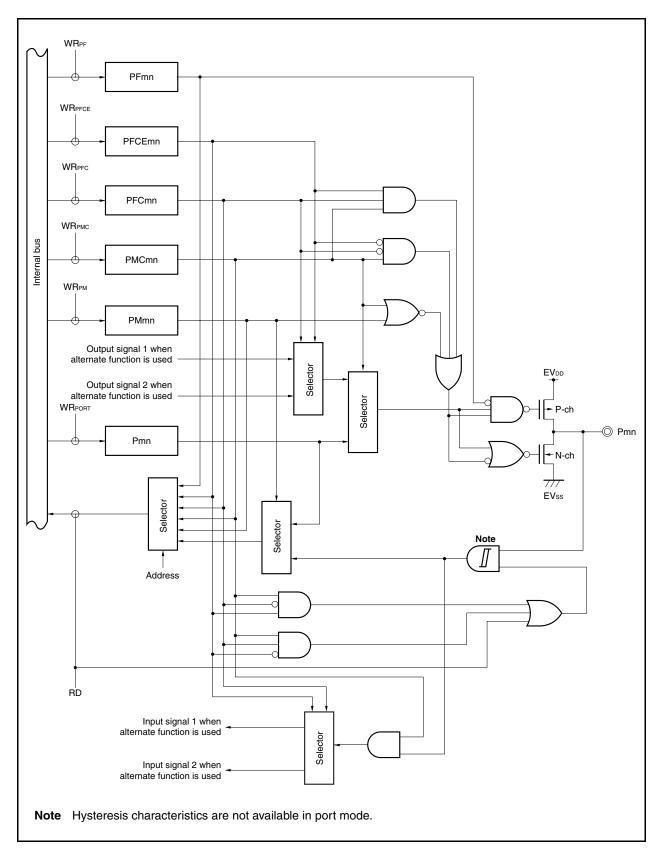
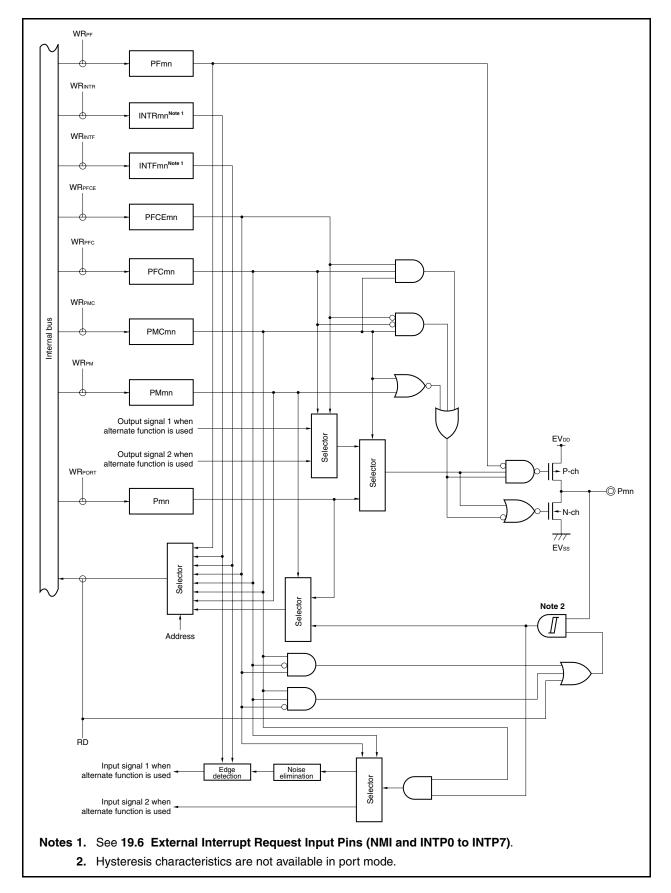



Figure 4-30. Block Diagram of Type U-14

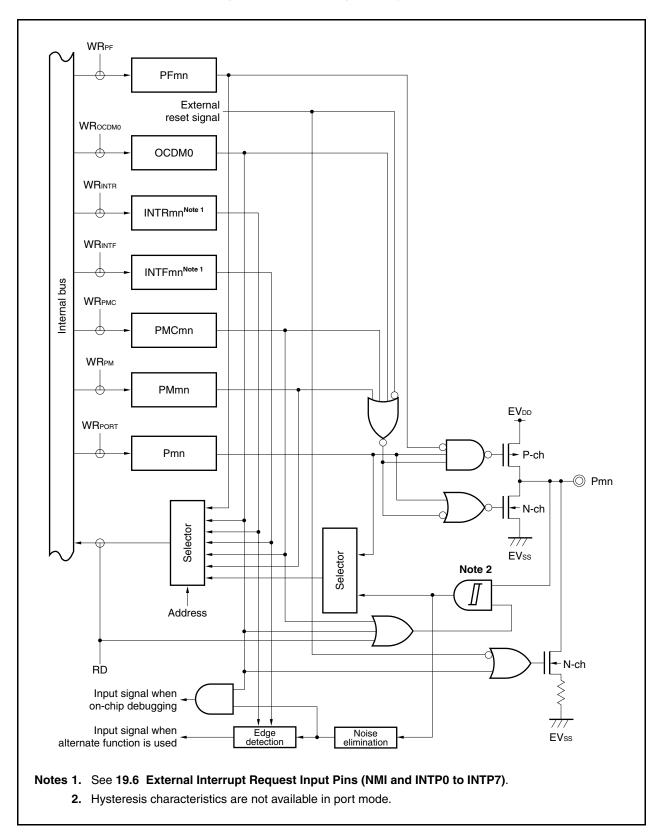


Figure 4-32. Block Diagram of Type AA-1

4.5 Port Register Settings When Alternate Function Is Used

Table 4-15 shows the port register settings when each port is used for an alternate function. When using a port pin as an alternate-function pin, refer to the description of each pin.

Pin Name	Alternate	e Function	Pnx Bit of	PMnx Bit of	PMCnx Bit of	PFCEnx Bit of	PFCnx Bit of	Other Bits
	Name	I/O	Pn Register	PMn Register	PMCn Register	PFCEn Register	PFCn Register	(Registers)
P02	NMI	Input	P02 = Setting not required	PM02 = Setting not required	PMC02 = 1	-	-	
P03	INTP0	Input	P03 = Setting not required	PM03 = Setting not required	PMC03 = 1	-	PFC03 = 0	
	ADTRG	Input	P03 = Setting not required	PM03 = Setting not required	PMC03 = 1	-	PFC03 = 1	
P04	INTP1	Input	P04 = Setting not required	PM04 = Setting not required	PMC04 = 1	-	-	
P05	INTP2	Input	P05 = Setting not required	PM05 = Setting not required	PMC05 = 1	-	-	
	DRST	Input	P05 = Setting not required	PM05 = Setting not required	PMC05 = Setting not required	-	-	OCDM0 (OCDM) = 1
P06	INTP3	Input	P06 = Setting not required	PM06 = Setting not required	PMC06 = 1	-	-	
P10	ANO0	Output	P10 = Setting not required	PM10 = 1	-	-	-	
P11	ANO1	Output	P11 = Setting not required	PM11 = 1	-	-	-	
P30	TXDA0	Output	P30 = Setting not required	PM30 = Setting not required	PMC30 = 1	-	PFC30 = 0	
	SOB4	Output	P30 = Setting not required	PM30 = Setting not required	PMC30 = 1	-	PFC30 = 1	
P31	RXDA0	Input	P31 = Setting not required	PM31 = Setting not required	PMC31 = 1	-	Note , PFC31 = 0	
	INTP7	Input	P31 = Setting not required	PM31 = Setting not required	PMC31 = 1	-	Note , PFC31 = 0	
	SIB4	Input	P31 = Setting not required	PM31 = Setting not required	PMC31 = 1	-	PFC31 = 1	
P32	ASCKA0	Input	P32 = Setting not required	PM32 = Setting not required	PMC32 = 1	PFCE32 = 0	PFC32 = 0	
	SCKB4	I/O	P32 = Setting not required	PM32 = Setting not required	PMC32 = 1	PFCE32 = 0	PFC32 = 1	
	TIP00	Input	P32 = Setting not required	PM32 = Setting not required	PMC32 = 1	PFCE32 = 1	PFC32 = 0	
	TOP00	Output	P32 = Setting not required	PM32 = Setting not required	PMC32 = 1	PFCE32 = 1	PFC32 = 1	
P33	TIP01	Input	P33 = Setting not required	PM33 = Setting not required	PMC33 = 1	-	PFC33 = 0	
	TOP01	Output	P33 = Setting not required	PM33 = Setting not required	PMC33 = 1	_	PFC33 = 1	

Table 4-15. Settings When Port Pins Are Used for Alternate Functions (1/7)

- Note INTP7 and RXDA0 are alternate functions. When using the pin as the RXDA0 pin, disable edge detection for the alternate-function INTP7 pin (clear the INTF3.INTF31 bit and INTR3.INTR31 bit to 0). When using the pin as the INTP7 pin, stop the UARTA0 reception operation (clear the UA0CTL0.UA0RXE bit to 0).
- Caution When using one of the P10 and P11 pins as an I/O port and the other as a D/A output pin (ANO0, ANO1), do so in an application where the port I/O level does not change during D/A output.

160

Pin Name	Alternat	e Function	Pnx Bit of	PMnx Bit of	PMCnx Bit of	PFCEnx Bit of	PFCnx Bit of	Other Bits
	Name	I/O	Pn Register	PMn Register	PMCn Register	PFCEn Register	PFCn Register	(Registers)
P34	TIP10	Input	P34 = Setting not required	PM34 = Setting not required	PMC34 = 1	-	PFC34 = 0	
	TOP10	Output	P34 = Setting not required	PM34 = Setting not required	PMC34 = 1	-	PFC34 = 1	
P35	TIP11	Input	P35 = Setting not required	PM35 = Setting not required	PMC35 = 1	-	PFC35 = 0	
	TOP11	Output	P35 = Setting not required	PM35 = Setting not required	PMC35 = 1	-	PFC35 = 1	
P38	TXDA2	Output	P38 = Setting not required	PM38 = Setting not required	PMC38 = 1	_	PFC38 = 0	
	SDA00	I/O	P38 = Setting not required	PM38 = Setting not required	PMC38 = 1	-	PFC38 = 1	PF38 (PF3) = 1
P39	RXDA2	Input	P39 = Setting not required	PM39 = Setting not required	PMC39 = 1	_	PFC39 = 0	
	SCL00	I/O	P39 = Setting not required	PM39 = Setting not required	PMC39 = 1	_	PFC39 = 1	PF39 (PF3) = 1
P40	SIB0	Input	P40 = Setting not required	PM40 = Setting not required	PMC40 = 1	-	PFC40 = 0	
	SDA01	I/O	P40 = Setting not required	PM40 = Setting not required	PMC40 = 1	-	PFC40 = 1	PF40 (PF4) = 1
P41	SOB0	Output	P41 = Setting not required	PM41 = Setting not required	PMC41 = 1	_	PFC41 = 0	
	SCL01	I/O	P41 = Setting not required	PM41 = Setting not required	PMC41 = 1	-	PFC41 = 1	PF41 (PF4) = 1
P42	SCKB0	I/O	P42 = Setting not required	PM42 = Setting not required	PMC42 = 1	_	-	
P50	TIQ01	Input	P50 = Setting not required	PM50 = Setting not required	PMC50 = 1	PFCE50 = 0	PFC50 = 1	KRM0 (KRM) = 0
	KR0	Input	P50 = Setting not required	PM50 = Setting not required	PMC50 = 1	PFCE50 = 0	PFC50 = 1	TQ0TIG2, TQ0TIG3 (TQ0IOC1) = 0
	TOQ01	Output	P50 = Setting not required	PM50 = Setting not required	PMC50 = 1	PFCE50 = 1	PFC50 = 0	
	RTP00	Output	P50 = Setting not required	PM50 = Setting not required	PMC50 = 1	PFCE50 = 1	PFC50 = 1	

Table 4-15. Settings When Port Pins Are Used for Alternate Functions (2/7)

Pin Name	Alternate	Function	Pnx Bit of	PMnx Bit of	PMCnx Bit of	PFCEnx Bit of	PFCnx Bit of	Other Bits
	Name	I/O	Pn Register	PMn Register	PMCn Register	PFCEn Register	PFCn Register	(Registers)
P51	TIQ02	Input	P51 = Setting not required	PM51 = Setting not required	PMC51 = 1	PFCE51 = 0	PFC51 = 1	KRM1 (KRM) = 0
	KR1	Input	P51 = Setting not required	PM51 = Setting not required	PMC51 = 1	PFCE51 = 0	PFC51 = 1	TQ0TIG4, TQ0TIG5 (TQ0IOC1) = 0
	TOQ02	Output	P51 = Setting not required	PM51 = Setting not required	PMC51 = 1	PFCE51 = 1	PFC51 = 0	
	RTP01	Output	P51 = Setting not required	PM51 = Setting not required	PMC51 = 1	PFCE51 = 1	PFC51 = 1	
P52	TIQ03	Input	P52 = Setting not required	PM52 = Setting not required	PMC52 = 1	PFCE52 = 0	PFC52 = 1	KRM2 (KRM) = 0
	KR2	Input	P52 = Setting not required	PM52 = Setting not required	PMC52 = 1	PFCE52 = 0	PFC52 = 1	TQ0TIG6, TQ0TIG7 (TQ0I0C1) = 0
	TOQ03	Output	P52 = Setting not required	PM52 = Setting not required	PMC52 = 1	PFCE52 = 1	PFC52 = 0	
	RTP02	Output	P52 = Setting not required	PM52 = Setting not required	PMC52 = 1	PFCE52 = 1	PFC52 = 1	
	DDI	Input	P52 = Setting not required	PM52 = Setting not required	PMC52 = Setting not required	PFCE52 = Setting not required	PFC52 = Setting not required	OCDM0 (OCDM) = 1
P53	SIB2	Input	P53 = Setting not required	PM53 = Setting not required	PMC53 = 1	PFCE53 = 0	PFC53 = 0	
	TIQ00	Input	P53 = Setting not required	PM53 = Setting not required	PMC53 = 1	PFCE53 = 0	PFC53 = 1	KRM3 (KRM) = 0
	KR3	Input	P53 = Setting not required	PM53 = Setting not required	PMC53 = 1	PFCE53 = 0	PFC53 = 1	TQ0TIG0, TQ0TIG1 (TQ0IOC1) = 0,
								TQ0EES0, TQ0EES1 (TQ0IOC2) = 0,
								TQ0ETS0, TQ0ETS1 (TQ0IOC2) = 0
	TOQ00	Output	P53 = Setting not required	PM53 = Setting not required	PMC53 = 1	PFCE53 = 1	PFC53 = 0	
	RTP03	Output	P53 = Setting not required	PM53 = Setting not required	PMC53 = 1	PFCE53 = 1	PFC53 = 1	
	DDO	Output	P53 = Setting not required	PM53 = Setting not required	PMC53 = Setting not required	PFCE53 = Setting not required	PFC53 = Setting not required	OCDM0 (OCDM) = 1
P54	SOB2	Output	P54 = Setting not required	PM54 = Setting not required	PMC54 = 1	PFCE54 = 0	PFC54 = 0	
	KR4	Input	P54 = Setting not required	PM54 = Setting not required	PMC54 = 1	PFCE54 = 0	PFC54 = 1	
	RTP04	Output	P54 = Setting not required	PM54 = Setting not required	PMC54 = 1	PFCE54 = 1	PFC54 = 1	
	DCK	Input	P54 = Setting not required	PM54 = Setting not required	PMC54 = Setting not required	PFCE54 = Setting not required	PFC54 = Setting not required	OCDM0 (OCDM) = 1
P55	SCKB2	I/O	P55 = Setting not required	PM55 = Setting not required	PMC55 = 1	PFCE55 = 0	PFC55 = 0	
	KR5	Input	P55 = Setting not required	PM55 = Setting not required	PMC55 = 1	PFCE55 = 0	PFC55 = 1	
	RTP05	Output	P55 = Setting not required	PM55 = Setting not required	PMC55 = 1	PFCE55 = 1	PFC55 = 1	
	DMS	Input	P55 = Setting not required	PM55 = Setting not required	PMC55 = Setting not required	PFCE55 = Setting not required	PFC55 = Setting not required	OCDM0 (OCDM) = 1

Table 4-15. Settings When Port Pins Are Used for Alternate Functions (3/7)

Pin Name	Alternate	Function	Pnx Bit of	PMnx Bit of	PMCnx Bit of	PFCEnx Bit of	PFCnx Bit of	Other Bits
	Name	I/O	Pn Register	PMn Register	PMCn Register	PFCEn Register	PFCn Register	(Registers)
P70	ANI0	Input	P70 = Setting not required	PM70 = 1	-	-	-	
P71	ANI1	Input	P71 = Setting not required	PM71 = 1	-	-	-	
P72	ANI2	Input	P72 = Setting not required	PM72 = 1	-	-	-	
P73	ANI3	Input	P73 = Setting not required	PM73 = 1	-	-	-	
P74	ANI4	Input	P74 = Setting not required	PM74 = 1	-	-	-	
P75	ANI5	Input	P75 = Setting not required	PM75 = 1	-	-	-	
P76	ANI6	Input	P76 = Setting not required	PM76 = 1	_	-	-	
P77	ANI7	Input	P77 = Setting not required	PM77 = 1	-	-	-	
P78	ANI8	Input	P78 = Setting not required	PM78 = 1	_	-	-	
P79	ANI9	Input	P79 = Setting not required	PM79 = 1	-	-	-	
P710	ANI10	Input	P710 = Setting not required	PM710 = 1	-	-	-	
P711	ANI11	Input	P711 = Setting not required	PM711 = 1	-	-	-	
P90	A0	Output	P90 = Setting not required	PM90 = Setting not required	PMC90 = 1	PFCE90 = 0	PFC90 = 0	Note 1
	KR6	Input	P90 = Setting not required	PM90 = Setting not required	PMC90 = 1	PFCE90 = 0	PFC90 = 1	
	TXDA1	Output	P90 = Setting not required	PM90 = Setting not required	PMC90 = 1	PFCE90 = 1	PFC90 = 0	
	SDA02	I/O	P90 = Setting not required	PM90 = Setting not required	PMC90 = 1	PFCE90 = 1	PFC90 = 1	PF90 (PF9) = 1
P91	A1	Output	P91 = Setting not required	PM91 = Setting not required	PMC91 = 1	PFCE91 = 0	PFC91 = 0	Note 1
	KR7	Input	P91 = Setting not required	PM91 = Setting not required	PMC91 = 1	PFCE91 = 0	PFC91 = 1	
	RXDA1/KR7Note 2	Input	P91 = Setting not required	PM91 = Setting not required	PMC91 = 1	PFCE91 = 1	PFC91 = 0	
	SCL02	I/O	P91 = Setting not required	PM91 = Setting not required	PMC91 = 1	PFCE91 = 1	PFC91 = 1	PF91 (PF9) = 1

Table 4-15. Settings When Port Pins Are Used for Alternate Functions (4/7)

Notes 1. When setting pins A0 to A15 as the alternate function, set all 16 bits of the PMC9 register to FFFFH at once.

2. The RXDA1 and KR7 pins must not be used at the same time. When using the RXDA1 pin, do not use the KR7 pin. When using the KR7 pin, do not use the RXDA1 pin (it is recommended to set the PFC91 bit to 1 and clear the PFCE91 bit to 0).

Pin Name	Alternate	e Function					250 84 6	Other Bits
T in Ramo	Name	I/O	Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCnx Bit of PMCn Register	PFCEnx Bit of PFCEn Register	PFCnx Bit of PFCn Register	(Registers)
P92	A2	Output	P92 = Setting not required	PM92 = Setting not required	PMC92 = 1	PFCE92 = 0	PFC92 = 0	Note
	TIP41	Input	P92 = Setting not required	PM92 = Setting not required	PMC92 = 1	PFCE92 = 0	PFC92 = 1	
	TOP41	Output	P92 = Setting not required	PM92 = Setting not required	PMC92 = 1	PFCE92 = 1	PFC92 = 0	
P93	A3	Output	P93 = Setting not required	PM93 = Setting not required	PMC93 = 1	PFCE93 = 0	PFC93 = 0	Note
	TIP40	Input	P93 = Setting not required	PM93 = Setting not required	PMC93 = 1	PFCE93 = 0	PFC93 = 1	
	TOP40	Output	P93 = Setting not required	PM93 = Setting not required	PMC93 = 1	PFCE93 = 1	PFC93 = 0	
P94	A4	Output	P94 = Setting not required	PM94 = Setting not required	PMC94 = 1	PFCE94 = 0	PFC94 = 0	Note
	TIP31	Input	P94 = Setting not required	PM94 = Setting not required	PMC94 = 1	PFCE94 = 0	PFC94 = 1	
	TOP31	Output	P94 = Setting not required	PM94 = Setting not required	PMC94 = 1	PFCE94 = 1	PFC94 = 0	
P95	A5	Output	P95 = Setting not required	PM95 = Setting not required	PMC95 = 1	PFCE95 = 0	PFC95 = 0	Note
	TIP30	Input	P95 = Setting not required	PM95 = Setting not required	PMC95 = 1	PFCE95 = 0	PFC95 = 1	
	TOP30	Output	P95 = Setting not required	PM95 = Setting not required	PMC95 = 1	PFCE95 = 1	PFC95 = 0	
P96	A6	Output	P96 = Setting not required	PM96 = Setting not required	PMC96 = 1	PFCE96 = 0	PFC96 = 0	Note
	TIP21	Input	P96 = Setting not required	PM96 = Setting not required	PMC96 = 1	PFCE96 = 1	PFC96 = 0	
	TOP21	Output	P96 = Setting not required	PM96 = Setting not required	PMC96 = 1	PFCE96 = 1	PFC96 = 1	
P97	A7	Output	P97 = Setting not required	PM97 = Setting not required	PMC97 = 1	PFCE97 = 0	PFC97 = 0	Note
	SIB1	Input	P97 = Setting not required	PM97 = Setting not required	PMC97 = 1	PFCE97 = 0	PFC97 = 1	
	TIP20	Input	P97 = Setting not required	PM97 = Setting not required	PMC97 = 1	PFCE97 = 1	PFC97 = 0	
	TOP20	Output	P97 = Setting not required	PM97 = Setting not required	PMC97 = 1	PFCE97 = 1	PFC97 = 1	
P98	A8	Output	P98 = Setting not required	PM98 = Setting not required	PMC98 = 1	_	PFC98 = 0	Note
	SOB1	Output	P98 = Setting not required	PM98 = Setting not required	PMC98 = 1	-	PFC98 = 1	
P99	A9	Output	P99 = Setting not required	PM99 = Setting not required	PMC99 = 1	-	PFC99 = 0	Note
	SCKB1	I/O	P99 = Setting not required	PM99 = Setting not required	PMC99 = 1	-	PFC99 = 1	

Table 4-15. Settings When Port Pins Are Used for Alternate Functions (5/7)

Note When setting pins A0 to A15 as the alternate function, set all 16 bits of the PMC9 register to FFFFH at once.

User's Manual U17715EJ2V0UD

Pin Name	Alternate	e Function	Pnx Bit of	PMnx Bit of	PMCnx Bit of	PFCEnx Bit of	PFCnx Bit of	Other Bits
	Name	I/O	Pn Register	PMn Register	PMCn Register	PFCEn Register	PFCn Register	(Registers)
P910	A10	Output	P910 = Setting not required	PM910 = Setting not required	PMC910 = 1	-	PFC910 = 0	Note
	SIB3	Input	P910 = Setting not required	PM910 = Setting not required	PMC910 = 1	-	PFC910 = 1	
P911	A11	Output	P911 = Setting not required	PM911 = Setting not required	PMC911 = 1	-	PFC911 = 0	Note
	SOB3	Output	P911 = Setting not required	PM911 = Setting not required	PMC911 = 1	-	PFC911 = 1	
P912	A12	Output	P912 = Setting not required	PM912 = Setting not required	PMC912 = 1	-	PFC912 = 0	Note
	SCKB3	I/O	P912 = Setting not required	PM912 = Setting not required	PMC912 = 1	-	PFC912 = 1	
P913	A13	Output	P913 = Setting not required	PM913 = Setting not required	PMC913 = 1	-	PFC913 = 0	Note
	INTP4	Input	P913 = Setting not required	PM913 = Setting not required	PMC913 = 1	-	PFC913 = 1	
P914	A14	Output	P914 = Setting not required	PM914 = Setting not required	PMC914 = 1	PFCE914 = 0	PFC914 = 0	Note
	INTP5	Input	P914 = Setting not required	PM914 = Setting not required	PMC914 = 1	PFCE914 = 0	PFC914 = 1	
	TIP51	Input	P914 = Setting not required	PM914 = Setting not required	PMC914 = 1	PFCE914 = 1	PFC914 = 0	
	TOP51	Output	P914 = Setting not required	PM914 = Setting not required	PMC914 = 1	PFCE914 = 1	PFC914 = 1	
P915	A15	Output	P915 = Setting not required	PM915 = Setting not required	PMC915 = 1	PFCE915 = 0	PFC915 = 0	Note
	INTP6	Input	P915 = Setting not required	PM915 = Setting not required	PMC915 = 1	PFCE915 = 0	PFC915 = 1	
	TIP50	Input	P915 = Setting not required	PM915 = Setting not required	PMC915 = 1	PFCE915 = 1	PFC915 = 0	
	TOP50	Output	P915 = Setting not required	PM915 = Setting not required	PMC915 = 1	PFCE915 = 1	PFC915 = 1	
PCM0	WAIT	Input	PCM0 = Setting not required	PMCM0 = Setting not required	PMCCM0 = 1	-	-	
PCM1	CLKOUT	Output	PCM1 = Setting not required	PMCM1 = Setting not required	PMCCM1 = 1	-	-	
PCM2	HLDAK	Output	PCM2 = Setting not required	PMCM2 = Setting not required	PMCCM2 = 1	-	-	
PCM3	HLDRQ	Input	PCM3 = Setting not required	PMCM3 = Setting not required	PMCCM3 = 1	-	-	
PCT0	WR0	Output	PCT0 = Setting not required	PMCT0 = Setting not required	PMCCT0 = 1	-	-	
PCT1	WR1	Output	PCT1 = Setting not required	PMCT1 = Setting not required	PMCCT1 = 1	-	-	
PCT4	RD	Output	PCT4 = Setting not required	PMCT4 = Setting not required	PMCCT4 = 1	-	-	
PCT6	ASTB	Output	PCT6 = Setting not required	PMCT6 = Setting not required	PMCCT6 = 1	-	-	

CHAPTER 4 PORT FUNCTIONS

Table 4-15. Settings When Port Pins Are Used for Alternate Functions (6/7)

Note When not using the pins as the INTP4 to INTP6 pins, disable edge detection (clear the INTF9n bit of the INTF9H register and INTR9n bit of the INTR9H register to 0 (n = 13 to 15)).

Pin Name	Alternate	Function	Pnx Bit of	PMnx Bit of	PMCnx Bit of	PFCEnx Bit of	PFCnx Bit of	Other Bits
	Name	I/O	Pn Register	PMn Register	PMCn Register	PFCEn Register	PFCn Register	(Registers)
PDH0	A16	Output	PDH0 = Setting not required	PMDH0 = Setting not required	PMCDH0 = 1	-	-	
PDH1	A17	Output	PDH1 = Setting not required	PMDH1 = Setting not required	PMCDH1 = 1	-	-	
PDH2	A18	Output	PDH2 = Setting not required	PMDH2 = Setting not required	PMCDH2 = 1	-	-	
PDH3	A19	Output	PDH3 = Setting not required	PMDH3 = Setting not required	PMCDH3 = 1	-	-	
PDH4	A20	Output	PDH4 = Setting not required	PMDH4 = Setting not required	PMCDH4 = 1	-	-	
PDH5	A21	Output	PDH5 = Setting not required	PMDH5 = Setting not required	PMCDH5 = 1	-	-	
PDL0	AD0	I/O	PDL0 = Setting not required	PMDL0 = Setting not required	PMCDL0 = 1	-	-	
PDL1	AD1	I/O	PDL1 = Setting not required	PMDL1 = Setting not required	PMCDL1 = 1	-	-	
PDL2	AD2	I/O	PDL2 = Setting not required	PMDL2 = Setting not required	PMCDL2 = 1	-	-	
PDL3	AD3	I/O	PDL3 = Setting not required	PMDL3 = Setting not required	PMCDL3 = 1	-	-	
PDL4	AD4	I/O	PDL4 = Setting not required	PMDL4 = Setting not required	PMCDL4 = 1	-	-	
PDL5	AD5	I/O	PDL5 = Setting not required	PMDL5 = Setting not required	PMCDL5 = 1	-	-	
	FLMD1 ^{Note}	Input	PDL5 = Setting not required	PMDL5 = Setting not required	PMCDL5 = Setting not required	-	-	
PDL6	AD6	I/O	PDL6 = Setting not required	PMDL6 = Setting not required	PMCDL6 = 1	-	-	
PDL7	AD7	I/O	PDL7 = Setting not required	PMDL7 = Setting not required	PMCDL7 = 1	-	-	
PDL8	AD8	I/O	PDL8 = Setting not required	PMDL8 = Setting not required	PMCDL8 = 1	_	-	
PDL9	AD9	I/O	PDL9 = Setting not required	PMDL9 = Setting not required	PMCDL9 = 1	-	-	
PDL10	AD10	I/O	PDL10 = Setting not required	PMDL10 = Setting not required	PMCDL10 = 1	_	-	
PDL11	AD11	I/O	PDL11 = Setting not required	PMDL11 = Setting not required	PMCDL11 = 1	-	-	
PDL12	AD12	I/O	PDL12 = Setting not required	PMDL12 = Setting not required	PMCDL12 = 1	-	-	
PDL13	AD13	I/O	PDL13 = Setting not required	PMDL13 = Setting not required	PMCDL13 = 1	-	-	
PDL14	AD14	I/O	PDL14 = Setting not required	PMDL14 = Setting not required	PMCDL14 = 1	-	-	
PDL15	AD15	I/O	PDL15 = Setting not required	PMDL15 = Setting not required	PMCDL15 = 1	-	-	

Table 4-15. Settings When Port Pins Are Used for Alternate Functions (7/7)

Note Since this pin is set in the flash memory programming mode, it does not need to be manipulated using the port control register. For details, see CHAPTER 26 FLASH MEMORY.

User's Manual U17715EJ2V0UD

4.6 Cautions

4.6.1 Cautions on setting port pins

- (1) In the V850ES/JG2, the general-purpose port function and several peripheral function I/O pin share a pin. To switch between the general-purpose port (port mode) and the peripheral function I/O pin (alternate-function mode), set by the PMCn register. In regards to this register setting sequence, note with caution the following.
 - (a) Cautions on switching from port mode to alternate-function mode
 To switch from the port mode to alternate-function mode in the following order.

<1> Set the PFn register^{Note}:N-ch open-drain setting<2> Set the PFCn and PFCEn registers:Alternate-function selection<3> Set the corresponding bit of the PMCn register to 1:Switch to alternate-function mode

If the PMCn register is set first, note with caution that, at that moment or depending on the change of the pin states in accordance with the setting of the PFn, PFCn, and PFCEn registers, unexpected operations may occur.

A concrete example is shown as Example below.

Note N-ch open-drain output pin only

- Caution Regardless of the port mode/alternate-function mode, the Pn register is read and written as follows.
 - Pn register read: Read the port output latch value (when PMn.PMnm bit = 0), or read the pin states (PMn.PMnm bit = 1).
 - Pn register write: Write to the port output latch

[Example] SCL01 pin setting example

The SCL01 pin is used alternately with the P41/SOB0 pin. Select the valid pin functions with the PMC4, PFC4, and PF4 registers.

PMC41 Bit	PFC41 Bit	PF41 Bit	Valid Pin Functions
0	don't care	1	P41 (in output port mode, N-ch open-drain output)
1	0	1	SOB0 output (N-ch open-drain output)
	1	1	SCL01 I/O (N-ch open-drain output)

Setting Order	Setting Contents	Pin States	Pin Level
<1>	Initial value (PMC41 bit = 0, PFC41 bit = 0, PF41 bit = 0)	Port mode (input)	Hi-Z
<2>	PMC41 bit ← 1	SOB0 output	Low level (high level depending on the CSIB0 setting)
<3>	PFC41 bit ← 1	SCL01 I/O	High level (CMOS output)
<4>	PF41 bit ← 1	SCL01 I/O	Hi-Z (N-ch open-drain output)

The order of setting in which malfunction may occur on switching from the P41 pin to the SCL01 pin are shown below.

In <2>, I^2C communication may be affected since the alternate-function SOB0 output is output to the pin. In the CMOS output period of <2> or <3>, unnecessary current may be generated.

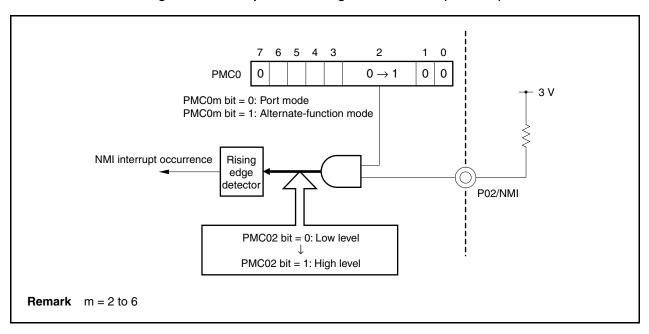
(b) Cautions on alternate-function mode (input)

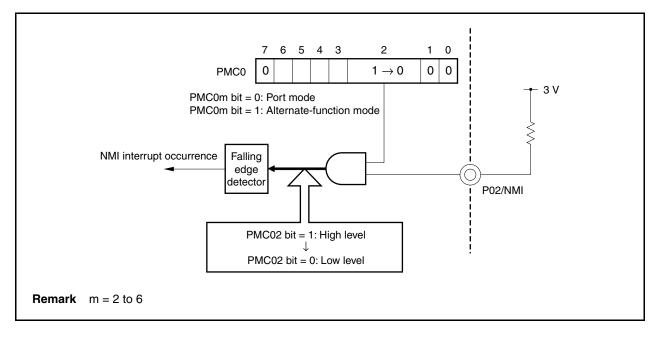
The input signal to the alternate-function block is low level when the PMCn.PMCnm bit is 0 due to the AND output of the PMCn register set value and the pin level. Thus, depending on the port setting and alternate-function operation enable timing, unexpected operations may occur. Therefore, switch between the port mode and alternate-function mode in the following sequence.

- To switch from port mode to alternate-function mode (input) Set the pins to the alternate-function mode using the PMCn register and then enable the alternate-function operation.
- To switch from alternate-function mode (input) to port mode Stop the alternate-function operation and then switch the pins to the port mode.

The concrete examples are shown as Example 1 and Example 2.

[Example 1] Switch from general-purpose port (P02) to external interrupt pin (NMI) When the P02/NMI pin is pulled up as shown in Figure 4-33 and the rising edge is specified in the NMI pin edge detection setting, even though high level is input continuously to the NMI pin during switching from the P02 pin to the an NMI pin (PMC02 bit = $0 \rightarrow 1$), this is detected as a rising edge as if the low level changed to high level, and an NMI interrupt occurs. To avoid it, set the NMI pin's valid edge after switching from the P02 pin to the NMI pin.




Figure 4-33. Example of Switching from P02 to NMI (Incorrect)

[Example 2] Switch from external pin (NMI) to general-purpose port (P02)

When the P02/NMI pin is pulled up as shown in Figure 4-34 and the falling edge is specified in the NMI pin edge detection setting, even though high level is input continuously to the NMI pin at switching from the NMI pin to the P02 pin (PMC02 bit = $1 \rightarrow 0$), this is detected as falling edge as if high level changed to low level, and NMI interrupt occurs.

To avoid this, set the NMI pin edge detection as "No edge detected" before switching to the P02 pin.

(2) In port mode, the PFn.PFnm bit is valid only in the output mode (PMn.PMnm bit = 0). In the input mode (PMnm bit = 1), the value of the PFnm bit is not reflected in the buffer.

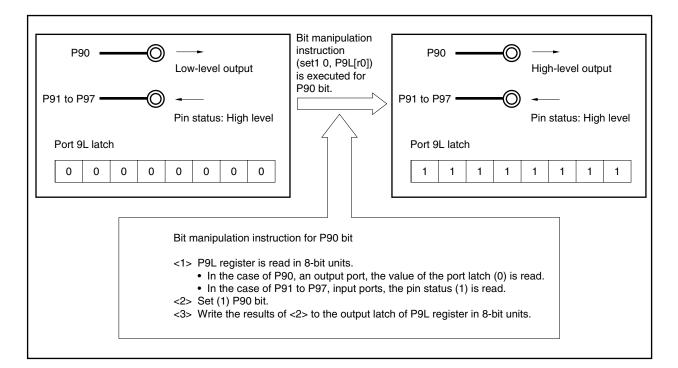
4.6.2 Cautions on bit manipulation instruction for port n register (Pn)

When a 1-bit manipulation instruction is executed on a port that provides both input and output functions, the value of the output latch of an input port that is not subject to manipulation may be written in addition to the targeted bit.

Therefore, it is recommended to rewrite the output latch when switching a port from input mode to output mode.

<Example> When P90 pin is an output port, P91 to P97 pins are input ports (all pin statuses are high level), and the value of the port latch is 00H, if the output of P90 pin is changed from low level to high level via a bit manipulation instruction, the value of the port latch is FFH.

Explanation: The targets of writing to and reading from the Pn register of a port whose PMnm bit is 1 are the output latch and pin status, respectively.


A bit manipulation instruction is executed in the following order in the V850ES/JG2.

- <1> The Pn register is read in 8-bit units.
- <2> The targeted one bit is manipulated.
- <3> The Pn register is written in 8-bit units.

In step <1>, the value of the output latch (0) of P90 pin, which is an output port, is read, while the pin statuses of P91 to P97 pins, which are input ports, are read. If the pin statuses of P91 to P97 pins are high level at this time, the read value is FEH.

The value is changed to FFH by the manipulation in <2>.

FFH is written to the output latch by the manipulation in <3>.

Figure 4-35. Bit Manipulation Instruction (P90 Pin)

4.6.3 Cautions on on-chip debug pins

The DRST, DCK, DMS, DDI, and DDO pins are on-chip debug pins.

After reset by the RESET pin, the P05/INTP2/DRST pin is initialized to function as an on-chip debug pin (DRST). If a high level is input to the DRST pin at this time, the on-chip debug mode is set, and the DCK, DMS, DDI, and DDO pins can be used.

The following action must be taken if on-chip debugging is not used.

• Clear the OCDM0 bit of the OCDM register (special register) (0)

At this time, fix the P05/INTP2/DRST pin to low level from when reset by the RESET pin is released until the above action is taken.

If a high level is input to the $\overrightarrow{\text{DRST}}$ pin before the above action is taken, it may cause a malfunction (CPU deadlock). Handle the P05 pin with the utmost care.

Caution After reset by the WDT2RES signal, clock monitor (CLM), or low-voltage detector (LVI), the P05/INTP2/DRST pin is not initialized to function as an on-chip debug pin (DRST). The OCDM register holds the current value.

4.6.4 Cautions on P05/INTP2/DRST pin

The P05/INTP2/DRST pin has an internal pull-down resistor (30 k Ω TYP.). After a reset by the RESET pin, a pulldown resistor is connected. The pull-down resistor is disconnected when the OCDM0 bit is cleared (0).

4.6.5 Cautions on P10, P11, and P53 pins when power is turned on

When the power is turned on, the following pins may output an undefined level temporarily even during reset.

- P10/ANO0 pin
- P11/ANO1 pin
- P53/SIB2/KR3/TIQ00/TOQ00/RTP03/DDO pin

4.6.6 Hysteresis characteristics

In port mode, the following port pins do not have hysteresis characteristics.

P02 to P06 P31 to P35, P38, P39 P40 to P42 P50 to P55 P90 to P97, P99, P910, P912 to P915

CHAPTER 5 BUS CONTROL FUNCTION

The V850ES/JG2 is provided with an external bus interface function by which external memories such as ROM and RAM, and I/O can be connected.

5.1 Features

- Output is selectable from a multiplexed bus output with a minimum of 3 bus cycles and a separate bus output with a minimum of 2 bus cycles.
- 8-bit/16-bit data bus selectable
- \bigcirc Wait function
 - Programmable wait function of up to 7 states
 - External wait function using WAIT pin
- Idle state function
- \bigcirc Bus hold function
- Up to 4 MB of physical memory connectable
- \bigcirc The bus can be controlled at a voltage that is different from the operating voltage when BV_{DD} \leq EV_{DD} = V_{DD}. However, in separate bus mode or when the A20 and A21 pins are used, set BV_{DD} = EV_{DD} = V_{DD}.

5.2 Bus Control Pins

The pins used to connect an external device are listed in the table below.

Bus Control Pin	Alternate-Function Pin	I/O	Function
AD0 to AD15	PDL0 to PDL15	I/O	Address/data bus
A16 to A21	PDH0 to PDH5	Output	Address bus
WAIT	PCM0	Input	External wait control
CLKOUT	PCM1	Output	Internal system clock
$\overline{WR0}, \overline{WR1}$	PCT0, PCT1	Output	Write strobe signal
RD	PCT4	Output	Read strobe signal
ASTB	PCT6	Output	Address strobe signal
HLDRQ	PCM3	Input	Bus hold control
HLDAK	PCM2	Output	

Table 5-1. Bus Control Pins (Multiplexed Bus)

Table 5-2. External Control Pins (Separate Bus)

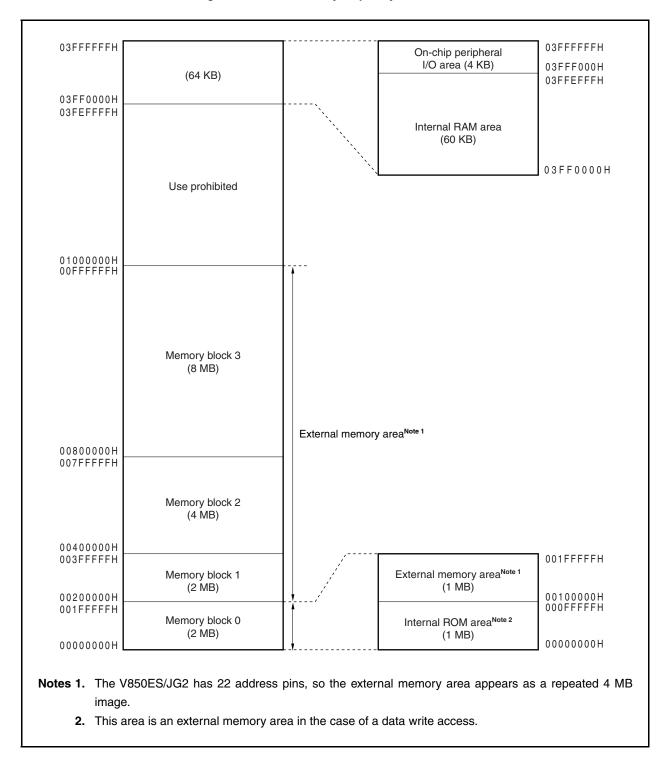
Bus Control Pin	Alternate-Function Pin	I/O	Function
AD0 to AD15	PDL0 to PDL15	I/O	Data bus
A0 to A15	P90 to P915	Output	Address bus
A16 to A21	PDH0 to PDH5	Output	Address bus
WAIT	PCM0	Input	External wait control
CLKOUT	PCM1	Output	Internal system clock
WR0, WR1	PCT0, PCT1	Output	Write strobe signal
RD	PCT4	Output	Read strobe signal
HLDRQ	РСМЗ	Input	Bus hold control
HLDAK	PCM2	Output	

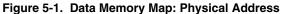
5.2.1 Pin status when internal ROM, internal RAM, or on-chip peripheral I/O is accessed

When the internal ROM, internal RAM, or on-chip peripheral I/O are accessed, the status of each pin is as follows.

Table 5-3. Pin Statuses When Internal ROM, Internal RAM, or On-Chi	in Perinheral I/O Is Accessed
Table 5 6. This Statuses when internal from, internal fram, of on on	

Separate Bus	Mode	Multiplexed Bus	s Mode
Address bus (A21 to A0)	Undefined	Address bus (A21 to A16)	Undefined
Data bus (AD15 to AD0)	Hi-Z	Address/data bus (AD15 to AD0)	Undefined
Control signal	Inactive	Control signal	Inactive


Caution When a write access is performed to the internal ROM area, address, data, and control signals are activated in the same way as access to the external memory area.


5.2.2 Pin status in each operation mode

For the pin status of the V850ES/JG2 in each operation mode, see 2.2 Pin States.

5.3 Memory Block Function

The 16 MB external memory space is divided into memory blocks of (lower) 2 MB, 2 MB, 4 MB, and 8 MB. The programmable wait function and bus cycle operation mode for each of these blocks can be independently controlled in one-block units.

5.4 External Bus Interface Mode Control Function

The V850ES/JG2 has the following two external bus interface modes.

- Multiplexed bus mode
- · Separate bus mode

These two modes can be selected by using the EXIMC register.

(1) External bus interface mode control register (EXIMC)

The EXIMC register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

After res	set: 00H	R/W	Address: F	FFFFFBE	н				
	7	6	5	4	3	2	1	0	_
EXIMC	0	0	0	0	0	0	0	SMSEL	
	SMSEL			М	lode selecti	on			
	0	Multiplex	ed bus mod	le					
	1	Separate bus mode							
externa	al access	s.	from the register, t						e making a

5.5 Bus Access

5.5.1 Number of clocks for access

The following table shows the number of basic clocks required for accessing each resource.

Area (Bus Width) Bus Cycle Type	Internal ROM (32 Bits)	Internal RAM (32 Bits)	External Memory (16 Bits)
Instruction fetch (normal access)	1	1 ^{Note 1}	3 + n ^{Note 2}
Instruction fetch (branch)	2	2 ^{Note 1}	3 + n ^{Note 2}
Operand data access	3	1	3 + n ^{Note 2}

Notes 1. Increases by 1 if a conflict with a data access occurs.

2. 2 + n clocks (n: Number of wait states) when the separate bus mode is selected.

Remark Unit: Clocks/access

5.5.2 Bus size setting function

Each external memory area selected by memory block n can be set by using the BSC register. However, the bus size can be set to 8 bits and 16 bits only.

The external memory area of the V850ES/JG2 is selected by memory blocks 0 to 3.

(1) Bus size configuration register (BSC)

The BSC register can be read or written in 16-bit units. Reset sets this register to 5555H.

Caution Write to the BSC register after reset, and then do not change the set values. Also, do not access an external memory area until the initial settings of the BSC register are complete.

	15	14	13	12	11	10	9	8
BSC	0	1	0	1	0	1	0	1
	7	6	5	4	3	2	1	0
	0	BS30	0	BS20	0	BS10	0	BS00
	М	emory block	x3 N	lemory bloc	k2 M	emory bloc	k1 Me	emory block 0
	BSn0	Data	Data bus width of memory block n space $(n = 0 \text{ to } 3)$					
	0	8 bits						
	1	16 bits						

5.5.3 Access by bus size

The V850ES/JG2 accesses the on-chip peripheral I/O and external memory in 8-bit, 16-bit, or 32-bit units. The bus size is as follows.

- The bus size of the on-chip peripheral I/O is fixed to 16 bits.
- The bus size of the external memory is selectable from 8 bits or 16 bits (by using the BSC register).

The operation when each of the above is accessed is described below. All data is accessed starting from the lower side.

The V850ES/JG2 supports only the little-endian format.

Figure 5-2. Little-Endian Address in Word

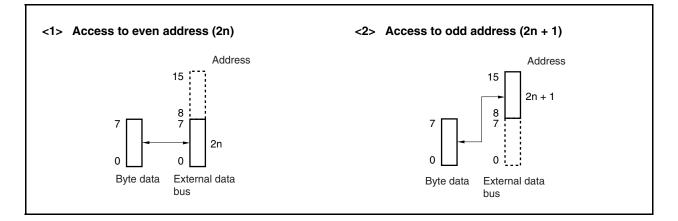
31	24	23 16	15 8	7 0
000	BH	000AH	0009H	0008H
000	7H	0006H	0005H	0004H
000	зн	0002H	0001H	0000H

(1) Data space

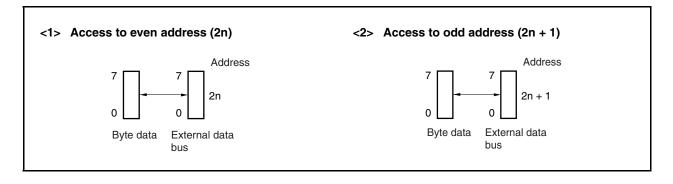
The V850ES/JG2 has an address misalign function.

With this function, data can be placed at all addresses, regardless of the format of the data (word data or halfword data). However, if the word data or halfword data is not aligned at the boundary, a bus cycle is generated at least twice, causing the bus efficiency to drop.

(a) Halfword-length data access

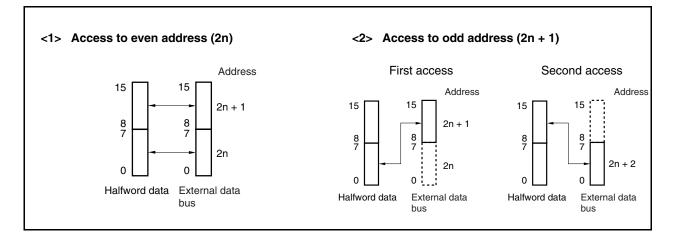

A byte-length bus cycle is generated twice if the least significant bit of the address is 1.

(b) Word-length data access

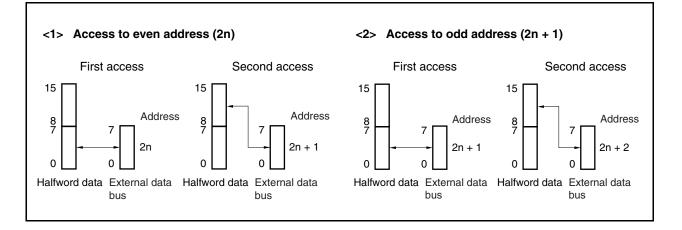

- (i) A byte-length bus cycle, halfword-length bus cycle, and byte-length bus cycle are generated in that order if the least significant bit of the address is 1.
- (ii) A halfword-length bus cycle is generated twice if the lower 2 bits of the address are 10.

(2) Byte access (8 bits)

(a) 16-bit data bus width

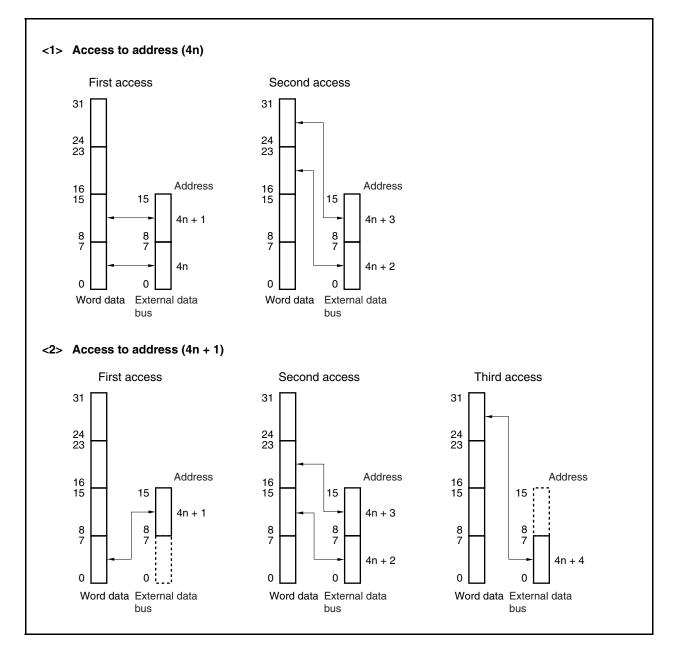


(b) 8-bit data bus width

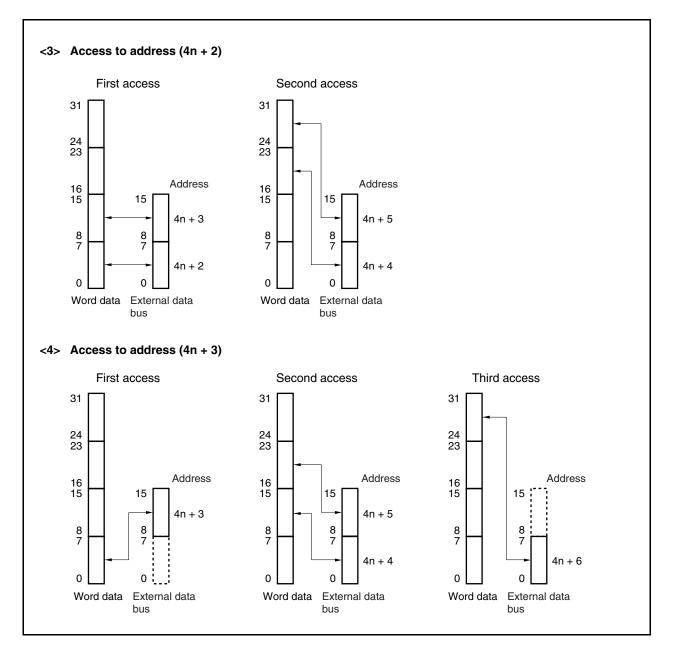


(3) Halfword access (16 bits)

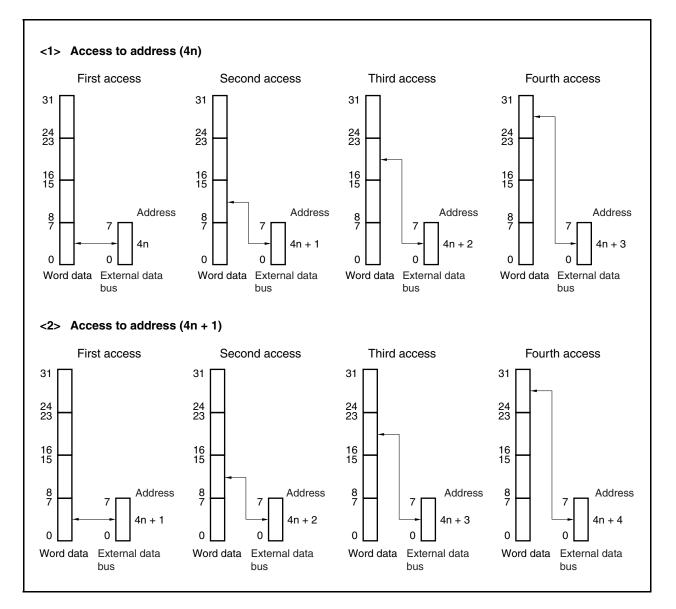
(a) With 16-bit data bus width

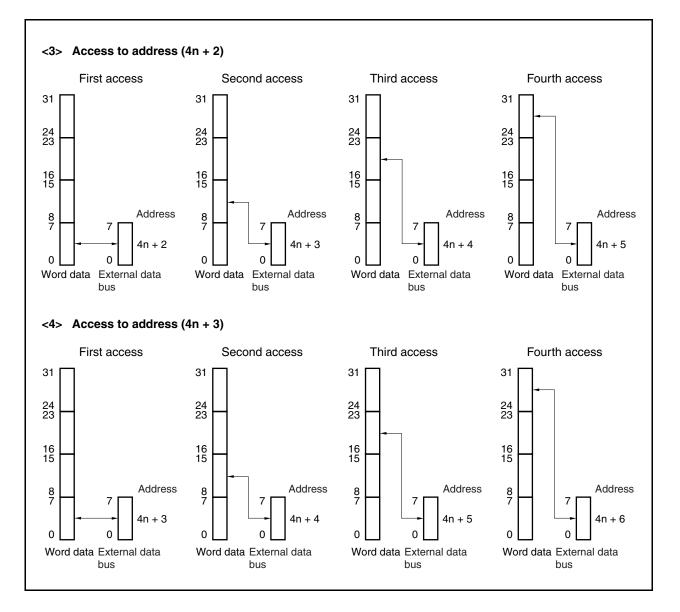


(b) 8-bit data bus width



(4) Word access (32 bits)


(a) 16-bit data bus width (1/2)


(a) 16-bit data bus width (2/2)

(b) 8-bit data bus width (1/2)

(b) 8-bit data bus width (2/2)

5.6 Wait Function

5.6.1 Programmable wait function

(1) Data wait control register 0 (DWC0)

To realize interfacing with a low-speed memory or I/O, up to seven data wait states can be inserted in the bus cycle that is executed for each memory block space.

The number of wait states can be programmed by using the DWC0 register . Immediately after system reset, 7 data wait states are inserted for all the blocks.

The DWC0 register can be read or written in 16-bit units.

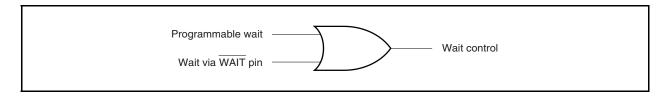
Reset sets this register to 7777H.

- Cautions 1. The internal ROM and internal RAM areas are not subject to programmable wait, and are always accessed without a wait state. The on-chip peripheral I/O area is also not subject to programmable wait, and only wait control from each peripheral function is performed.
 - 2. Write to the DWC0 register after reset, and then do not change the set values. Also, do not access an external memory area until the initial settings of the DWC0 register are complete.

	15	14	13	12	11	10	9	8
DWC0	0	DW32	DW31	DW30	0	DW22	DW21	DW20
		Me	emory blocl	< 3		M	emory bloc	:k 2
	7	6	5	4	3	2	1	0
	0	DW12	DW11	DW10	0	DW02	DW01	DW00
		М	emory bloc	k 1		Me	emory bloc	k 0
	DWn2	DWn1	DWn0			wait states ock n space		
	0	0	0	None				
	0	0	1	1				
	0	1	0	2				
	0	1	1	3				
	1	0	0	4				
	1	0	1	5				
	1	1	0	6				
	1	1	1	7				

5.6.2 External wait function

To synchronize an extremely slow external memory, I/O, or asynchronous system, any number of wait states can be inserted in the bus cycle by using the external wait pin (\overline{WAIT}).


When the PCM0 pin is set to alternate function, the external wait function is enabled.

Access to each area of the internal ROM, internal RAM, and on-chip peripheral I/O is not subject to control by the external wait function, in the same manner as the programmable wait function.

The WAIT signal can be input asynchronously to CLKOUT, and is sampled at the falling edge of the clock in the T2 and TW states of the bus cycle in the multiplexed bus mode. In the separate bus mode, it is sampled at the rising edge of the clock immediately after the T1 and TW states of the bus cycle. If the setup/hold time of the sampling timing is not satisfied, a wait state is inserted in the next state, or not inserted at all.

5.6.3 Relationship between programmable wait and external wait

Wait cycles are inserted as the result of an OR operation between the wait cycles specified by the set value of the programmable wait and the wait cycles controlled by the \overline{WAIT} pin.

For example, if the timing of the programmable wait and the WAIT pin signal is as illustrated below, three wait states will be inserted in the bus cycle.

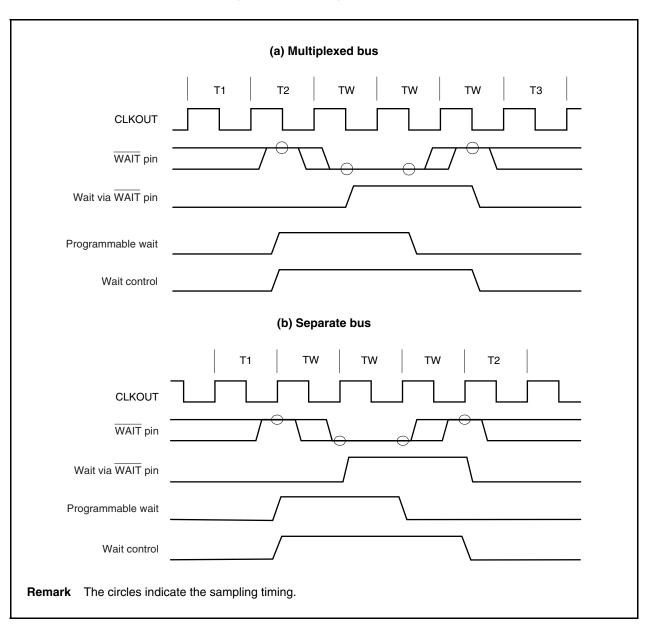


Figure 5-3. Inserting Wait Example

5.6.4 Programmable address wait function

Address-setup or address-hold waits to be inserted in each bus cycle can be set by using the AWC register. Address wait insertion is set for each memory block area (memory blocks 0 to 3).

If an address setup wait is inserted, it seems that the high-clock period of the T1 state is extended by 1 clock. If an address hold wait is inserted, it seems that the low-clock period of the T1 state is extended by 1 clock.

(1) Address wait control register (AWC)

The AWC register can be read or written in 16-bit units. Reset sets this register to FFFFH.

- Cautions 1. Address setup wait and address hold wait cycles are not inserted when the internal ROM area, internal RAM area, and on-chip peripheral I/O areas are accessed.
 - 2. Write to the AWC register after reset, and then do not change the set values. Also, do not access an external memory area until the initial settings of the AWC register are complete.

_	15	14	13	12	11	10	9	8	
AWC	1	1	1	1	1	1	1	1	
	7	6	5	4	3	2	1	0	
	АНѠЗ	ASW3	AHW2	ASW2	AHW1	ASW1	AHW0	ASW0	
	Memory	block 3	Memory	y block 2	Memory	y block 1	Memory	v block 0	
	AHWn		Specifies insertion of address hold wait (n = 0 to 3)						
	0	Not inser	Not inserted						
	1	Inserted							
	ASWn		Specifies in	nsertion of	address se	tup wait (n	= 0 to 3)		
	0	Not inser	ted						
	1	Inserted							

5.7 Idle State Insertion Function

To facilitate interfacing with low-speed memories, one idle state (TI) can be inserted after the T3 state in the bus cycle that is executed for each space selected by the memory block in the multiplex address/data bus mode. In the separate bus mode, one idle state (TI) can be inserted after the T2 state. By inserting an idle state, the data output float delay time of the memory can be secured during read access (an idle state cannot be inserted during write access).

Whether the idle state is to be inserted can be programmed by using the BCC register. An idle state is inserted for all the areas immediately after system reset.

(1) Bus cycle control register (BCC)

The BCC register can be read or written in 16-bit units. Reset sets this register to AAAAH.

- Cautions 1. The internal ROM, internal RAM, and on-chip peripheral I/O areas are not subject to idle state insertion.
 - 2. Write to the BCC register after reset, and then do not change the set values. Also, do not access an external memory area until the initial settings of the BCC register are complete.

	15	14	13	12	11	10	9	8
BCC	1	0	1	0	1	0	1	0
	7	6	5	4	3	2	1	0
	BC31	0	BC21	0	BC11	0	BC01	0
Μ	emory bloc BCn1		lemory bloc Specifies ir		emory bloc idle state (r		emory bloc	< 0
	0	Not inser	ted					
	1	Inserted						

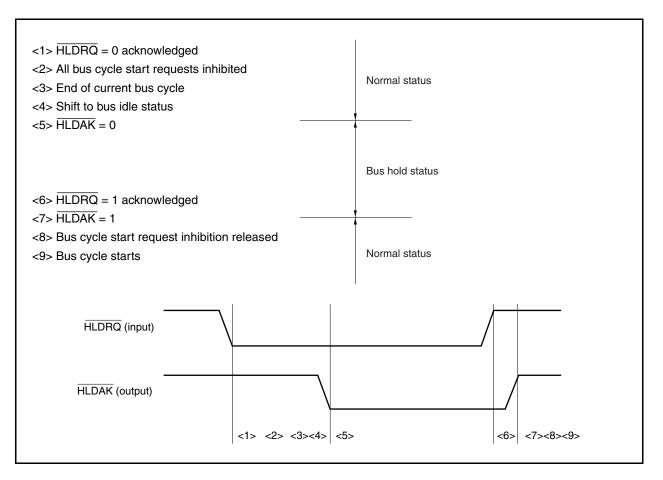
5.8 Bus Hold Function

5.8.1 Functional outline

The HLDRQ and HLDAK functions are valid if the PCM2 and PCM3 pins are set to alternate function.

When the HLDRQ pin is asserted (low level), indicating that another bus master has requested bus mastership, the external address/data bus goes into a high-impedance state and is released (bus hold status). If the request for the bus mastership is cleared and the HLDRQ pin is deasserted (high level), driving these pins is started again.

During the bus hold period, execution of the program in the internal ROM and internal RAM is continued until an on-chip peripheral I/O register or the external memory is accessed.


The bus hold status is indicated by assertion of the HLDAK pin (low level). The bus hold function enables the configuration of multi-processor type systems in which two or more bus masters exist.

Note that the bus hold request is not acknowledged during a multiple-access cycle initiated by the bus sizing function or a bit manipulation instruction.

Status	Data Bus Width	Access Type	Timing at Which Bus Hold Request Is Not Acknowledged
CPU bus lock	16 bits	Word access to even address	Between first and second access
		Word access to odd address	Between first and second access
			Between second and third access
		Halfword access to odd address	Between first and second access
	8 bits	Word access	Between first and second access
			Between second and third access
			Between third and fourth access
		Halfword access	Between first and second access
Read-modify-write access of bit manipulation instruction	_	_	Between read access and write access

5.8.2 Bus hold procedure

The bus hold status transition procedure is shown below.

5.8.3 Operation in power save mode

Because the internal system clock is stopped in the STOP, IDLE1, and IDLE2 modes, the bus hold status is not entered even if the $\overline{\text{HLDRQ}}$ pin is asserted.

In the HALT mode, the $\overline{\text{HLDAK}}$ pin is asserted as soon as the $\overline{\text{HLDRQ}}$ pin has been asserted, and the bus hold status is entered. When the $\overline{\text{HLDRQ}}$ pin is later deasserted, the $\overline{\text{HLDAK}}$ pin is also deasserted, and the bus hold status is cleared.

5.9 Bus Priority

Bus hold, DMA transfer, operand data accesses, instruction fetch (branch), and instruction fetch (successive) are executed in the external bus cycle.

Bus hold has the highest priority, followed by DMA transfer, operand data access, instruction fetch (branch), and instruction fetch (successive).

An instruction fetch may be inserted between the read access and write access in a read-modify-write access.

If an instruction is executed for two or more accesses, an instruction fetch and bus hold are not inserted between accesses due to bus size limitations.

Priority	External Bus Cycle	Bus Master
High	Bus hold	External device
t t	DMA transfer	DMAC
	Operand data access	CPU
+	Instruction fetch (branch)	CPU
Low	Instruction fetch (successive)	CPU

	_	
Table 5-4	. Bus	Priority

5.10 Bus Timing

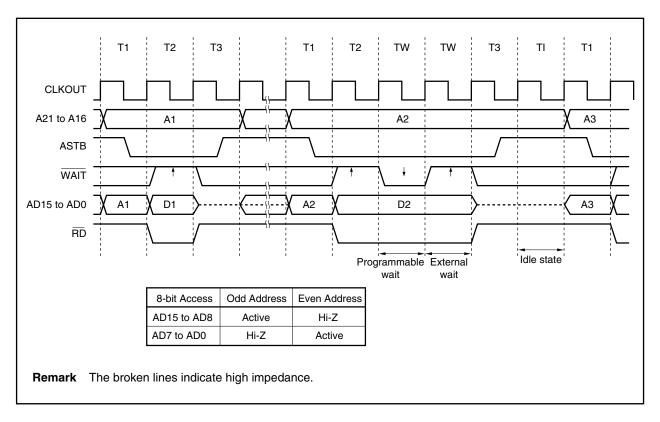
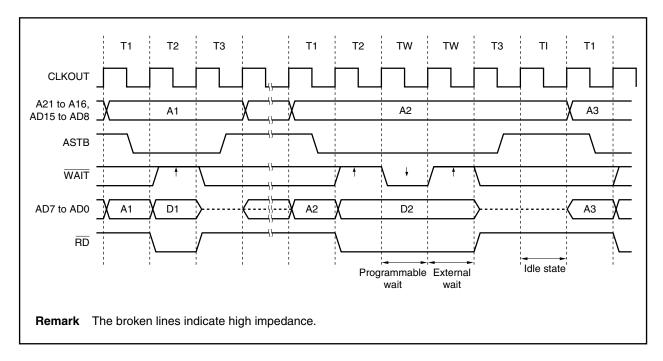



Figure 5-4. Multiplexed Bus Read Timing (Bus Size: 16 Bits, 16-Bit Access)

Figure 5-5. Multiplexed Bus Read Timing (Bus Size: 8 Bits)

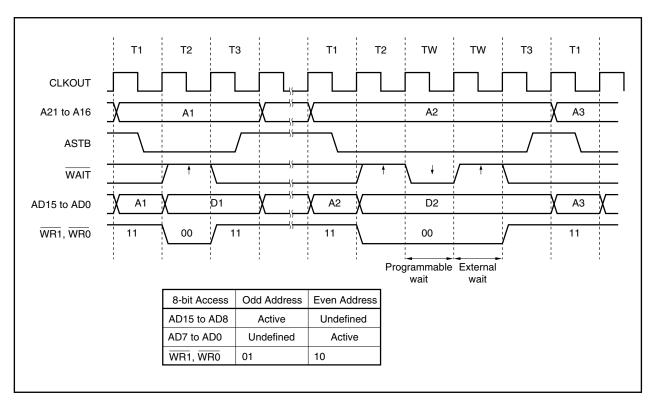
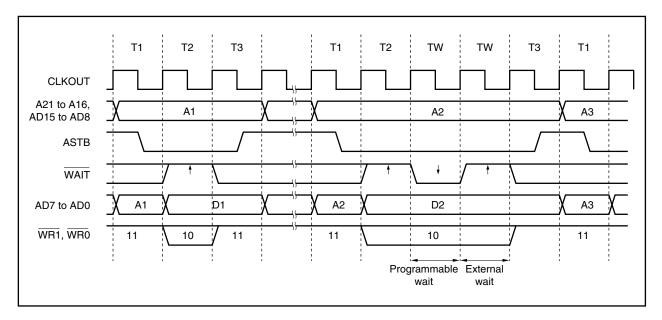
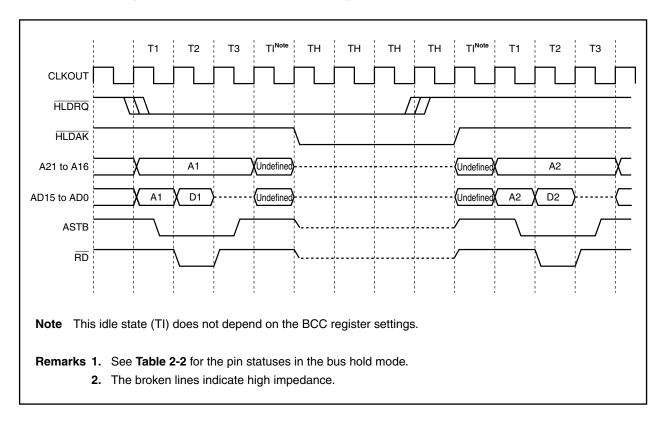




Figure 5-6. Multiplexed Bus Write Timing (Bus Size: 16 Bits, 16-Bit Access)

Figure 5-7. Multiplexed Bus Write Timing (Bus Size: 8 Bits)

Figure 5-8. Multiplexed Bus Hold Timing (Bus Size: 16 Bits, 16-Bit Access)

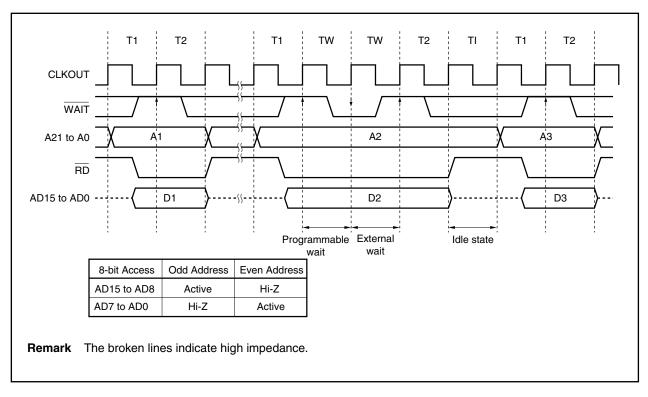


Figure 5-9. Separate Bus Read Timing (Bus Size: 16 Bits, 16-Bit Access)

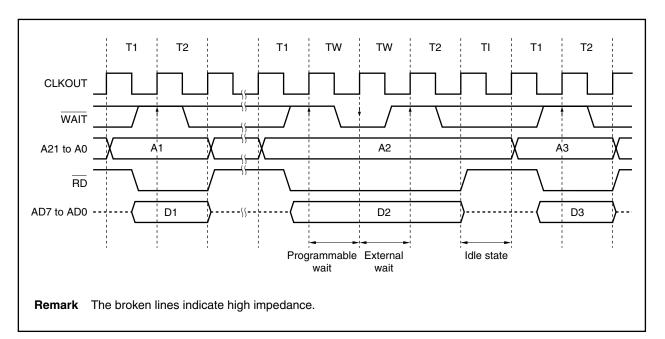


Figure 5-10. Separate Bus Read Timing (Bus Size: 8 Bits)

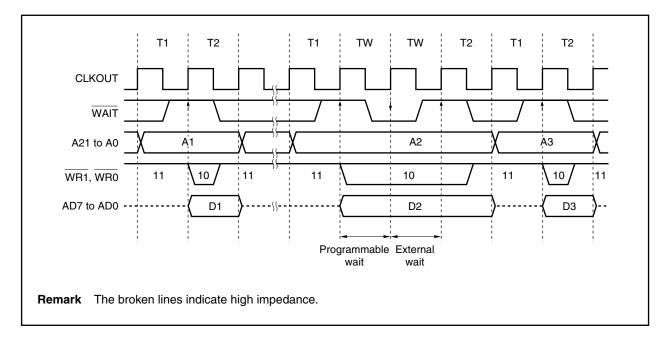



Figure 5-11. Separate Bus Write Timing (Bus Size: 16 Bits, 16-Bit Access)

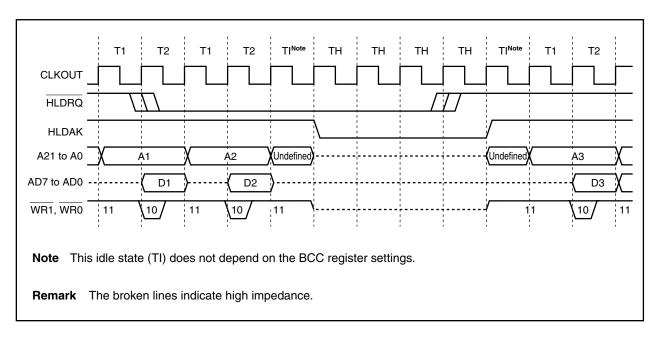
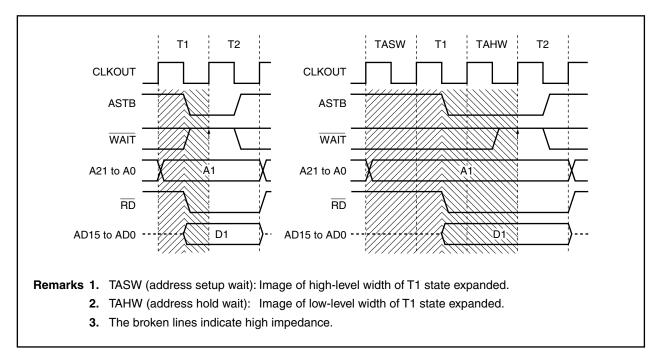



Figure 5-13. Separate Bus Hold Timing (Bus Size: 8 Bits, Write)

CHAPTER 6 CLOCK GENERATION FUNCTION

6.1 Overview

The following clock generation functions are available.

- O Main clock oscillator
 - In clock-through mode
 - fx = 2.5 to 10 MHz (fxx = 2.5 to 10 MHz)
 - In PLL mode
 - fx = 2.5 to 5 MHz (fxx = 10 to 20 MHz)
- O Subclock oscillator
 - fxt = 32.768 kHz
- O Multiply (×4/×8) function by PLL (Phase Locked Loop)
 - Clock-through mode/PLL mode selectable
- O Internal oscillator
 - fr = 200 kHz (TYP.)
- O Internal system clock generation
 - 7 steps (fxx, fxx/2, fxx/4, fxx/8, fxx/16, fxx/32, fxt)
- O Peripheral clock generation
- O Clock output function

Remark fx: Main clock oscillation frequency

- fxx: Main clock frequency
- fxT: Subclock frequency
- fre: Internal oscillation clock frequency

6.2 Configuration

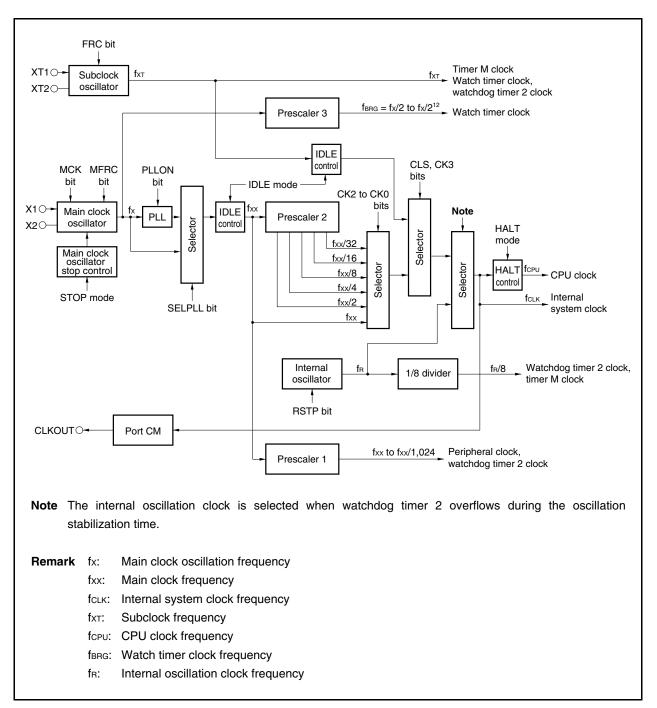


Figure 6-1. Clock Generator

(1) Main clock oscillator

The main resonator oscillates the following frequencies (fx).

- In clock-through mode
 - fx = 2.5 to 10 MHz
- In PLL mode

fx = 2.5 to 5 MHz

(2) Subclock oscillator

The sub-resonator oscillates a frequency of 32.768 kHz (fxr).

(3) Main clock oscillator stop control

This circuit generates a control signal that stops oscillation of the main clock oscillator. Oscillation of the main clock oscillator is stopped in the STOP mode or when the PCC.MCK bit = 1 (valid only when the PCC.CLS bit = 1).

(4) Internal oscillator

Oscillates a frequency (fR) of 200 kHz (TYP.).

(5) Prescaler 1

This prescaler generates the clock (fxx to fxx/1,024) to be supplied to the following on-chip peripheral functions: TMP0 to TMP5, TMQ0, TMM0, CSIB0 to CSIB4, UARTA0 to UARTA2, I²C00 to I²C02, ADC, and WDT2

(6) Prescaler 2

This circuit divides the main clock (fxx).

The clock generated by prescaler 2 (fxx to fxx/32) is supplied to the selector that generates the CPU clock (fcPU) and internal system clock (fcLK).

fclk is the clock supplied to the INTC, ROM, and RAM blocks, and can be output from the CLKOUT pin.

(7) Prescaler 3

This circuit divides the clock generated by the main clock oscillator (fx) to a specific frequency (32.768 kHz) and supplies that clock to the watch timer block.

For details, see CHAPTER 10 WATCH TIMER FUNCTIONS.

(8) PLL

This circuit multiplies the clock generated by the main clock oscillator (fx) by 4 or 8.

It operates in two modes: clock-through mode in which fx is output as is, and PLL mode in which a multiplied clock is output. These modes can be selected by using the PLLCTL.SELPLL bit.

Whether the clock is multiplied by 4 or 8 is selected by the CKC.CKDIV0 bit, and PLL is started or stopped by the PLLCTL.PLLON bit.

6.3 Registers

(1) Processor clock control register (PCC)

The PCC register is a special register. Data can be written to this register only in combination of specific sequences (see **3.4.7 Special registers**).

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 03H.

PCC	7	<6>	5	<4>	<3>	2	1	0	
_	FRC	MCK	MFRC	CLS ^{Note}	CK3	CK2	CK1	CK0	
	FRC		Use	of subclock	c on-chip fe	edback res	sistor		
	0	Used							
	1	Not used							
Г	MCK			Main clo	ck oscillato	or control			
F	0	Oscillatior	n enabled						
	1	Oscillatior	n stopped						
	CPU clo Before s operatin When th clear (0) before s	ock has bee setting the ng with the ne main clo) the MCK I	operation of en changed MCK bit fro main clock. ck is stoppe bit and secu bit and secu s.	to the sub m 0 to 1, s ed and the ure the osc	clock. top the on- device is o illation stat	chip periph perating wi pilization tin	eral function th the subo ne by softw	ons clock, vare	
Г	MFRC		Use o	f main cloo	k on-chip f	eedback re	sistor		
	0	Used							
	1	Not used	Not used						
Γ	CLS ^{Note}		Status of CPU clock (fcPU)						
	0	Main cloc	fain clock operation						
	1	Subclock	operation						
Г	СКЗ	CK2	CK1	CK0	C	lock select	ion (fclk/fcp	νυ)	
	0	0	0	0	fxx				
	0	0	0	1	fxx/2				
	0	0	1	0	fxx/4				
	0	0	1	1	fxx/8				
	0	1	0	0	fxx/16				
	0	1	0	1	fxx/32				
F	0	1	1	×	Setting p	rohibited			
	1	×	×	×	fхт				

(a) Example of setting main clock operation \rightarrow subclock operation

<1>	CK3 bit \leftarrow 1:	Use of a bit manipulation instruction is recommended. Do not change the CK2
		to CK0 bits.
<2>	Subclock operation:	Read the CLS bit to check if subclock operation has started. It takes the
		following time after the CK3 bit is set until subclock operation is started.
		Max.: 1/fxt (1/subclock frequency)
<3>	MCK bit \leftarrow 1:	Set the MCK bit to 1 only when stopping the main clock.

- Cautions 1. When stopping the main clock, stop the PLL. Also stop the operations of the on-chip peripheral functions operating with the main clock.
 - 2. If the following conditions are not satisfied, change the CK2 to CK0 bits so that the conditions are satisfied, then change to the subclock operation mode. Internal system clock (fcLK) > Subclock (fxT: 32.768 kHz) × 4
- Remark Internal system clock (fcLK): Clock generated from the main clock (fxx) by setting bits CK2 to CK0

[Description example]

	_DMA_DISABI	LE:	
	clrl	0, DCHCn[r0]	DMA operation disabled. $n = 0$ to 3
<1>	_SET_SUB_RU	JN :	
	st.b	r0, PRCMD[r0]	
	set1	3, PCC[r0]	CK3 bit \leftarrow 1
<2>	_CHECK_CLS	:	
	tst1	4, PCC[r0]	Wait until subclock operation starts.
	bz	_CHECK_CLS	
<3>	_STOP_MAIN_	_CLOCK :	
	st.b	r0, PRCMD[r0]	
	set1	6, PCC[r0]	MCK bit \leftarrow 1, main clock is stopped.
	_DMA_ENABLE	Ξ:	
	setl	0, DCHCn[r0]	DMA operation enabled. $n = 0$ to 3

Remark The description above is simply an example. Note that in <2> above, the CLS bit is read in a closed loop.

(b) Example of setting subclock operation \rightarrow main clock operation

- <1> MCK bit \leftarrow 0: Main clock starts oscillating
- <2> Insert waits by the program and wait until the oscillation stabilization time of the main clock elapses.
- <3> CK3 bit \leftarrow 0: Use of a bit manipulation instruction is recommended. Do not change the CK2 to CK0 bits.
- <4> Main clock operation: It takes the following time after the CK3 bit is set until main clock operation is started.

Max.: 1/fxT (1/subclock frequency)

Therefore, insert one NOP instruction immediately after setting the CK3 bit to 0 or read the CLS bit to check if main clock operation has started.

Caution Enable operation of the on-chip peripheral functions operating with the main clock only after the oscillation of the main clock stabilizes. If their operations are enabled before the lapse of the oscillation stabilization time, a malfunction may occur.

```
[Description example]
     _DMA_DISABLE:
     clrl
                  0, DCHCn[r0]
                                                     -- DMA operation disabled. n = 0 to 3
<1> _START_MAIN_OSC :
     st.b
                                                     -- Release of protection of special registers
                  r0, PRCMD[r0]
                                                     -- Main clock starts oscillating.
     clr1
                  6, PCC[r0]
<2> movea
                  0x55, r0, r11
                                                     -- Wait for oscillation stabilization time.
     _WAIT_OST :
     nop
     nop
     nop
     addi
                  -1, r11, r11
     cmp
                  r0, r11
     bne
                            _WAIT_OST
<3> st.b
                  r0, PRCMD[r0]
                                                     -- CK3 \leftarrow 0
     clr1
                  3, PCC[r0]
<4> _CHECK_CLS :
                  4, PCC[r0]
                                                     -- Wait until main clock operation starts.
     tst1
                  _CHECK_CLS
     bnz
     DMA ENABLE:
                                                     -- DMA operation enabled. n = 0 to 3
                  0, DCHCn[r0]
     setl
```

Remark The description above is simply an example. Note that in <4> above, the CLS bit is read in a closed loop.

(2) Internal oscillation mode register (RCM)

The RCM register is an 8-bit register that sets the operation mode of the internal oscillator. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

	7	6	5	4	3	2	1	<0>
RCM	0	0	0	0	0	0	0	RSTOP
	RSTOP		Os	scillation/sto	p of interna	al oscillato	r	
	0	Internal oscillator oscillation						
	1	Internal o	scillator sto	pped				
	1	Internal o	scillator sto	pped				
1. The i	internal o	scillator	cannot b	be stoppe	d while	the CPL	J is ope	rating or

(3) CPU operation clock status register (CCLS) The CCLS register indicates the status of the CPU operation clock. This register is read-only, in 8-bit or 1-bit units. Reset sets this register to 00H.

the RSTOP bit remains being set to 1.

	7	6	5	4	3	2	1	0	
CCLS	0	0	0	0	0	0	0	CCLSF	
	CCLSF		CPU operation clock status						
	0	Operating	on main cl	lock (fx) or s	subclock (f	хт).			
	1	Operating	on interna	l oscillation	clock (f _R).				

6.4 Operation

6.4.1 Operation of each clock

The following table shows the operation status of each clock.

Register Setting and				Р	CC Regist	er				
Operation Status		CLK Bi	t = 0, MCK	. Bit = 0			Bit = 1, Bit = 0		CLS Bit = 1, MCK Bit = 1	
Toward Clearly	During Reset	During Oscillation Stabilization	HALT Mode	IDLE1, IDLE2 Mode	STOP Mode	Subclock Mode	Sub-IDLE Mode	Subclock Mode	Sub-IDLE Mode	
Target Clock		Time Count								
Main clock oscillator (fx)	×	0	0	0	×	0	0	×	×	
Subclock oscillator (fxT)	0	0	0	0	0	0	0	0	0	
CPU clock (fcpu)	×	×	×	×	×	0	×	0	×	
Internal system clock (fcLK)	×	×	0	×	×	0	×	0	×	
Main clock (in PLL mode, fxx)	×	O ^{Note}	0	×	×	0	0	×	×	
Peripheral clock (fxx to fxx/1,024)	×	×	0	×	×	0	×	×	×	
WT clock (main)	×	0	0	0	×	0	0	×	×	
WT clock (sub)	0	0	0	0	0	0	0	0	0	
WDT2 clock (internal oscillation)	×	0	0	0	0	0	0	0	0	
WDT2 clock (main)	×	×	0	×	×	0	×	×	×	
WDT2 clock (sub)	0	0	0	0	0	0	0	0	0	

Table 6-1.	Operation	Status	of	Each	Clock
------------	-----------	--------	----	------	-------

Note Lockup time

Remark O: Operable

×: Stopped

6.4.2 Clock output function

The clock output function is used to output the internal system clock (fcLK) from the CLKOUT pin.

The internal system clock (fcLk) is selected by using the PCC.CK3 to PCC.CK0 bits.

The CLKOUT pin functions alternately as the PCM1 pin and functions as a clock output pin if so specified by the control register of port CM.

The status of the CLKOUT pin is the same as the internal system clock in Table 6-1 and the pin can output the clock when it is in the operable status. It outputs a low level in the stopped status. However, the CLKOUT pin is in the port mode (PCM1 pin: input mode) after reset and until it is set in the output mode. Therefore, the status of the pin is Hi-Z.

6.5 PLL Function

6.5.1 Overview

In the V850ES/JG2, an operating clock that is 4 or 8 times higher than the oscillation frequency output by the PLL function or the clock-through mode can be selected as the operating clock of the CPU and on-chip peripheral functions.

When PLL function is used:Input clock = 2.5 to 5 MHz (output: 10 to 20 MHz)Clock-through mode:Input clock = 2.5 to 10 MHz (output: 2.5 to 10 MHz)

6.5.2 Registers

(1) PLL control register (PLLCTL)

The PLLCTL register is an 8-bit register that controls the PLL function. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 01H.

PLLCTL	0	0	0	0	0	0	SELPLL	PLLON			
					•			•			
	PLLON			PLL ope	eration stop	register					
	0	PLL stopp	PLL stopped								
	1	PLL operating									
		(After PLL operation starts, a lockup time is required for frequency stabilization)									
	SELPLL		CF	PU operatio	on clock sel	ection reg	ister				
	0	Clock-thro	ough mode								
	1	PLL mode)								

 The SELPLL bit can be set to 1 only when the PLL clock frequency is stabilized (unlocked), "0" is written to the SELPLL bit if data is written to it.

(2) Clock control register (CKC)

The CKC register is a special register. Data can be written to this register only in a combination of specific sequence (see **3.4.7 Special registers**).

The CKC register controls the internal system clock in the PLL mode.

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 0AH.

	After res	set: 0AH	R/W	Address:	FFFFF822	2H				
		7	6	5	4	3	2	1	0	
	CKC	0	0	0	0	1	0	1	CKDIV0	
		CKDIV0		Internal s	system clo	ck (fxx) in P	LL mode			
		0	$f_{XX} = 4 \times f_{XX}$	fx (fx = 2.5 to	5.0 MHz))				
		1	$fxx = 8 \times f$	fx (fx = 2.5 N	/IHz)					
Cautions	the clo	e changin ock-throu	ng the mi igh mode		on factor the PLL	between	4 and 8	-	g the CKC	register, set
Remark	Both the C divided by		•	pheral cloc	ck are div	vided by th	ne CKC r	egister, t	out only the	CPU clock is

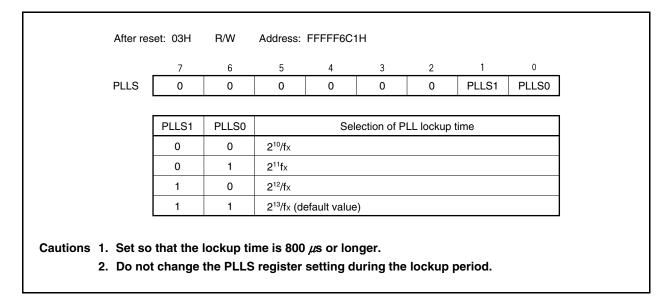
(3) Lock register (LOCKR)

Phase lock occurs at a given frequency following power application or immediately after the STOP mode is released, and the time required for stabilization is the lockup time (frequency stabilization time). This state until stabilization is called the lockup status, and the stabilized state is called the locked status.

The LOCKR register includes a LOCK bit that reflects the PLL frequency stabilization status.

This register is read-only, in 8-bit or 1-bit units.

Reset sets this register to 00H.


After res	set: 00H	R A	ddress: Ff	FFF824H					
	7	6	5	4	3	2	1	<0>	
LOCKR	0	0	0	0	0	0	0	LOCK	
	LOCK			PLL k	ock status o	check			
	0	Locked st	atus						
	1	Unlocked	status						
Caution The LOCK conditions [Set conditions]	-		t reflect	the lock	status o	f the PL	L in rea	I time. Th	e set/clear
 Upon system rese In IDLE2 or STOF Upon setting of P Upon stopping m PCC.MCK bit to 1 	9 mode LL stop (c nain clock	•			,	ing of PC	CC.CK3	bit to 1 and	d setting of
Note This regist oscillation					to 00H at	fter the re	eset has	been releas	ed and the
[Clear conditions] Upon overflow of (3) Oscillation s 				-		ase (OST	S registe	r default tim	e (see 21.2
Upon oscillation when the STOP n	node was	set in the	PLL oper	ating statu	JS	c ,		-	
Upon PLL lockup from 0 to 1									-
 After the setup tir when the IDLE2 r 					mode is	released	(time se	t by the OS	TS register)

(4) PLL lockup time specification register (PLLS)

The PLLS register is an 8-bit register used to select the PLL lockup time when the PLLCTL.PLLON bit is changed from 0 to 1.

This register can be read or written in 8-bit units.

Reset sets this register to 03H.

6.5.3 Usage

(1) When PLL is used

- After the reset signal has been released, the PLL operates (PLLCTL.PLLON bit = 1), but because the default mode is the clock-through mode (PLLCTL.SELPLL bit = 0), select the PLL mode (SELPLL bit = 1).
- To enable PLL operation, first set the PLLON bit to 1, and then set the SELPLL bit to 1 after the LOCKR.LOCK bit = 0. To stop the PLL, first select the clock-through mode (SELPLL bit = 0), wait for 8 clocks or more, and then stop the PLL (PLLON bit = 0).
- The PLL stops during transition to the IDLE2 or STOP mode regardless of the setting and is restored from the IDLE2 or STOP mode to the status before transition. The time required for restoration is as follows.
 - (a) When transiting to the IDLE2 or STOP mode from the clock through mode
 - STOP mode: Set the OSTS register so that the oscillation stabilization time is 1 ms (min.) or longer.
 - IDLE2 mode: Set the OSTS register so that the setup time is $350 \ \mu s$ (min.) or longer.
 - (b) When transiting to the IDLE 2 or STOP mode while remaining in the PLL operation mode
 - STOP mode: Set the OSTS register so that the oscillation stabilization time is 1 ms (min.) or longer.
 - IDLE2 mode: Set the OSTS register so that the setup time is 800 μ s (min.) or longer.

When transiting to the IDLE1 mode, the PLL does not stop. Stop the PLL if necessary.

(2) When PLL is not used

The clock-through mode (SELPLL bit = 0) is selected after the reset signal has been released, but the PLL is operating (PLLON bit = 1) and must therefore be stopped (PLLON bit = 0).

CHAPTER 7 16-BIT TIMER/EVENT COUNTER P (TMP)

Timer P (TMP) is a 16-bit timer/event counter.

The V850ES/JG2 has six timer/event counter channels, TMP0 to TMP5.

7.1 Overview

An outline of TMPn is shown below.

Clock selection:	8 ways
Capture/trigger input pins:	2
 External event count input pins: 	1
 External trigger input pins: 	1
Timer/counters:	1
Capture/compare registers:	2
Capture/compare match interrupt request signals:	2
Timer output pins:	2

Remark n = 0 to 5

7.2 Functions

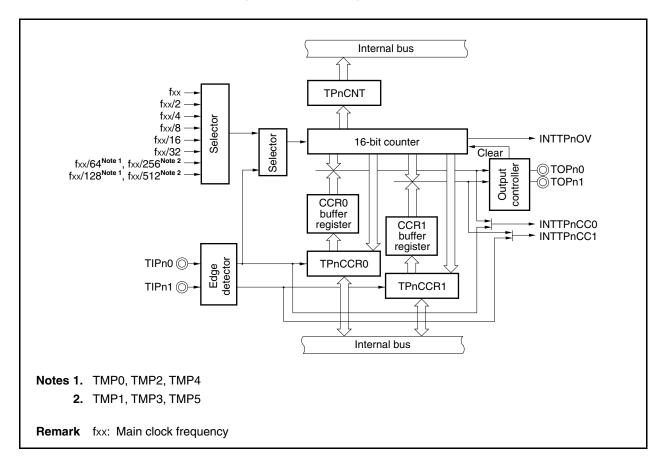
TMPn has the following functions.

- Interval timer
- External event counter
- External trigger pulse output
- One-shot pulse output
- PWM output
- Free-running timer
- Pulse width measurement

Remark n = 0 to 5

7.3 Configuration

TMPn includes the following hardware.


Table 7-1.	Configuration of TMPn
------------	-----------------------

Item	Configuration
Timer register	16-bit counter
Registers	TMPn capture/compare registers 0, 1 (TPnCCR0, TPnCCR1) TMPn counter read buffer register (TPnCNT) CCR0, CCR1 buffer registers
Timer inputs	2 (TIPn0 ^{Note 1} , TIPn1 pins)
Timer outputs	2 (TOPn0, TOPn1 pins)
Control registers ^{Note 2}	TMPn control registers 0, 1 (TPnCTL0, TPnCTL1) TMPn I/O control registers 0 to 2 (TPnIOC0 to TPnIOC2) TMPn option register 0 (TPnOPT0)

- **Notes 1.** The TIPn0 pin functions alternately as a capture trigger input signal, external event count input signal, and external trigger input signal.
 - 2. When using the functions of the TIPn0, TIPn1, TOPn0, and TOPn1 pins, see Table 4-15 Settings When Port Pins Are Used for Alternate Functions.

Remark n = 0 to 5

(1) 16-bit counter

This 16-bit counter can count internal clocks or external events. The count value of this counter can be read by using the TPnCNT register. When the TPnCTL0.TPnCE bit = 0, the value of the 16-bit counter is FFFFH. If the TPnCNT register is read at this time, 0000H is read.

Reset sets the TPnCE bit to 0. Therefore, the 16-bit counter is set to FFFFH.

(2) CCR0 buffer register

This is a 16-bit compare register that compares the count value of the 16-bit counter.

When the TPnCCR0 register is used as a compare register, the value written to the TPnCCR0 register is transferred to the CCR0 buffer register. When the count value of the 16-bit counter matches the value of the CCR0 buffer register, a compare match interrupt request signal (INTTPnCC0) is generated.

The CCR0 buffer register cannot be read or written directly.

The CCR0 buffer register is cleared to 0000H after reset, as the TPnCCR0 register is cleared to 0000H.

(3) CCR1 buffer register

This is a 16-bit compare register that compares the count value of the 16-bit counter.

When the TPnCCR1 register is used as a compare register, the value written to the TPnCCR1 register is transferred to the CCR1 buffer register. When the count value of the 16-bit counter matches the value of the CCR1 buffer register, a compare match interrupt request signal (INTTPnCC1) is generated.

The CCR1 buffer register cannot be read or written directly.

The CCR1 buffer register is cleared to 0000H after reset, as the TPnCCR1 register is cleared to 0000H.

(4) Edge detector

This circuit detects the valid edges input to the TIPn0 and TIPn1 pins. No edge, rising edge, falling edge, or both the rising and falling edges can be selected as the valid edge by using the TPnIOC1 and TPnIOC2 registers.

(5) Output controller

This circuit controls the output of the TOPn0 and TOPn1 pins. The output controller is controlled by the TPnIOC0 register.

(6) Selector

This selector selects the count clock for the 16-bit counter. Eight types of internal clocks or an external event can be selected as the count clock.

7.4 Registers

The registers that control TMPn are as follows.

- TMPn control register 0 (TPnCTL0)
- TMPn control register 1 (TPnCTL1)
- TMPn I/O control register 0 (TPnIOC0)
- TMPn I/O control register 1 (TPnIOC1)
- TMPn I/O control register 2 (TPnIOC2)
- TMPn option register 0 (TPnOPT0)
- TMPn capture/compare register 0 (TPnCCR0)
- TMPn capture/compare register 1 (TPnCCR1)
- TMPn counter read buffer register (TPnCNT)

Remarks 1. When using the functions of the TIPn0, TIPn1,TOPn0, and TOPn1 pins, see Table 4-15 Settings When Port Pins Are Used for Alternate Functions.

2. n = 0 to 5

(1) TMPn control register 0 (TPnCTL0)

The TPnCTL0 register is an 8-bit register that controls the operation of TMPn.

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

The same value can always be written to the TPnCTL0 register by software.

	set: 00H	R/W	Address:	TPOCTLO) FFFFF	590H, TP1	CTL0 FFFFI	F5A0H,	
				TP2CTL0) FFFFF	5B0H, TP3	BCTL0 FFFF	F5C0H,	
				TP4CTL0) FFFFF	5D0H, TP	5CTL0 FFFF	F5E0H	
	<7>	6	5	4	3	2	1	0	
TPnCTL0	TPnCE	0	0	0	0	TPnCKS	2 TPnCKS1	TPnCKS0	
(n = 0 to 5)									
	TPnCE			TMPn	operatio	n control			
	0	TMPn ope	ration disal	oled (TMP	n reset as	synchrono	usly ^{Note}).		
	1	TMPn ope	ration enab	led. TMP	n operatio	on started.			
	_								
	TPnCKS2	TPnCKS1	TPnCKS0	Internal count clock selection					
				n	= 0, 2, 4		n = 1, 3	, 5	
	0	0	0	fxx					
	0	0	1	fxx/2					
	0	1	0	fxx/4					
	0	1	1	fxx/8					
	1	0	0	fxx/16					
	1	0	1	fxx/32					
	1	1	0	fxx/64			fxx/256		
	1	1	1	fxx/128			fxx/512		

(2) TMPn control register 1 (TPnCTL1)

The TPnCTL1 register is an 8-bit register that controls the operation of TMPn. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

7 TPnCTL1 0 n = 0 to 5) TPnEs 0				P2CTL1	FFFFF5B	1H, TP3CTL		, o ,		
TPnCTL1 0 n = 0 to 5)			T	P4CTL1	FFFFF5D	1H, TP5CTL	1 FFFFF	5E1H		
n = 0 to 5)	TPn	6>	<5>	4	3	2	1	0		
TPnEs		EST	TPnEEE	0	0	TPnMD2	TPnMD1	TPnMD0		
0	ST			Softwa	are trigger	control				
					-					
1	• In o	one-sł		utput mode	e: A one-s 1 to the t mode: A w	r input. hot pulse is TPnEST bit VPWM wave vriting 1 to th rigger.	t as the trig form is ou	ger. tput with		
TPnE	F			Cour	nt clock se	lection				
0	Disa (Perf	Count clock selection Disable operation with external event count input. (Perform counting with the count clock selected by the TPnCTL0.TPnCK0 to TPnCK2 bits.)								
1	(Per	Enable operation with external event count input. (Perform counting at the valid edge of the external event count input signal.)								
			cts whethe he external	-	•	ned with the	internal co	unt clock		
TPnM	D2 TPn	TPnMD1 TPnMD0 Timer mode selection								
			-							
0	(0	0	Interval t	timer mod	e				
					timer mod event cou	-				
0	(0	0	External	event cou	-	node			
0		0 0	0	External External	event cou trigger pu	int mode	node			
0 0 0		0 0 1 1 0	0 1 0	External External One-sho PWM ou	event cou trigger pu t pulse ou tput mode	int mode Ise output m tput mode	node			
0 0 0 1 1		0 0 1 1 0 0	0 1 0 1 0 1	External External One-sho PWM ou Free-run	event cou trigger pu t pulse ou tput mode ning time	Int mode Ise output m tput mode				
0 0 0 1		0 0 1 1 0	0 1 0 1 0	External External One-sho PWM ou Free-run Pulse wi	event cou trigger pu t pulse ou tput mode ning time	int mode Ise output m tput mode				

(3) TMPn I/O control register 0 (TPnIOC0)

The TPnIOC0 register is an 8-bit register that controls the timer output (TOPn0, TOPn1 pins). This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

After res	set: 00H	R/W	Address:	TP0IOC0	FFFFF592	H, TP1IOC	0 FFFF5	A2H,	
					FFFF5B2				
					FFFF5D2				
	7	6	5	4	3	<2>	1	<0>	
TPnIOC0	0	0	0	0	TPnOL1	TPnOE1	TPnOL0	TPnOE0	
(n = 0 to 5)									
	TPnOL1			TOPn1 pin	output leve	el setting ^{Note}	e		
	0	TOPn1	pin starts o	utput at hig	h level				
	1	TOPn1	pin starts o	utput at low	level				
									-
	TPnOE1			TOPn1	l pin output	setting			
	0	When T	tput disable PnOL1 bit PnOL1 bit	= 0: Low le	•		•		
	1		tput enable						
				、 ·		•		. ,	•
	TPnOL0			TOPn0 pin	output leve	el setting ^{Not}	e		
	0	TOPn0	pin starts o	utput at hig	h level				
	1	TOPn0	pin starts ou	utput at low	level				
	TPnOE0			TOPn() pin output	setting			
	0	When T	tput disable PnOL0 bit PnOL0 bit	= 0: Low le	•		•		
	1	Timer ou	Itput enable	d (a square	e wave is o	utput from	the TOPn0	pin).	
N	TPr • Whe	nOLm bit n TPnOLn 16-bit co TPnC		below (m	= 0, 1). • When	16-bit cou	bit = 1 nter	ified by th	ne
c	autions	wher writte mista set th 2. Even	ite the T n the TPn en when akenly pe ne bits ag n if the T TPnOEm 0, 1).	CTL0.TP the TF erformed jain. PnOLm I	nCE bit = PnCE bit , clear th bit is ma	= 0. (The t = 1.) he TPnCE nipulatee	same va If rew E bit to (d when t	alue can l riting wa D and the the TPnC	be as en CE

(4) TMPn I/O control register 1 (TPnIOC1)

The TPnIOC1 register is an 8-bit register that controls the valid edge of the capture trigger input signals (TIPn0, TIPn1 pins).

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

Г

After re	set: 00H	R/W	Address:	TP0IOC1	FFFF59	93H, TP1IC	C1 FFFF	=5A3H,
				TP2IOC1	FFFFF5E	взн, трзіс	C1 FFFF	F5C3H,
				TP4IOC1	FFFFF5D	03H, TP5I0	DC1 FFFF	F5E3H
	7	6	5	4	3	2	1	0
TPnIOC1	0	0	0	0	TPnIS3	TPnIS2	TPnIS1	TPnIS0
(n = 0 to 5)								
	TPnIS3	TPnIS2	Capture	e trigger inp	out signal (⁻	TIPn1 pin)	valid edge	setting
	0	0	No edge	detection (d	apture ope	eration inva	ılid)	
	0	1	Detection	of rising e	dge			
	1	0	Detection	of falling e	dge			
	1	1	Detection	of both ed	ges			
	TPnIS1	TPnIS0	Capture	e trigger inp	out signal (⁻	TIPn0 pin)	valid edge	setting
	0	0	No edge	detection (d	apture ope	eration inva	ılid)	
	0	1	Detection	of rising e	dge			
	1	0	Detection	of falling e	dge			
	1	1	Detection	of both ed	ges			
	Cautions	TPnC	CTL0.TPn		0. (The	same val	ue can b	nen the e written istakenly
		perfo	ormed, cle	ear the T	PnCE bit	to 0 and	then se	t the bits
		agair	า.					
		2. The	TPnIS3	to TPnIS	0 bits aı	re valid	only in	the free-
		runn	ing time	mode a	nd the p	pulse wi	dth meas	surement
		mode poss		other n	nodes, a	capture	operatio	on is not
		-						

(5) TMPn I/O control register 2 (TPnIOC2)

The TPnIOC2 register is an 8-bit register that controls the valid edge of the external event count input signal (TIPn0 pin) and external trigger input signal (TIPn0 pin).

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

After re	eset: 00H	R/W	Address:	TP2IOC	2 FFFFF5	B4H, TP3I	OC2 FFFFI OC2 FFFF IOC2 FFFF	F5C4H,
	_	0	F			,		
TPnIOC2	7	6 0	5	4	3 TPnEES1	2 TPnEES	1 0 TPnETS1	0 TPnFTS0
(n = 0 to 5)		-	-					
	TPnEES1	TPnEES0	External e	vent count	input sign	al (TIPn0	pin) valid ed	ge setting
	0	0	No edge	detection (external ev	ent count	invalid)	
	0	1	Detection	of rising e	dge			
	1	0	Detection	of falling e	edge			
	1	1	Detection	of both ec	lges			
			1					
		TPnETS0	Externa	l trigger in	put signal (TIPn0 pin) valid edge	setting
	0	0	No edge	detection (external tri	gger invali	d)	
	0	1	Detection	of rising e	dge			
	1	0	Detection	of falling e	edge			
	1	1	Detection	of both ed	lges			
	Cautions	bits can mist set t 2. The TPn(cour	when the be writter akenly pe he bits ag TPnEES1 CTL1.TPn	TPnCTI n when t erformed jain. and TP EEE bit TPnCTL ⁻	L0.TPnCE he TPnC , clear th nEES0 bi = 1 or	E bit = 0. E bit = 1 e TPnCE its are va when t	TS1, and (The sau) If rewri E bit to 0 alid only v he extern CTL1.TPn	me value iting was and then when the nal event
		exter TPn(outp	rnal trigg CTL1.TPn	er pulse MD0 bit	output n s = 010	node (TF)) or th	alid only v PnCTL1.TF e one-sh PnCTL1.TF	PnMD2 to ot pulse

(6) TMPn option register 0 (TPnOPT0)

The TPnOPT0 register is an 8-bit register used to set the capture/compare operation and detect an overflow. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

After re	eset: 00H	B/W	Address:	TP0OPTC		обН ТР1 (FESASH
Alterit		10.00	Address.					FFF5C5H,
						D5H, TP50		,
				11 401 10	, , , , , , , , , , , , , , , , , , , ,	0011, 11 00		
	7	6	5	4	3	2	1	<0>
TPnOPT0	0	0	TPnCCS1	TPnCCS0	0	0	0	TPnOVF
(n = 0 to 5)								
	TPnCCS1		TPnCO	CR1 register	r capture/c	ompare se	election	
	0	Compare	e register se	lected				
	1	Capture	register sele	ected				
	The TPn	CCS1 bit s	setting is va	lid only in th	e free-run	ning timer	mode.	
	TPnCCS0		TPnC	CR0 register	r capture/c	ompare se	election	
	0	Compare	e register se	elected				
	1	Capture	register sele	ected				
	The TPn	CCS0 bit s	setting is val	lid only in th	e free-run	ning timer	mode.	
	TPn	OVF		TMPn ove	erflow dete	ction flag		
	Set (1)		Overflow	occurred				
	Reset (0)		TPnOVF	bit 0 written	or TPnC1	L0.TPnCE	E bit = 0	
	FFFH mode. • An inter TPnOV than the • The TP register • The TP	to 0000H rrupt reque F bit is set free-runn nOVF bit i are read nOVF bit o	s set when in the free-r est signal (II to 1. The I ning timer m s not cleare when the TF can be both Writing 1 ha	unning time NTTPnOV) i NTTPnOV s ode and the d even whe PnOVF bit = read and w	r mode or s generate signal is no pulse wic n the TPn 1. ritten, but	the pulse ed at the se of generate th measur OVF bit or the TPnOV	width mea ame time ed in mode ement mod the TPnC /F bit can	asurement that the es other ode. DPT0 not be set
	Cautions	bit = bit = TPn(0. (The	same valu writing wa) and then	ue can b as mista set the	e writter kenly pe bits agai	when t rformed n.	the TPnCE the TPnCE I, clear the

(7) TMPn capture/compare register 0 (TPnCCR0)

The TPnCCR0 register can be used as a capture register or a compare register depending on the mode.

This register can be used as a capture register or a compare register only in the free-running timer mode, depending on the setting of the TPnOPT0.TPnCCS0 bit. In the pulse width measurement mode, the TPnCCR0 register can be used only as a capture register. In any other mode, this register can be used only as a compare register.

The TPnCCR0 register can be read or written during operation.

This register can be read or written in 16-bit units.

Reset sets this register to 0000H.

Caution Accessing the TPnCCR0 register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers.

• When the CPU operates with the subclock and the main clock oscillation is stopped

When the CPU operates with the internal oscillation clock

After res	et: 0	000H	F	R/W	Ad	dress:									FF5A	
							I	P2C0	R0 F		-5861	1, TP3	SCCR	0	FF50	<i>5</i> 6Н,
							Т	P4C0	CR0 F	FFFF	5D6H	l, TP	5CCR	0 FFI	FF5E	E6H
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TPnCCR0																
(n = 0 to 5)																

(a) Function as compare register

The TPnCCR0 register can be rewritten even when the TPnCTL0.TPnCE bit = 1.

The set value of the TPnCCR0 register is transferred to the CCR0 buffer register. When the value of the 16-bit counter matches the value of the CCR0 buffer register, a compare match interrupt request signal (INTTPnCC0) is generated. If TOPn0 pin output is enabled at this time, the output of the TOPn0 pin is inverted.

When the TPnCCR0 register is used as a cycle register in the interval timer mode, external event count mode, external trigger pulse output mode, one-shot pulse output mode, or PWM output mode, the value of the 16-bit counter is cleared (0000H) if its count value matches the value of the CCR0 buffer register.

(b) Function as capture register

When the TPnCCR0 register is used as a capture register in the free-running timer mode, the count value of the 16-bit counter is stored in the TPnCCR0 register if the valid edge of the capture trigger input pin (TIPn0 pin) is detected. In the pulse-width measurement mode, the count value of the 16-bit counter is stored in the TPnCCR0 register and the 16-bit counter is cleared (0000H) if the valid edge of the capture trigger input pin (TIPn0) is detected.

Even if the capture operation and reading the TPnCCR0 register conflict, the correct value of the TPnCCR0 register can be read.

The following table shows the functions of the capture/compare register in each mode, and how to write data to the compare register.

Operation Mode	Capture/Compare Register	How to Write Compare Register
Interval timer	Compare register	Anytime write
External event counter	Compare register	Anytime write
External trigger pulse output	Compare register	Batch write
One-shot pulse output	Compare register	Anytime write
PWM output	Compare register	Batch write
Free-running timer	Capture/compare register	Anytime write
Pulse width measurement	Capture register	_

Table 7-2. Function of Capture/Compare Register in Each Mode and How to Write Compare Register

(8) TMPn capture/compare register 1 (TPnCCR1)

The TPnCCR1 register can be used as a capture register or a compare register depending on the mode. This register can be used as a capture register or a compare register only in the free-running timer mode, depending on the setting of the TPnOPT0.TPnCCS1 bit. In the pulse width measurement mode, the TPnCCR1 register can be used only as a capture register. In any other mode, this register can be used only as a compare register.

The TPnCCR1 register can be read or written during operation.

This register can be read or written in 16-bit units.

Reset sets this register to 0000H.

Caution Accessing the TPnCCR1 register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers.

• When the CPU operates with the subclock and the main clock oscillation is stopped

When the CPU operates with the internal oscillation clock

After res	set: 0	000H	I F	R/W	Ad	dress:	т	POCO	CR1 F	FFFF	598⊦	l, TP1	CCR	1 FFF	FF5A	\ 8Н,
							Т	P2C0	CR1 F	FFFF	5B8F	I, TP3	BCCR	1 FFF	FF50	C8H,
							Т	P4C0	CR1 F	FFFF	5D8H	l, TP	5CCR	1 FFI	FF5	E8H
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TPnCCR1																
(n = 0 to 5)																

(a) Function as compare register

The TPnCCR1 register can be rewritten even when the TPnCTL0.TPnCE bit = 1.

The set value of the TPnCCR1 register is transferred to the CCR1 buffer register. When the value of the 16-bit counter matches the value of the CCR1 buffer register, a compare match interrupt request signal (INTTPnCC1) is generated. If TOPn1 pin output is enabled at this time, the output of the TOPn1 pin is inverted.

(b) Function as capture register

When the TPnCCR1 register is used as a capture register in the free-running timer mode, the count value of the 16-bit counter is stored in the TPnCCR1 register if the valid edge of the capture trigger input pin (TIPn1 pin) is detected. In the pulse-width measurement mode, the count value of the 16-bit counter is stored in the TPnCCR1 register and the 16-bit counter is cleared (0000H) if the valid edge of the capture trigger input pin (TIPn1) is detected.

Even if the capture operation and reading the TPnCCR1 register conflict, the correct value of the TPnCCR1 register can be read.

The following table shows the functions of the capture/compare register in each mode, and how to write data to the compare register.

Operation Mode	Capture/Compare Register	How to Write Compare Register
Interval timer	Compare register	Anytime write
External event counter	Compare register	Anytime write
External trigger pulse output	Compare register	Batch write
One-shot pulse output	Compare register	Anytime write
PWM output	Compare register	Batch write
Free-running timer	Capture/compare register	Anytime write
Pulse width measurement	Capture register	_

Table 7-3. Function of Capture/Compare Register in Each Mode and How to Write Compare Register

(9) TMPn counter read buffer register (TPnCNT)

The TPnCNT register is a read buffer register that can read the count value of the 16-bit counter. If this register is read when the TPnCTL0.TPnCE bit = 1, the count value of the 16-bit timer can be read. This register is read-only, in 16-bit units.

The value of the TPnCNT register is cleared to 0000H when the TPnCE bit = 0. If the TPnCNT register is read at this time, the value of the 16-bit counter (FFFFH) is not read, but 0000H is read.

The value of the TPnCNT register is cleared to 0000H after reset, as the TPnCE bit is cleared to 0.

Caution Accessing the TPnCNT register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers.

- When the CPU operates with the subclock and the main clock oscillation is stopped
- When the CPU operates with the internal oscillation clock

After re	set: 0	000H	F	۲ R	Addre	ess:					AH, TI				,	
											ан, т ан, т				,	
TPnCNT (n = 0 to 5)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

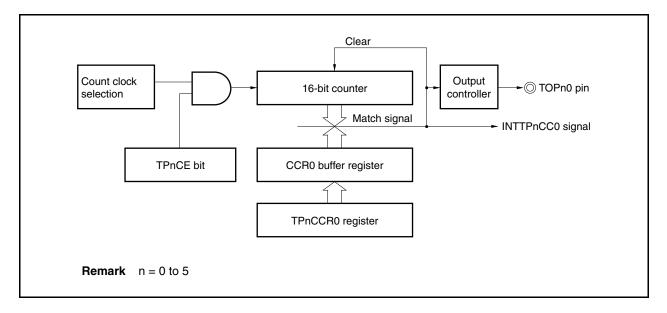
7.5 Operation

TMPn can perform the following operations.

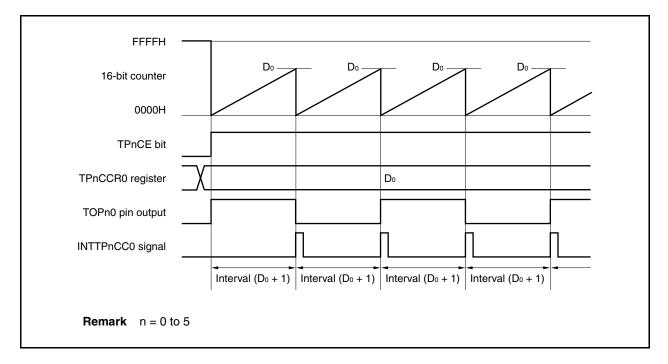
Operation	TPnCTL1.TPnEST Bit (Software Trigger Bit)	TIPn0 Pin (External Trigger Input)	Capture/Compare Register Setting	Compare Register Write
Interval timer mode	Invalid	Invalid	Compare only	Anytime write
External event count mode ^{Note 1}	Invalid	Invalid	Compare only	Anytime write
External trigger pulse output modeNote 2	Valid	Valid	Compare only	Batch write
One-shot pulse output mode ^{Note 2}	Valid	Valid	Compare only	Anytime write
PWM output mode	Invalid	Invalid	Compare only	Batch write
Free-running timer mode	Invalid	Invalid	Switching enabled	Anytime write
Pulse width measurement mode ^{Note 2}	Invalid	Invalid	Capture only	Not applicable

Notes 1. To use the external event count mode, specify that the valid edge of the TIPn0 pin capture trigger input is not detected (by clearing the TPnIOC1.TPnIS1 and TPnIOC1.TPnIS0 bits to "00").

2. When using the external trigger pulse output mode, one-shot pulse output mode, and pulse width measurement mode, select the internal clock as the count clock (by clearing the TPnCTL1.TPnEEE bit to 0).

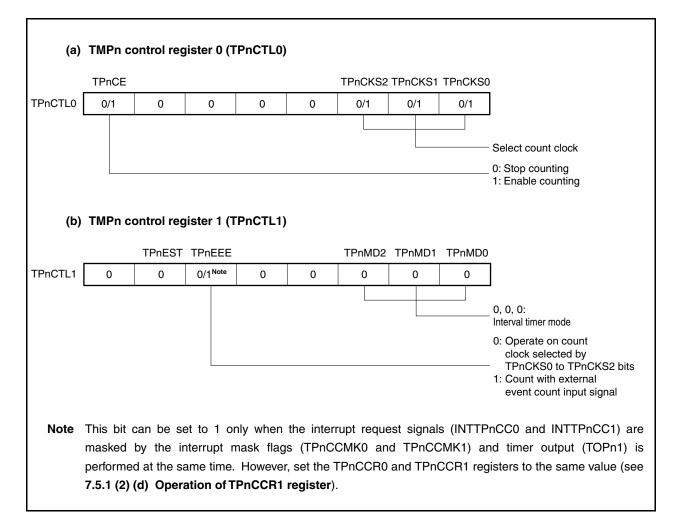

Remark n = 0 to 5

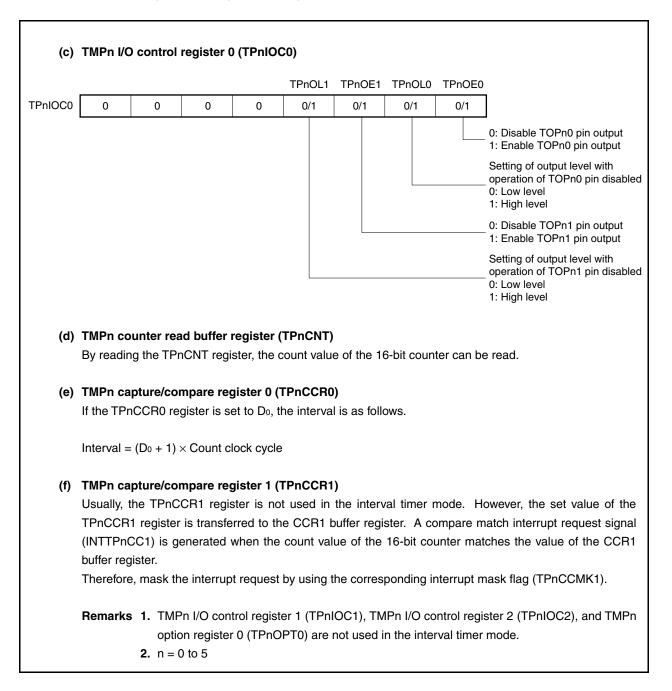
7.5.1 Interval timer mode (TPnMD2 to TPnMD0 bits = 000)


In the interval timer mode, an interrupt request signal (INTTPnCC0) is generated at the specified interval if the TPnCTL0.TPnCE bit is set to 1. A square wave whose half cycle is equal to the interval can be output from the TOPn0 pin.

Usually, the TPnCCR1 register is not used in the interval timer mode.

When the TPnCE bit is set to 1, the value of the 16-bit counter is cleared from FFFFH to 0000H in synchronization with the count clock, and the counter starts counting. At this time, the output of the TOPn0 pin is inverted. Additionally, the set value of the TPnCCR0 register is transferred to the CCR0 buffer register.


When the count value of the 16-bit counter matches the value of the CCR0 buffer register, the 16-bit counter is cleared to 0000H, the output of the TOPn0 pin is inverted, and a compare match interrupt request signal (INTTPnCC0) is generated.


The interval can be calculated by the following expression.

```
Interval = (Set value of TPnCCR0 register + 1) \times Count clock cycle
```

Remark n = 0 to 5

Figure 7-4. Register Setting for Interval Timer Mode Operation (2/2)

(1) Interval timer mode operation flow

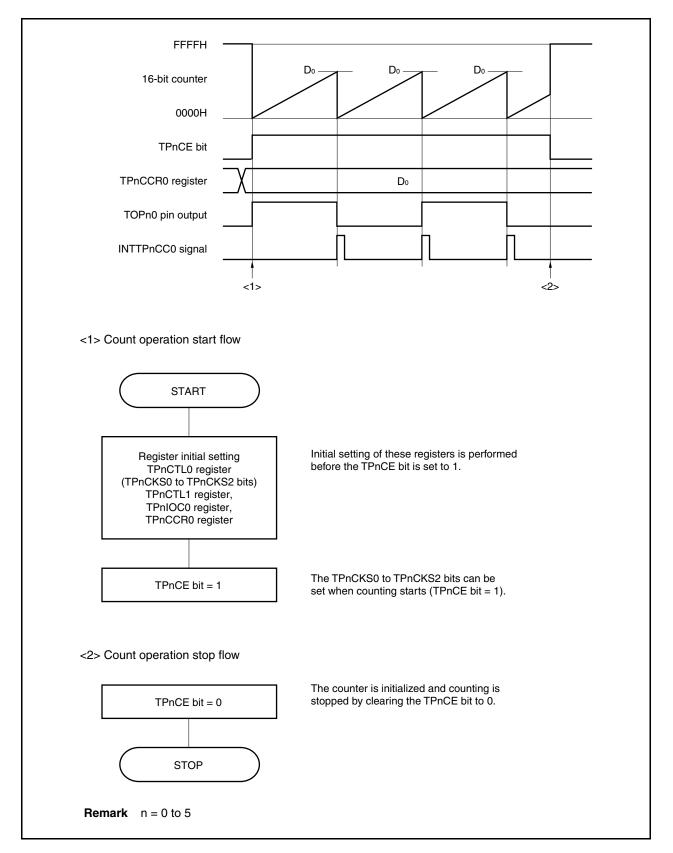
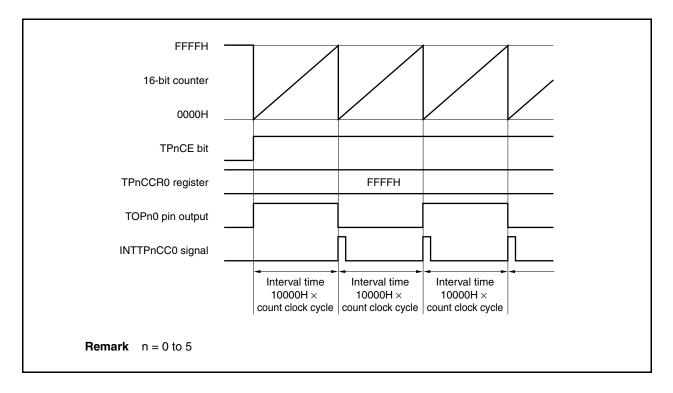


Figure 7-5. Software Processing Flow in Interval Timer Mode

(2) Interval timer mode operation timing

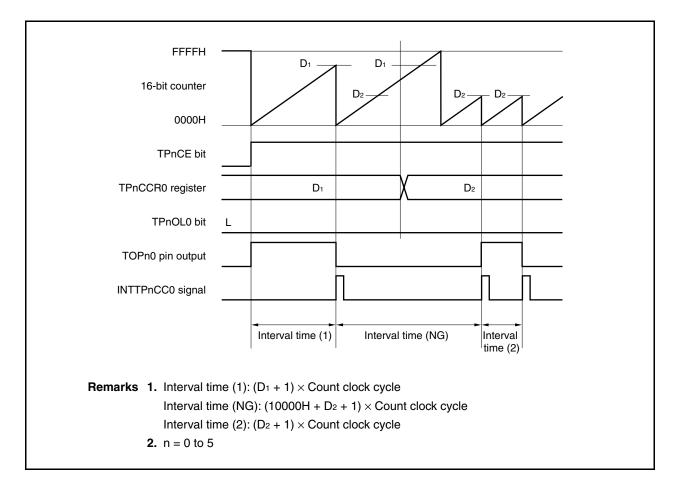
(a) Operation if TPnCCR0 register is set to 0000H


If the TPnCCR0 register is set to 0000H, the INTTPnCC0 signal is generated at each count clock of the second clock or later, and the output of the TOPn0 pin is inverted.

The value of the 16-bit counter is always 0000H.

Count clock				
16-bit counter	FFFH 0000H	0000н	Хоооон	0000Н
TPnCE bit				
TPnCCR0 register		0000H		
TOPn0 pin output				
INTTPnCC0 signal				
			Interval time Count clock cycle	Interval time Count clock cycle
Remark n = 0 to	5			

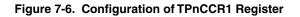
(b) Operation if TPnCCR0 register is set to FFFFH

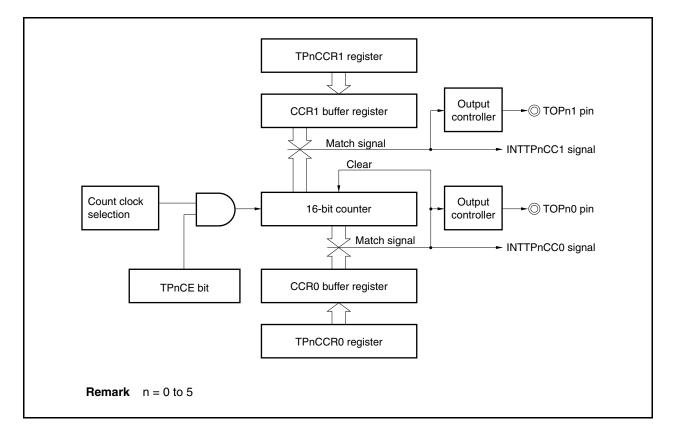

If the TPnCCR0 register is set to FFFFH, the 16-bit counter counts up to FFFFH. The counter is cleared to 0000H in synchronization with the next count-up timing. The INTTPnCC0 signal is generated and the output of the TOPn0 pin is inverted. At this time, an overflow interrupt request signal (INTTPnOV) is not generated, nor is the overflow flag (TPnOPT0.TPnOVF bit) set to 1.

(c) Notes on rewriting TPnCCR0 register

To change the value of the TPnCCR0 register to a smaller value, stop counting once and then change the set value.

If the value of the TPnCCR0 register is rewritten to a smaller value during counting, the 16-bit counter may overflow.




If the value of the TPnCCR0 register is changed from D_1 to D_2 while the count value is greater than D_2 but less than D_1 , the count value is transferred to the CCR0 buffer register as soon as the TPnCCR0 register has been rewritten. Consequently, the value of the 16-bit counter that is compared is D_2 .

Because the count value has already exceeded D₂, however, the 16-bit counter counts up to FFFH, overflows, and then counts up again from 0000H. When the count value matches D₂, the INTTPnCC0 signal is generated and the output of the TOPn0 pin is inverted.

Therefore, the INTTPnCC0 signal may not be generated at the interval time " $(D_1 + 1) \times Count clock cycle$ " or " $(D_2 + 1) \times Count clock cycle$ " originally expected, but may be generated at an interval of " $(10000H + D_2 + 1) \times Count clock period$ ".

(d) Operation of TPnCCR1 register

If the set value of the TPnCCR1 register is less than the set value of the TPnCCR0 register, the INTTPnCC1 signal is generated once per cycle. At the same time, the output of the TOPn1 pin is inverted. The TOPn1 pin outputs a square wave with the same cycle as that output by the TOPn0 pin.

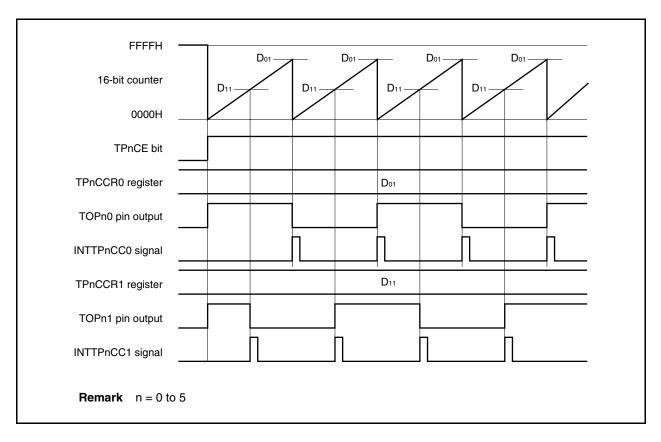


Figure 7-7. Timing Chart When $D_{01} \ge D_{11}$

If the set value of the TPnCCR1 register is greater than the set value of the TPnCCR0 register, the count value of the 16-bit counter does not match the value of the TPnCCR1 register. Consequently, the INTTPnCC1 signal is not generated, nor is the output of the TOPn1 pin changed.

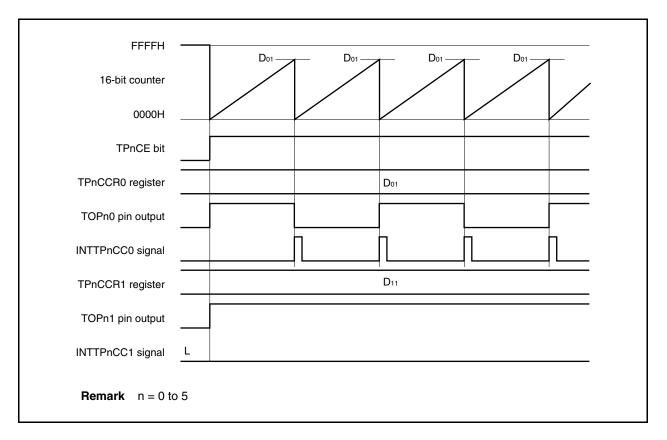
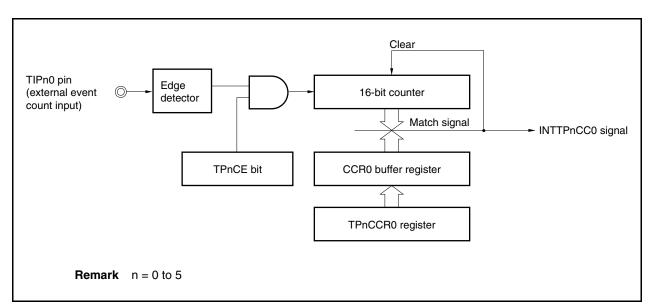
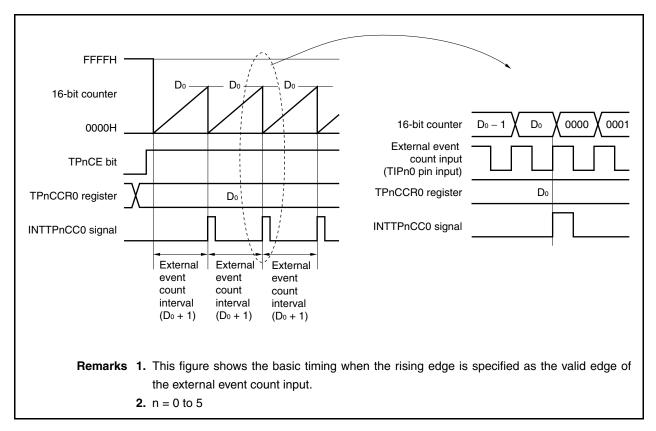



Figure 7-8. Timing Chart When Do1 < D11

7.5.2 External event count mode (TPnMD2 to TPnMD0 bits = 001)


In the external event count mode, the valid edge of the external event count input is counted when the TPnCTL0.TPnCE bit is set to 1, and an interrupt request signal (INTTPnCC0) is generated each time the specified number of edges have been counted. The TOPn0 pin cannot be used.

Usually, the TPnCCR1 register is not used in the external event count mode.

Figure 7-9. Configuration in External Event Count Mode

When the TPnCE bit is set to 1, the value of the 16-bit counter is cleared from FFFFH to 0000H. The counter counts each time the valid edge of external event count input is detected. Additionally, the set value of the TPnCCR0 register is transferred to the CCR0 buffer register.

When the count value of the 16-bit counter matches the value of the CCR0 buffer register, the 16-bit counter is cleared to 0000H, and a compare match interrupt request signal (INTTPnCC0) is generated.

The INTTPnCC0 signal is generated each time the valid edge of the external event count input has been detected (set value of TPnCCR0 register + 1) times.

	TPnCE					TPnCKS2	2 TPnCKS1	TPnCKS)
TPnCTL0	0/1	0	0	0	0	0	0	0	
_									0: Stop counting
									1: Enable counting
(b) TM	Pn cont	rol regist	er 1 (TPn	CTL1)					
			TPnEEE				TPnMD1		
TPnCTL1	0	0		0	0	0		1]
L	0	0	0	0	0]
						L			0, 0, 1:
									External event count mode
(c) TM	IPn I/O c	ontrol re	gister 0 (TPnIOC0)				
(c) TM	IPn I/O c	ontrol re	gister 0 (TPnIOC0					
-					TPnOL1	-		TPnOE0	
(c) TM	I Pn I/O c 0	ontrol res	gister 0 (' 0	TPnIOC0		TPnOE1	TPnOL0	0	External event count mode
-					TPnOL1	-		0	External event count mode
-					TPnOL1	-		0	External event count mode
TPnIOC0	0		0	0	TPnOL1	-		0	
TPnIOC0	0	0	0	0	TPnOL1 0	0	0	0	External event count mode 0: Disable TOPn0 pin output 0: Disable TOPn1 pin output
TPnIOC0	0 Pn I/O c	0 ontrol ree	0 gister 2 (0 TPnIOC2	TPnOL1 0) TPnEES1	0 TPnEES0	0 TPnETS1	0 TPnETS0	External event count mode 0: Disable TOPn0 pin output 0: Disable TOPn1 pin output
TPnIOC0	0	0	0	0	TPnOL1 0	0	0	0	External event count mode 0: Disable TOPn0 pin output 0: Disable TOPn1 pin output
TPnIOC0	0 Pn I/O c	0 ontrol ree	0 gister 2 (0 TPnIOC2	TPnOL1 0) TPnEES1	0 TPnEES0	0 TPnETS1	0 TPnETS0	External event count mode 0: Disable TOPn0 pin output 0: Disable TOPn1 pin output
TPnIOC0	0 Pn I/O c	0 ontrol ree	0 gister 2 (0 TPnIOC2	TPnOL1 0) TPnEES1	0 TPnEES0	0 TPnETS1	0 TPnETS0	External event count mode 0: Disable TOPn0 pin output 0: Disable TOPn1 pin output

Figure 7-11. Register Setting for Operation in External Event Count Mode (2/2)

(f)	If D ₀ is se	IPn capture/compare register 0 (TPnCCR0) D_0 is set to the TPnCCR0 register, the counter is cleared and a compare match interrupt request nal (INTTPnCC0) is generated when the number of external event counts reaches ($D_0 + 1$).							
(g)	TMPn capture/compare register 1 (TPnCCR1) Usually, the TPnCCR1 register is not used in the external event count mode. However, the set value of the TPnCCR1 register is transferred to the CCR1 buffer register. When the count value of the 16-bit counter matches the value of the CCR1 buffer register, a compare match interrupt request signal (INTTPnCC1) is generated. Therefore, mask the interrupt signal by using the interrupt mask flag (TPnCCMK1).								
	Caution When an external clock is used as the count clock, the external clock can be input only from the TIPn0 pin. At this time, set the TPnIOC1.TPnIS1 and TPnIOC1.TPnIS0 bits to 00 (capture trigger input (TIPn0 pin): no edge detection).								
	Remarks	 TMPn I/O control register 1 (TPnIOC1) and TMPn option register 0 (TPnOPT0) are not used in the external event count mode. n = 0 to 5 							

<R>

(1) External event count mode operation flow

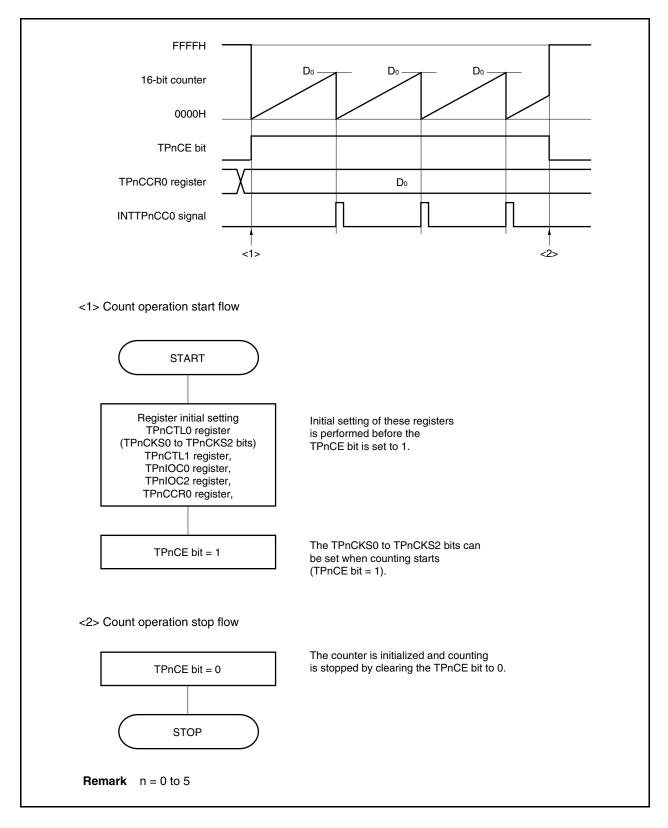
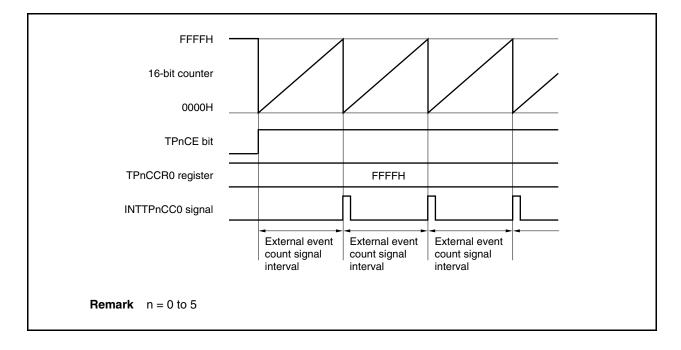
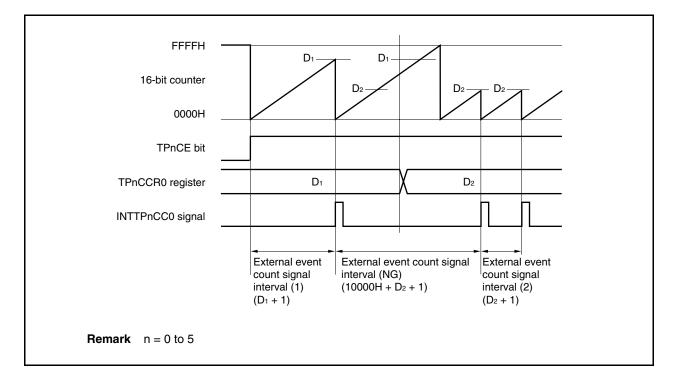



Figure 7-12. Flow of Software Processing in External Event Count Mode

- (2) Operation timing in external event count mode
 - Cautions 1. In the external event count mode, do not set the TPnCCR0 register to 0000H.
 - 2. In the external event count mode, use of the timer output is disabled. If performing timer output using external event count input, set the interval timer mode, and select the operation enabled by the external event count input for the count clock (TPnCTL1.TPnMD2 to TPnCTL1.TPnMD0 bits = 000, TPnCTL1.TPnEEE bit = 1).

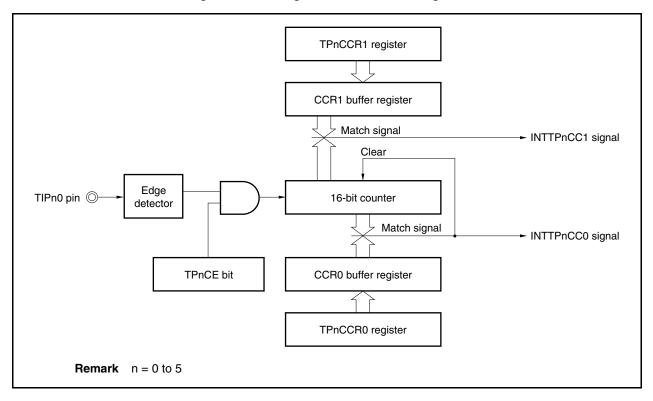
(a) Operation if TPnCCR0 register is set to FFFFH


If the TPnCCR0 register is set to FFFFH, the 16-bit counter counts to FFFFH each time the valid edge of the external event count signal has been detected. The 16-bit counter is cleared to 0000H in synchronization with the next count-up timing, and the INTTPnCC0 signal is generated. At this time, the TPnOPT0.TPnOVF bit is not set.

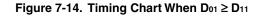
(b) Notes on rewriting the TPnCCR0 register

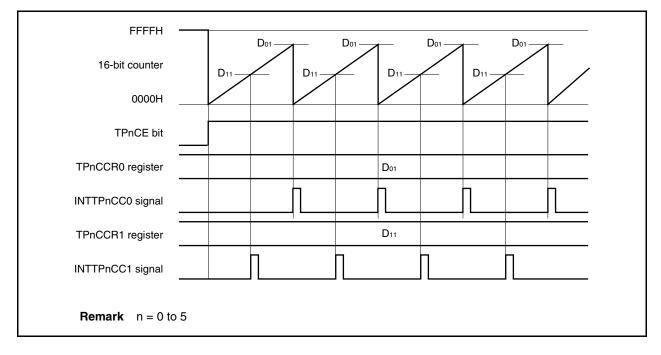
To change the value of the TPnCCR0 register to a smaller value, stop counting once and then change the set value.

If the value of the TPnCCR0 register is rewritten to a smaller value during counting, the 16-bit counter may overflow.


If the value of the TPnCCR0 register is changed from D_1 to D_2 while the count value is greater than D_2 but less than D_1 , the count value is transferred to the CCR0 buffer register as soon as the TPnCCR0 register has been rewritten. Consequently, the value that is compared with the 16-bit counter is D_2 .

Because the count value has already exceeded D₂, however, the 16-bit counter counts up to FFFFH, overflows, and then counts up again from 0000H. When the count value matches D₂, the INTTPnCC0 signal is generated.


Therefore, the INTTPnCC0 signal may not be generated at the valid edge count of " $(D_1 + 1)$ times" or " $(D_2 + 1)$ times" originally expected, but may be generated at the valid edge count of " $(10000H + D_2 + 1)$ times".


(c) Operation of TPnCCR1 register

If the set value of the TPnCCR1 register is smaller than the set value of the TPnCCR0 register, the INTTPnCC1 signal is generated once per cycle.

If the set value of the TPnCCR1 register is greater than the set value of the TPnCCR0 register, the INTTPnCC1 signal is not generated because the count value of the 16-bit counter and the value of the TPnCCR1 register do not match.

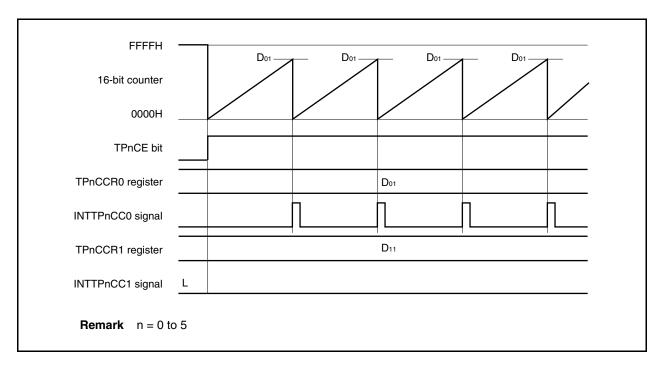
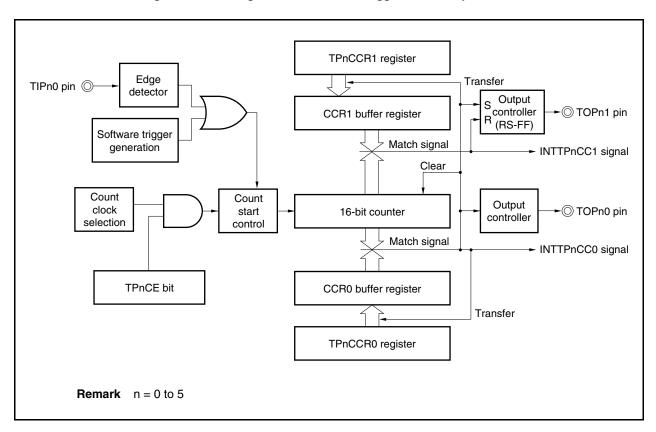



Figure 7-15. Timing Chart When Do1 < D11

7.5.3 External trigger pulse output mode (TPnMD2 to TPnMD0 bits = 010)

In the external trigger pulse output mode, 16-bit timer/event counter P waits for a trigger when the TPnCTL0.TPnCE bit is set to 1. When the valid edge of an external trigger input signal is detected, 16-bit timer/event counter P starts counting, and outputs a PWM waveform from the TOPn1 pin.

Pulses can also be output by generating a software trigger instead of using the external trigger. When using a software trigger, a square wave that has one cycle of the PWM waveform as half its cycle can also be output from the TOPn0 pin.

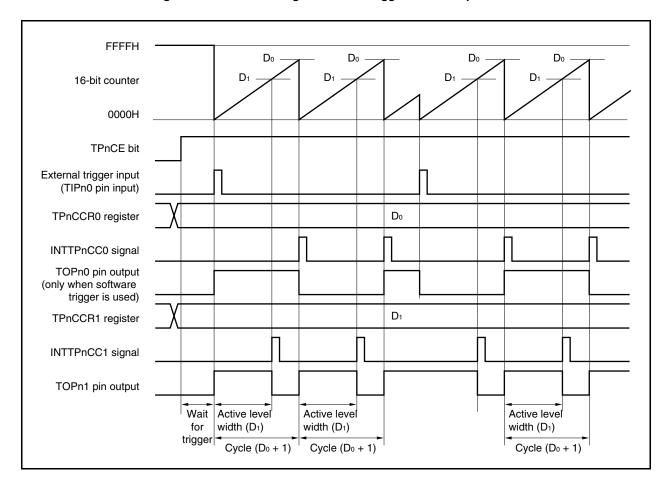


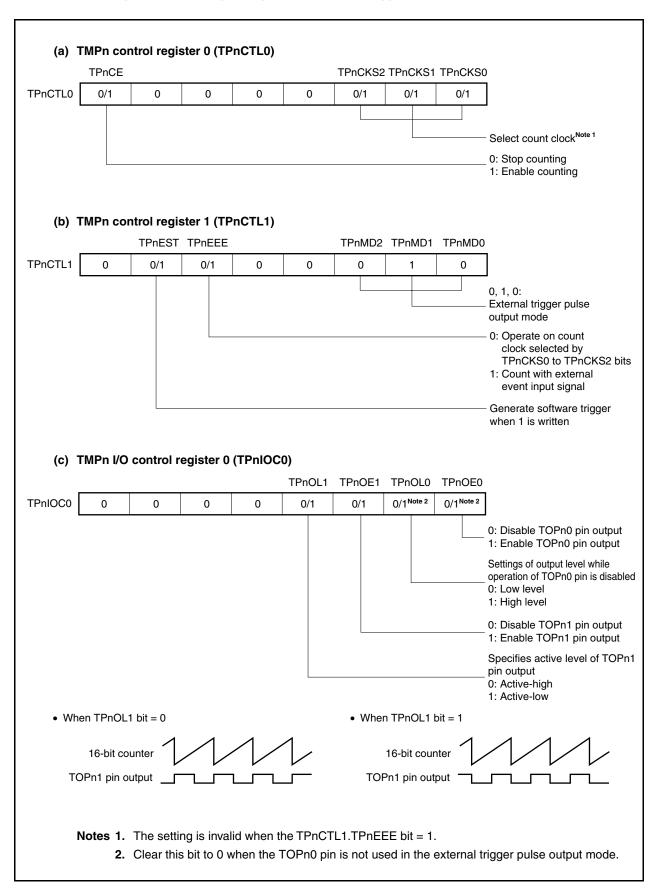
Figure 7-17. Basic Timing in External Trigger Pulse Output Mode

16-bit timer/event counter P waits for a trigger when the TPnCE bit is set to 1. When the trigger is generated, the 16-bit counter is cleared from FFFFH to 0000H, starts counting at the same time, and outputs a PWM waveform from the TOPn1 pin. If the trigger is generated again while the counter is operating, the counter is cleared to 0000H and restarted. (The output of the TOPn0 pin is inverted. The TOPn1 pin outputs a high-level regardless of the status (high/low) when a trigger occurs.)

The active level width, cycle, and duty factor of the PWM waveform can be calculated as follows.

Active level width = (Set value of TPnCCR1 register) × Count clock cycle

Cycle = (Set value of TPnCCR0 register + 1) \times Count clock cycle


Duty factor = (Set value of TPnCCR1 register)/(Set value of TPnCCR0 register + 1)

The compare match request signal INTTPnCC0 is generated when the 16-bit counter counts next time after its count value matches the value of the CCR0 buffer register, and the 16-bit counter is cleared to 0000H. The compare match interrupt request signal INTTPnCC1 is generated when the count value of the 16-bit counter matches the value of the CCR1 buffer register.

The value set to the TPnCCRm register is transferred to the CCRm buffer register when the count value of the 16bit counter matches the value of the CCRm buffer register and the 16-bit counter is cleared to 0000H.

The valid edge of an external trigger input signal, or setting the software trigger (TPnCTL1.TPnEST bit) to 1 is used as the trigger.

Remark n = 0 to 5, m = 0, 1

Figure 7-18. Setting of Registers in External Trigger Pulse Output Mode (2/2)

(d) TMPn I/O control register 2 (TPnIOC2)												
					TPnEES1	TPnEES0	TPnETS1	TPnETS0				
TPnIOC2	0	0	0	0	0/1	0/1	0/1	0/1				
									Select valid edge of external trigger input			
									Select valid edge of external event count input			
 (e) TMPn counter read buffer register (TPnCNT) The value of the 16-bit counter can be read by reading the TPnCNT register. (f) TMPn capture/compare registers 0 and 1 (TPnCCR0 and TPnCCR1) If D₀ is set to the TPnCCR0 register and D₁ to the TPnCCR1 register, the cycle and active leve PWM waveform are as follows. Cycle = (D₀ + 1) × Count clock cycle 												
	-	. ,		•	cycle							
	 Active level width = D₁ × Count clock cycle Remarks 1. TMPn I/O control register 1 (TPnIOC1) and TMPn option register 0 (TPnOPT0) are not used in the external trigger pulse output mode. 2. n = 0 to 5 											

(1) Operation flow in external trigger pulse output mode

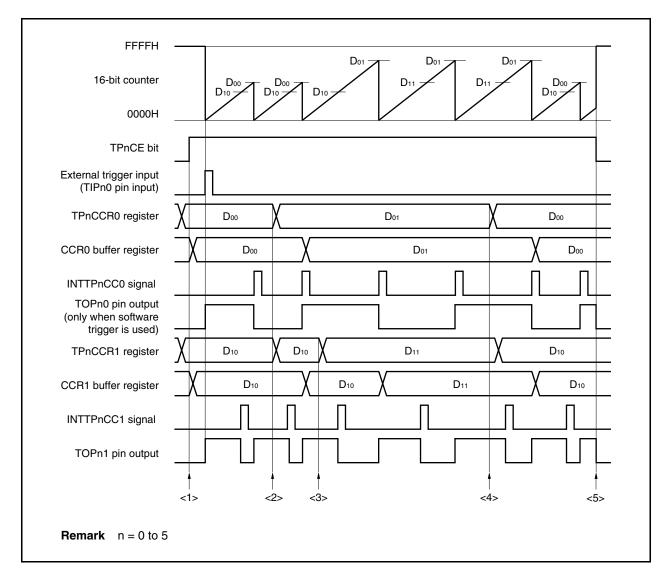
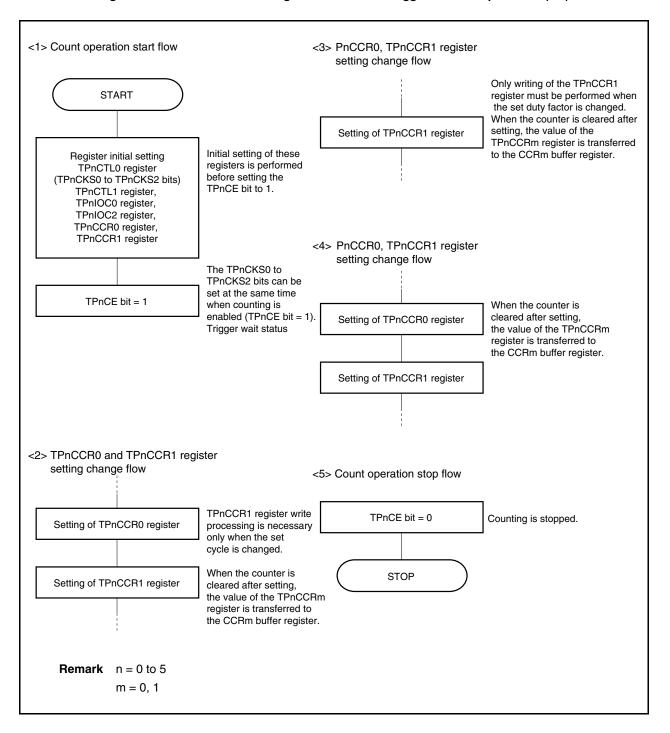
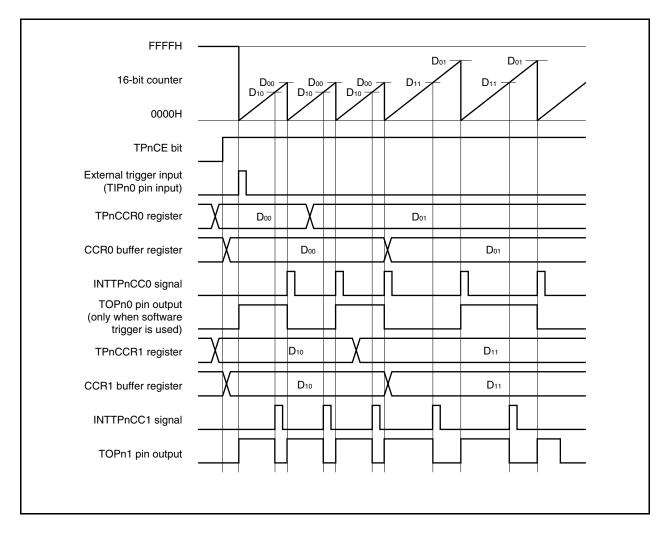



Figure 7-19. Software Processing Flow in External Trigger Pulse Output Mode (1/2)



(2) External trigger pulse output mode operation timing

(a) Note on changing pulse width during operation

To change the PWM waveform while the counter is operating, write the TPnCCR1 register last. Rewrite the TPnCCRm register after writing the TPnCCR1 register after the INTTPnCC0 signal is detected.

In order to transfer data from the TPnCCRm register to the CCRm buffer register, the TPnCCR1 register must be written.

To change both the cycle and active level width of the PWM waveform at this time, first set the cycle to the TPnCCR0 register and then set the active level width to the TPnCCR1 register.

To change only the cycle of the PWM waveform, first set the cycle to the TPnCCR0 register, and then write the same value to the TPnCCR1 register.

To change only the active level width (duty factor) of the PWM waveform, only the TPnCCR1 register has to be set.

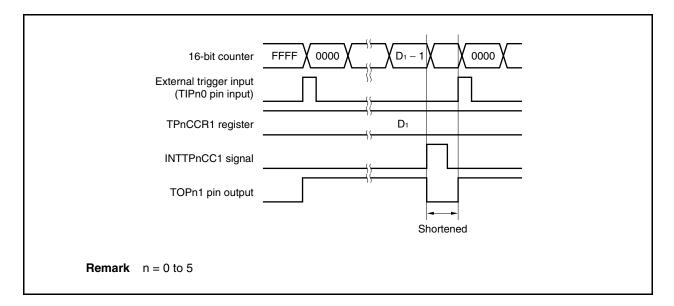
After data is written to the TPnCCR1 register, the value written to the TPnCCRm register is transferred to the CCRm buffer register in synchronization with clearing of the 16-bit counter, and is used as the value compared with the 16-bit counter.

To write the TPnCCR0 or TPnCCR1 register again after writing the TPnCCR1 register once, do so after the INTTPnCC0 signal is generated. Otherwise, the value of the CCRm buffer register may become undefined because the timing of transferring data from the TPnCCRm register to the CCRm buffer register conflicts with writing the TPnCCRm register.

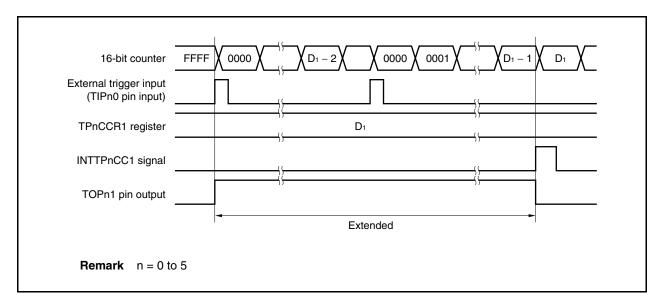
Remark n = 0 to 5m = 0, 1

(b) 0%/100% output of PWM waveform

To output a 0% waveform, set the TPnCCR1 register to 0000H. If the set value of the TPnCCR0 register is FFFFH, the INTTPnCC1 signal is generated periodically.

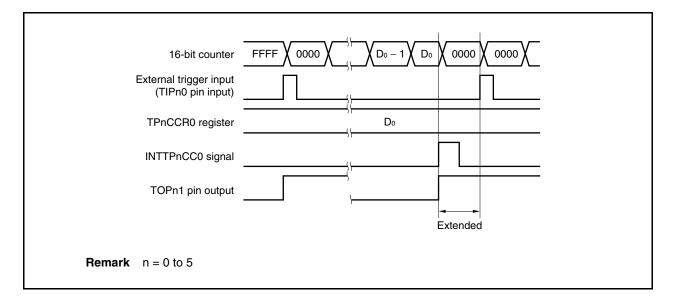

Count clock				
16-bit counter	FFFF 0000	$\sum_{i=1}^{n} \sum_{i=1}^{n} D_0 - 1 \sum_{i=1}^{n} D_0$	0000 0001	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$
TPnCE bit				
TPnCCR0 register	Do	\$ }	Do	D0
TPnCCR1 register	0000H	\$ }	0000H	0000H
INTTPnCC0 signal		\$		<u>ر</u>
INTTPnCC1 signal		\$		ζ γ
TOPn1 pin output		\${		· · · · · · · · · · · · · · · · · · ·
Remark n	= 0 to 5			

To output a 100% waveform, set a value of (set value of TPnCCR0 register + 1) to the TPnCCR1 register. If the set value of the TPnCCR0 register is FFFFH, 100% output cannot be produced.

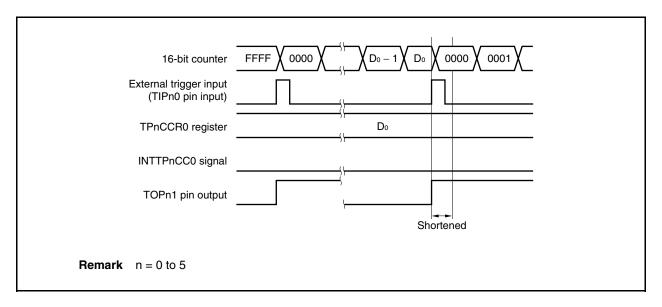

Count clock			
16-bit counter	FFF 0000	$D_{\rm b} = 0.000 {\rm M} {\rm D}_{\rm 0} {\rm D}_{\rm 0} {\rm M}	$\int_{0}^{\infty} \sqrt{D_0 - 1} \frac{D_0}{D_0} \sqrt{0000} \sqrt{D_0}$
TPnCE bit		·····	···
TPnCCR0 register	Do	Do	Do
TPnCCR1 register	D_0 + 1	D0 + 1	D0 + 1
INTTPnCC0 signal		,	ις
INTTPnCC1 signal		ş	; <u>;</u>
TOPn1 pin output		5)
Remark n	= 0 to 5		

(c) Conflict between trigger detection and match with TPnCCR1 register

If the trigger is detected immediately after the INTTPnCC1 signal is generated, the 16-bit counter is immediately cleared to 0000H, the output signal of the TOPn1 pin is asserted, and the counter continues counting. Consequently, the inactive period of the PWM waveform is shortened.

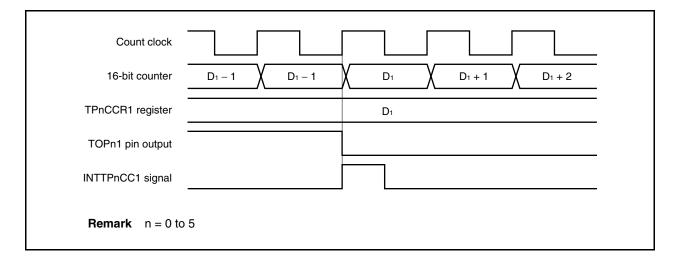


If the trigger is detected immediately before the INTTPnCC1 signal is generated, the INTTPnCC1 signal is not generated, and the 16-bit counter is cleared to 0000H and continues counting. The output signal of the TOPn1 pin remains active. Consequently, the active period of the PWM waveform is extended.



(d) Conflict between trigger detection and match with TPnCCR0 register

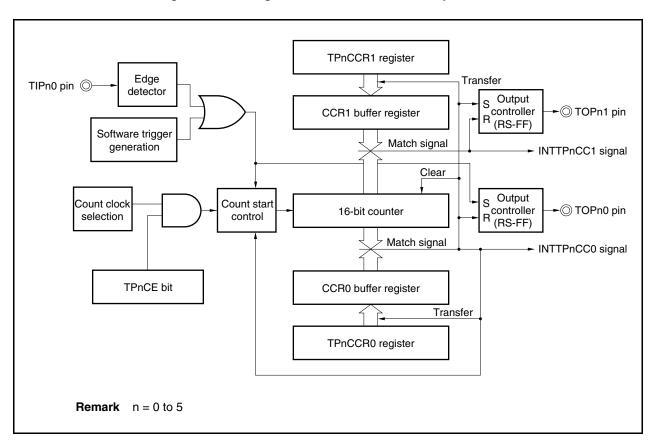
If the trigger is detected immediately after the INTTPnCC0 signal is generated, the 16-bit counter is cleared to 0000H and continues counting up. Therefore, the active period of the TOPn1 pin is extended by time from generation of the INTTPnCC0 signal to trigger detection.



If the trigger is detected immediately before the INTTPnCC0 signal is generated, the INTTPnCC0 signal is not generated. The 16-bit counter is cleared to 0000H, the TOPn1 pin is asserted, and the counter continues counting. Consequently, the inactive period of the PWM waveform is shortened.

(e) Generation timing of compare match interrupt request signal (INTTPnCC1)

The timing of generation of the INTTPnCC1 signal in the external trigger pulse output mode differs from the timing of other INTTPnCC1 signals; the INTTPnCC1 signal is generated when the count value of the 16-bit counter matches the value of the TPnCCR1 register.


Usually, the INTTPnCC1 signal is generated in synchronization with the next count up, after the count value of the 16-bit counter matches the value of the TPnCCR1 register.

In the external trigger pulse output mode, however, it is generated one clock earlier. This is because the timing is changed to match the timing of changing the output signal of the TOPn1 pin.

7.5.4 One-shot pulse output mode (TPnMD2 to TPnMD0 bits = 011)

In the one-shot pulse output mode, 16-bit timer/event counter P waits for a trigger when the TPnCTL0.TPnCE bit is set to 1. When the valid edge of an external trigger input is detected, 16-bit timer/event counter P starts counting, and outputs a one-shot pulse from the TOPn1 pin.

Instead of the external trigger, a software trigger can also be generated to output the pulse. When the software trigger is used, the TOPn0 pin outputs the active level while the 16-bit counter is counting, and the inactive level when the counter is stopped (waiting for a trigger).

Figure 7-20. Configuration in One-Shot Pulse Output Mode

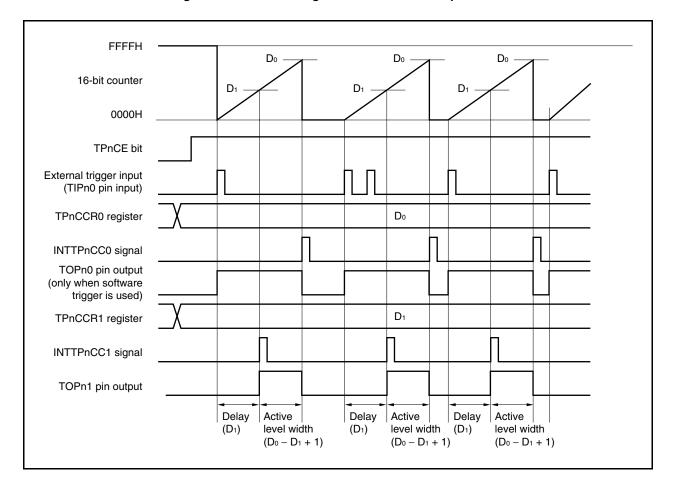


Figure 7-21. Basic Timing in One-Shot Pulse Output Mode

When the TPnCE bit is set to 1, 16-bit timer/event counter P waits for a trigger. When the trigger is generated, the 16-bit counter is cleared from FFFFH to 0000H, starts counting, and outputs a one-shot pulse from the TOPn1 pin. After the one-shot pulse is output, the 16-bit counter is set to FFFFH, stops counting, and waits for a trigger. If a trigger is generated again while the one-shot pulse is being output, it is ignored.

The output delay period and active level width of the one-shot pulse can be calculated as follows.

Output delay period = (Set value of TPnCCR1 register) \times Count clock cycle Active level width = (Set value of TPnCCR0 register – Set value of TPnCCR1 register + 1) \times Count clock cycle

The compare match interrupt request signal INTTPnCC0 is generated when the 16-bit counter counts after its count value matches the value of the CCR0 buffer register. The compare match interrupt request signal INTTPnCC1 is generated when the count value of the 16-bit counter matches the value of the CCR1 buffer register.

The valid edge of an external trigger input or setting the software trigger (TPnCTL1.TPnEST bit) to 1 is used as the trigger.

Remark n = 0 to 5 m = 0, 1

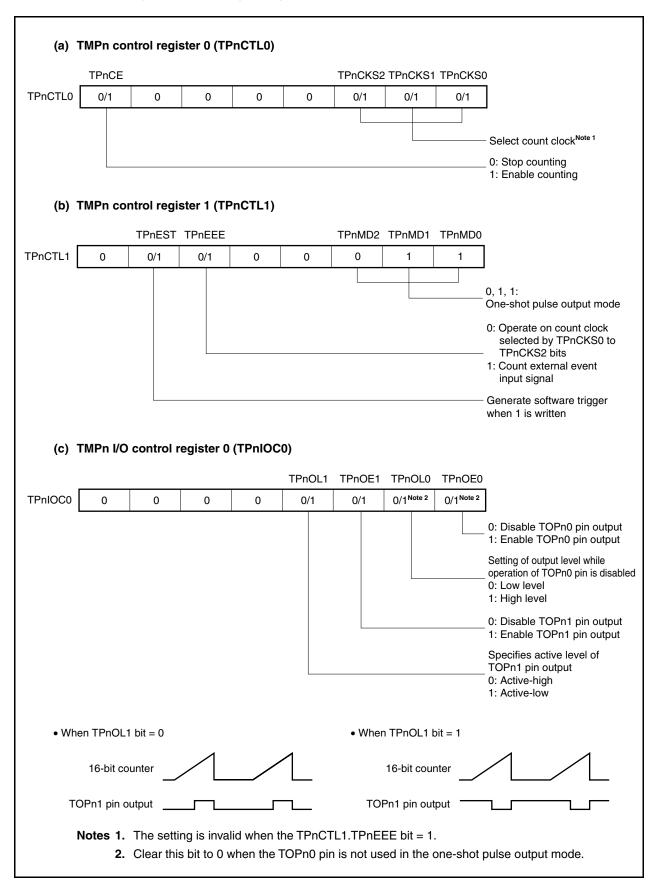


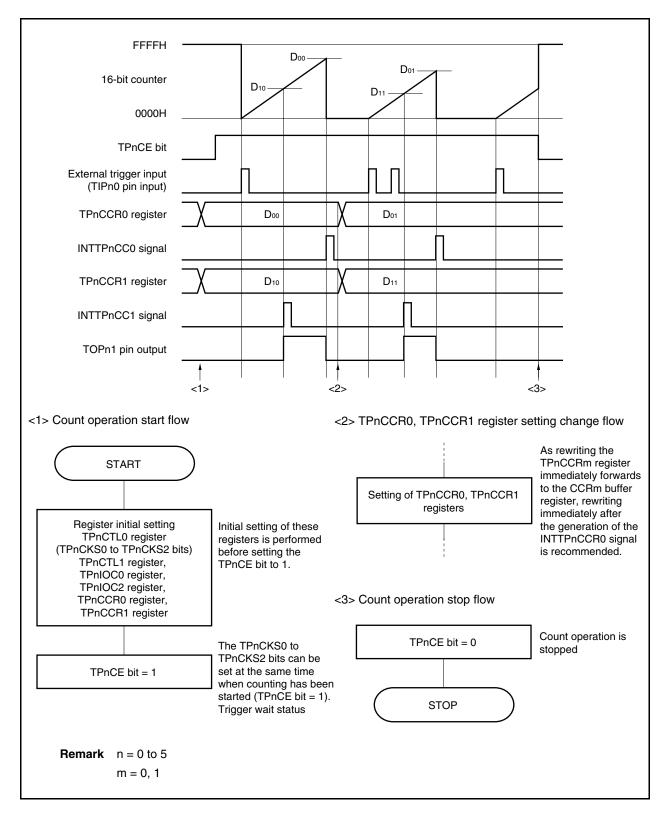
Figure 7-22. Setting of Registers in One-Shot Pulse Output Mode (1/2)

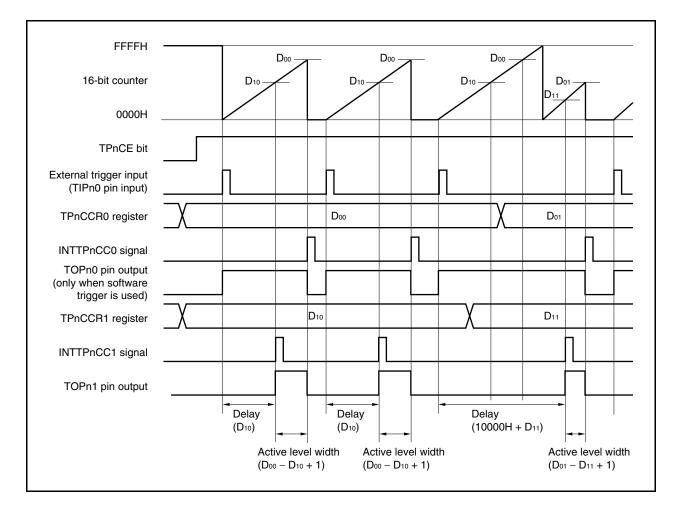
Figure 7-22. Setting of Registers in One-Shot Pulse Output Mode (2/2)

(d)	(d) TMPn I/O control register 2 (TPnIOC2)								
	TPnEES1 TPnEES0 TPnETS1 TPnETS0								
TPnIOC2	0	0	0	0	0/1	0/1	0/1	0/1]
									Select valid edge of external trigger input Select valid edge of external event count input
(e)	(e) TMPn counter read buffer register (TPnCNT) The value of the 16-bit counter can be read by reading the TPnCNT register.								
(f)	TMPn ca	pture/con	npare reg	isters 0 a	and 1 (TP	nCCR0 a	nd TPnCC	CR1)	
	If D ₀ is se	et to the T	PnCCR0	register a	nd D1 to	the TPnC	CR1 regis	ster, the a	active level width and output
	• •	iod of the							
		el width =		,		cycle			
	Output de	alay perioc	$I = D_1 \times C$	ount cloc	< cycle				
	Caution One-shot pulses are not output in the one-shot pulse output mode if the value set for the TPnCCR1 register is greater than that for the TPnCCR0 register.								
	 Remarks 1. TMPn I/O control register 1 (TPnIOC1) and TMPn option register 0 (TPnOPT0) are not used in the one-shot pulse output mode. 2. n = 0 to 5 								

<R>

(1) Operation flow in one-shot pulse output mode



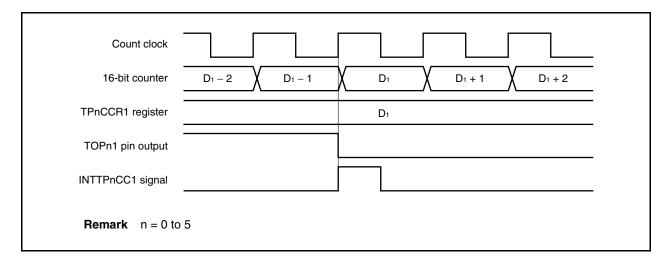

Figure 7-23. Software Processing Flow in One-Shot Pulse Output Mode

(2) Operation timing in one-shot pulse output mode

(a) Note on rewriting TPnCCRm register

To change the set value of the TPnCCRm register to a smaller value, stop counting once, and then change the set value.

If the value of the TPnCCRm register is rewritten to a smaller value during counting, the 16-bit counter may overflow.


When the TPnCCR0 register is rewritten from D_{00} to D_{01} and the TPnCCR1 register from D_{10} to D_{11} where $D_{00} > D_{01}$ and $D_{10} > D_{11}$, if the TPnCCR1 register is rewritten when the count value of the 16-bit counter is greater than D_{11} and less than D_{10} and if the TPnCCR0 register is rewritten when the count value is greater than D_{01} and less than D_{00} , each set value is reflected as soon as the register has been rewritten and compared with the count value. The counter counts up to FFFFH and then counts up again from 0000H. When the count value matches D_{11} , the counter generates the INTTPnCC1 signal and asserts the TOPn1 pin. When the count value matches D_{01} , the counter generates the INTTPnCC0 signal, deasserts the TOPn1 pin, and stops counting.

Therefore, the counter may output a pulse with a delay period or active period different from that of the one-shot pulse that is originally expected.

Remark n = 0 to 5m = 0, 1

(b) Generation timing of compare match interrupt request signal (INTTPnCC1)

The generation timing of the INTTPnCC1 signal in the one-shot pulse output mode is different from other INTTPnCC1 signals; the INTTPnCC1 signal is generated when the count value of the 16-bit counter matches the value of the TPnCCR1 register.

Usually, the INTTPnCC1 signal is generated when the 16-bit counter counts up next time after its count value matches the value of the TPnCCR1 register.

In the one-shot pulse output mode, however, it is generated one clock earlier. This is because the timing is changed to match the change timing of the TOPn1 pin.

Remark n = 0 to 5

7.5.5 PWM output mode (TPnMD2 to TPnMD0 bits = 100)

In the PWM output mode, a PWM waveform is output from the TOPn1 pin when the TPnCTL0.TPnCE bit is set to 1. In addition, a pulse with one cycle of the PWM waveform as half its cycle is output from the TOPn0 pin.

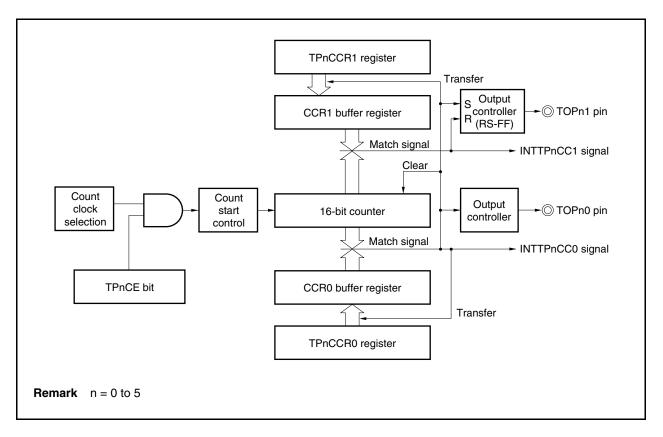


Figure 7-24. Configuration in PWM Output Mode

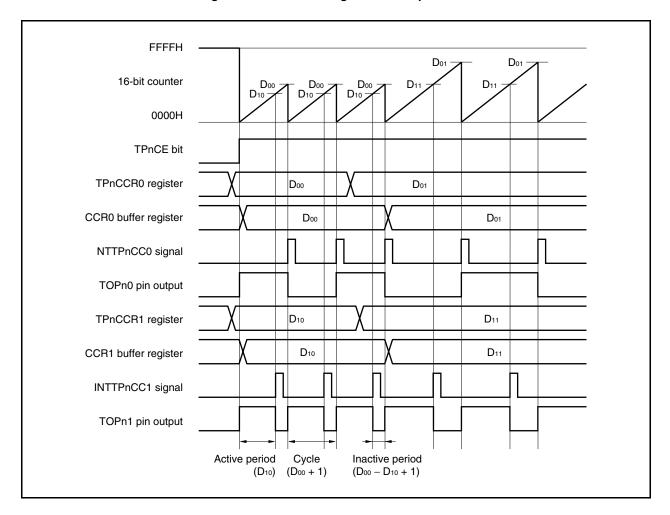
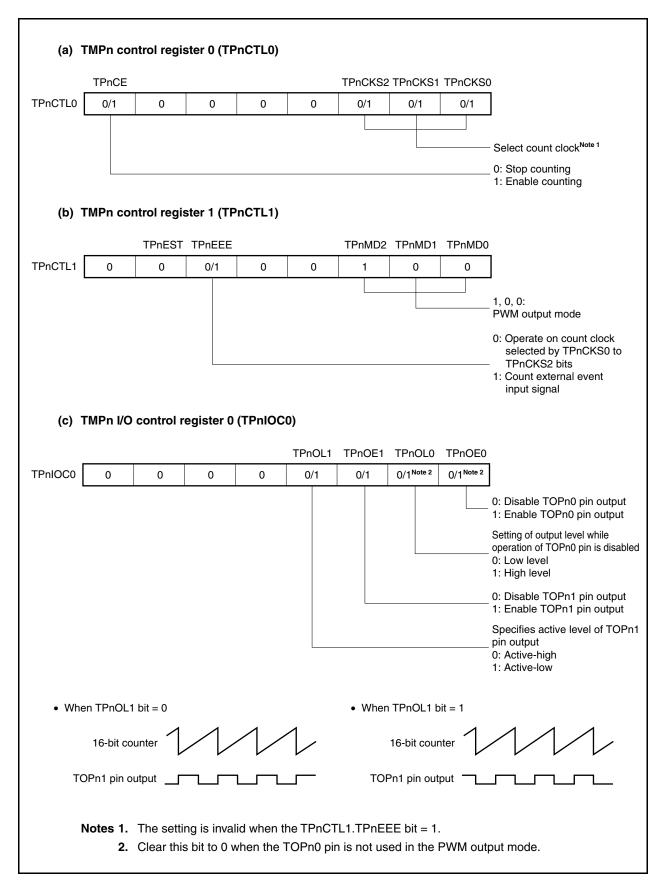


Figure 7-25. Basic Timing in PWM Output Mode

When the TPnCE bit is set to 1, the 16-bit counter is cleared from FFFFH to 0000H, starts counting, and outputs a PWM waveform from the TOPn1 pin.

The active level width, cycle, and duty factor of the PWM waveform can be calculated as follows.

Active level width = (Set value of TPnCCR1 register) × Count clock cycle Cycle = (Set value of TPnCCR0 register + 1) × Count clock cycle Duty factor = (Set value of TPnCCR1 register)/(Set value of TPnCCR0 register + 1)


The PWM waveform can be changed by rewriting the TPnCCRm register while the counter is operating. The newly written value is reflected when the count value of the 16-bit counter matches the value of the CCR0 buffer register and the 16-bit counter is cleared to 0000H.

The compare match interrupt request signal INTTPnCC0 is generated when the 16-bit counter counts next time after its count value matches the value of the CCR0 buffer register, and the 16-bit counter is cleared to 0000H. The compare match interrupt request signal INTTPnCC1 is generated when the count value of the 16-bit counter matches the value of the CCR1 buffer register.

The value set to the TPnCCRm register is transferred to the CCRm buffer register when the count value of the 16bit counter matches the value of the CCRm buffer register and the 16-bit counter is cleared to 0000H.

Remark n = 0 to 5, m = 0, 1

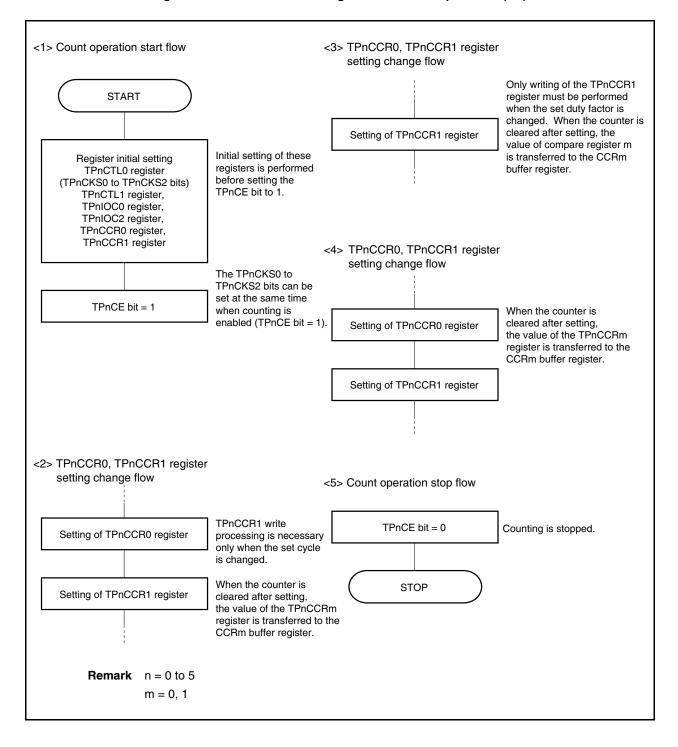
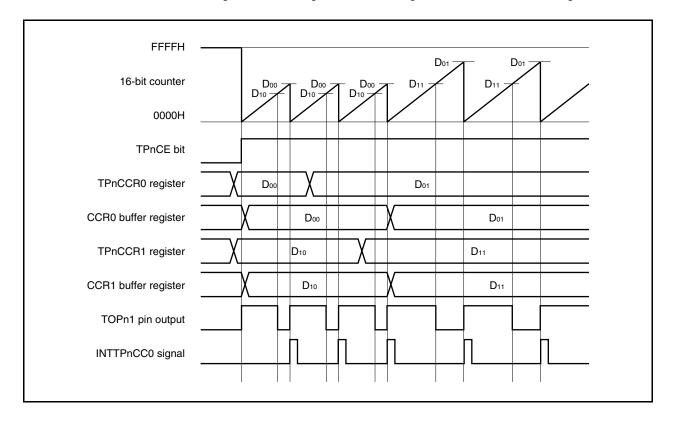

(d)	TMPn I/O	control r	egister 2	(TPnIOC	-	TPnEES0			
]
TPnIOC2	0	0	0	0	0/1	0/1	0	0	
									Select valid edge of external event count input.
(e)	(e) TMPn counter read buffer register (TPnCNT) The value of the 16-bit counter can be read by reading the TPnCNT register.								
(f)	(f) TMPn capture/compare registers 0 and 1 (TPnCCR0 and TPnCCR1) If D ₀ is set to the TPnCCR0 register and D ₁ to the TPnCCR1 register, the cycle and active level of the PWM waveform are as follows.								
	Cycle =	= (Do + 1) >	< Count c	ock cycle					
	Active I	evel width	$= D_1 \times C_1$	ount clock	cycle				
	Remarks 1. TMPn I/O control register 1 (TPnIOC1) and TMPn option register 0 (TPnOPT0) are not used in the PWM output mode.								
		2. n = 0	to 5						

Figure 7-26. Register Setting in PWM Output Mode (2/2)

(1) Operation flow in PWM output mode

FFFFH	
16-bit counter	
0000H	
TPnCE bit	
TPnCCR0 register	D ₀₀ D ₀₁ D ₀₀
CCR0 buffer register	D00 D01 D00
INTTPnCC0 signal	
TOPn0 pin output	
TPnCCR1 register	D10 D11 D10
CCR1 buffer register	D10 D10 D11 D10
INTTPnCC1 signal	
TOPn1 pin output	
Remark n = 0 m = 0	to 5

Figure 7-27. Software Processing Flow in PWM Output Mode (1/2)



(2) PWM output mode operation timing

(a) Changing pulse width during operation

To change the PWM waveform while the counter is operating, write the TPnCCR1 register last. Rewrite the TPnCCRm register after writing the TPnCCR1 register after the INTTPnCC1 signal is detected.

To transfer data from the TPnCCRm register to the CCRm buffer register, the TPnCCR1 register must be written.

To change both the cycle and active level of the PWM waveform at this time, first set the cycle to the TPnCCR0 register and then set the active level to the TPnCCR1 register.

To change only the cycle of the PWM waveform, first set the cycle to the TPnCCR0 register, and then write the same value to the TPnCCR1 register.

To change only the active level width (duty factor) of the PWM waveform, only the TPnCCR1 register has to be set.

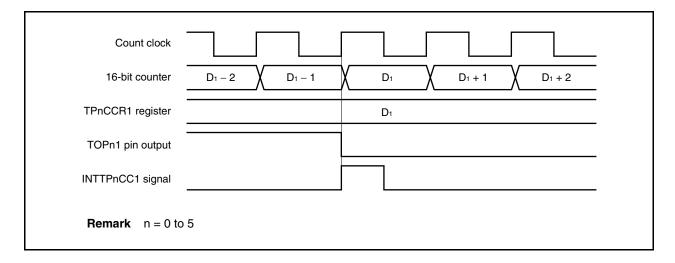
After data is written to the TPnCCR1 register, the value written to the TPnCCRm register is transferred to the CCRm buffer register in synchronization with clearing of the 16-bit counter, and is used as the value compared with the 16-bit counter.

To write the TPnCCR0 or TPnCCR1 register again after writing the TPnCCR1 register once, do so after the INTTPnCC0 signal is generated. Otherwise, the value of the CCRm buffer register may become undefined because the timing of transferring data from the TPnCCRm register to the CCRm buffer register conflicts with writing the TPnCCRm register.

Remark n = 0 to 5, m = 0, 1

(b) 0%/100% output of PWM waveform

To output a 0% waveform, set the TPnCCR1 register to 0000H. If the set value of the TPnCCR0 register is FFFFH, the INTTPnCC1 signal is generated periodically.

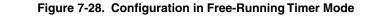

Count clock			
16-bit counter	FFFF 0000	$\sqrt{D_{00}-1}$ D_{00} $\sqrt{0000}$ $\sqrt{0001}$	
TPnCE bit		\ \	
TPnCCR0 register	Doo	5)	Doo
TPnCCR1 register	0000H	оооон у	0000H
INTTPnCC0 signal	(,,	,П
INTTPnCC1 signal		_у	,
TOPn1 pin output		;;	<u>}</u>
Remark n	= 0 to 5		

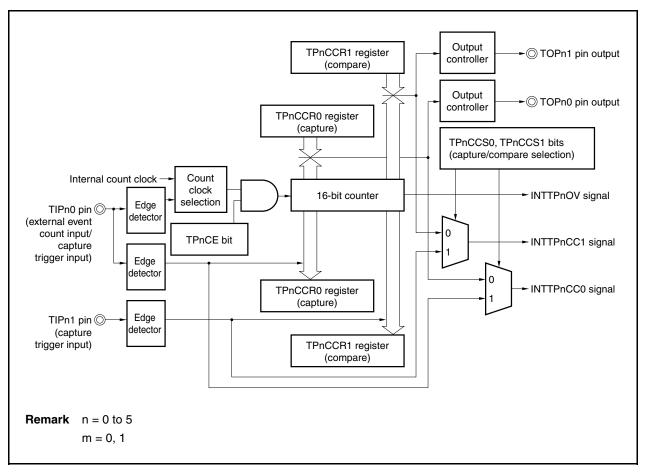
To output a 100% waveform, set a value of (set value of TPnCCR0 register + 1) to the TPnCCR1 register. If the set value of the TPnCCR0 register is FFFFH, 100% output cannot be produced.

Count clock			
16-bit counter		$\frac{1}{2}$ $D_{00} - 1$ D_{00} 0000 0001 C_{000}	$\int_{1}^{1} \sqrt{D_{00} - 1} \frac{D_{00}}{D_{00}} \sqrt{0000} \sqrt{1000}$
TPnCE bit		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
TPnCCR0 register	 		Doo
TPnCCR1 register	 	Doo + 1	Doo + 1
INTTPnCC0 signal		۶۲	,
INTTPnCC1 signal		۶ <u>ــــــــــــــــــــــــــــــــــــ</u>	<u>, </u>
TOPn1 pin output		<u>}</u> {	<u>,</u>
Remark n	= 0 to 5		

(c) Generation timing of compare match interrupt request signal (INTTPnCC1)

The timing of generation of the INTTPnCC1 signal in the PWM output mode differs from the timing of other INTTPnCC1 signals; the INTTPnCC1 signal is generated when the count value of the 16-bit counter matches the value of the TPnCCR1 register.




Usually, the INTTPnCC1 signal is generated in synchronization with the next counting up after the count value of the 16-bit counter matches the value of the TPnCCR1 register.

In the PWM output mode, however, it is generated one clock earlier. This is because the timing is changed to match the change timing of the output signal of the TOPn1 pin.

7.5.6 Free-running timer mode (TPnMD2 to TPnMD0 bits = 101)

In the free-running timer mode, 16-bit timer/event counter P starts counting when the TPnCTL0.TPnCE bit is set to 1. At this time, the TPnCCRm register can be used as a compare register or a capture register, depending on the setting of the TPnOPT0.TPnCCS0 and TPnOPT0.TPnCCS1 bits.

When the TPnCE bit is set to 1, 16-bit timer/event counter P starts counting, and the output signals of the TOPn0 and TOPn1 pins are inverted. When the count value of the 16-bit counter later matches the set value of the TPnCCRm register, a compare match interrupt request signal (INTTPnCCm) is generated, and the output signal of the TOPnm pin is inverted.

The 16-bit counter continues counting in synchronization with the count clock. When it counts up to FFFFH, it generates an overflow interrupt request signal (INTTPnOV) at the next clock, is cleared to 0000H, and continues counting. At this time, the overflow flag (TPnOPT0.TPnOVF bit) is also set to 1. Clear the overflow flag to 0 by executing the CLR instruction by software.

The TPnCCRm register can be rewritten while the counter is operating. If it is rewritten, the new value is reflected at that time, and compared with the count value.

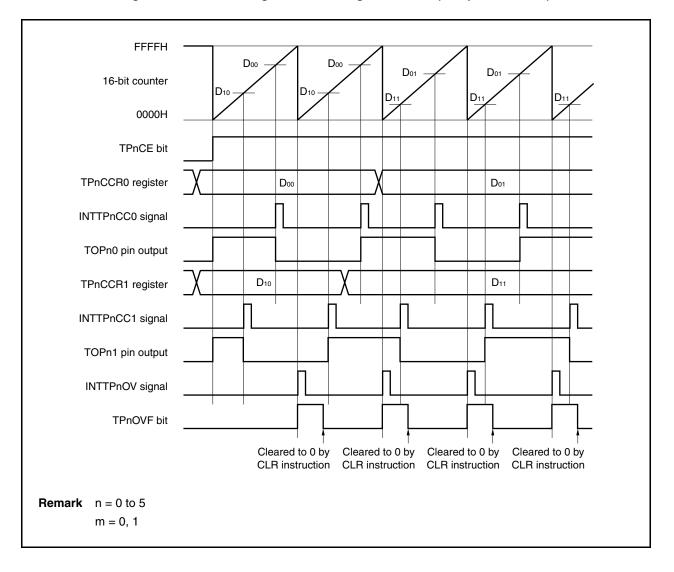


Figure 7-29. Basic Timing in Free-Running Timer Mode (Compare Function)

When the TPnCE bit is set to 1, the 16-bit counter starts counting. When the valid edge input to the TIPnm pin is detected, the count value of the 16-bit counter is stored in the TPnCCRm register, and a capture interrupt request signal (INTTPnCCm) is generated.

The 16-bit counter continues counting in synchronization with the count clock. When it counts up to FFFFH, it generates an overflow interrupt request signal (INTTPnOV) at the next clock, is cleared to 0000H, and continues counting. At this time, the overflow flag (TPnOPT0.TPnOVF bit) is also set to 1. Clear the overflow flag to 0 by executing the CLR instruction by software.

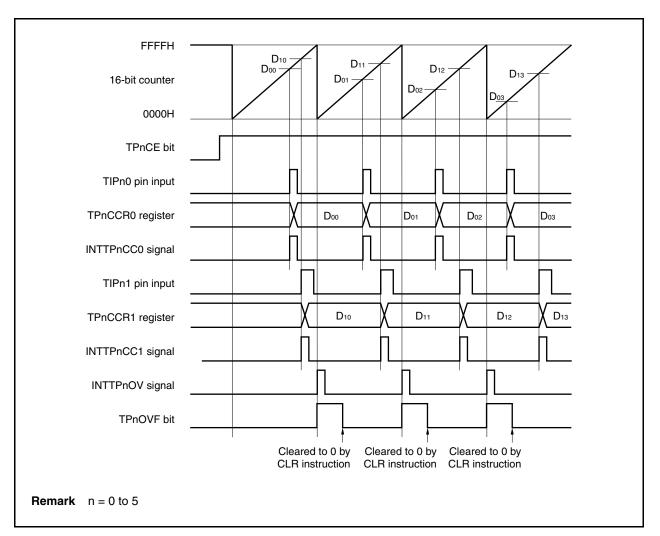
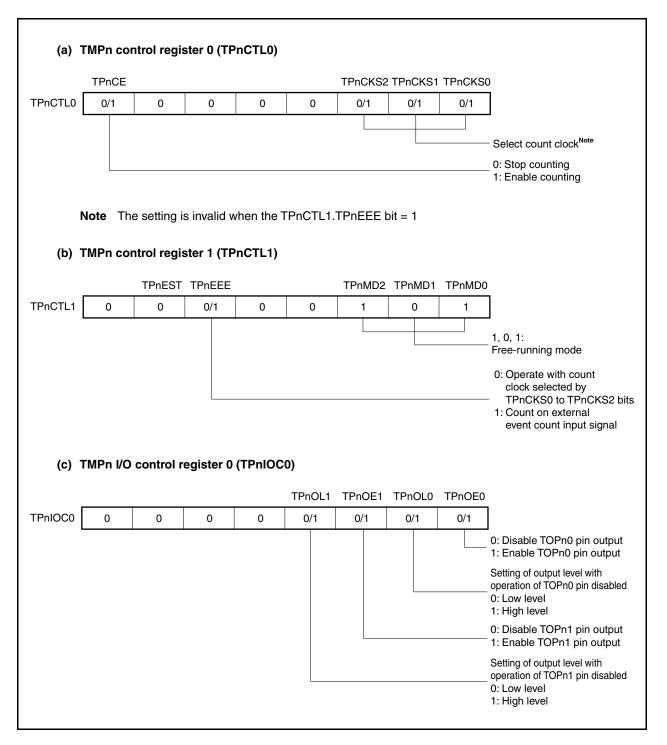
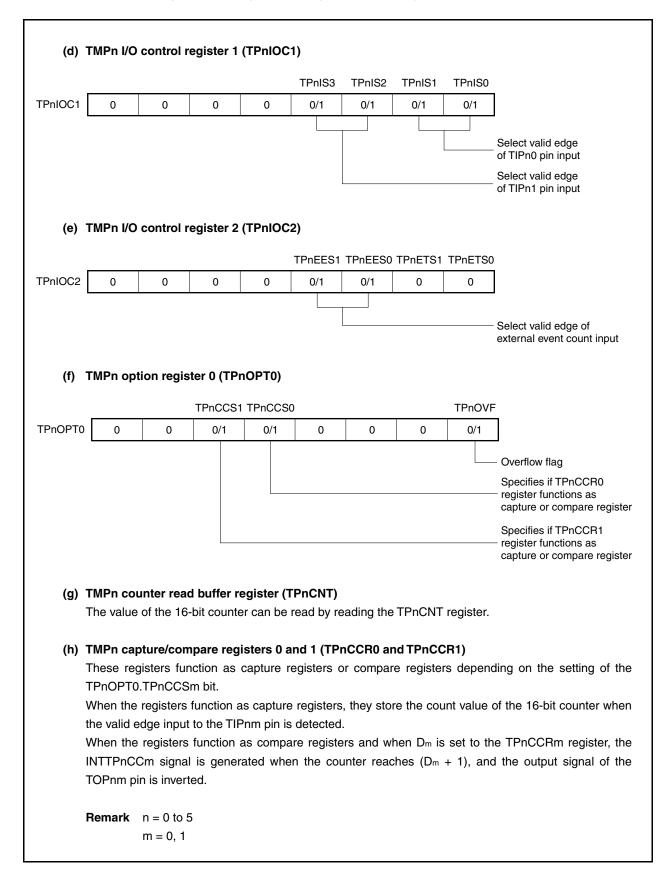
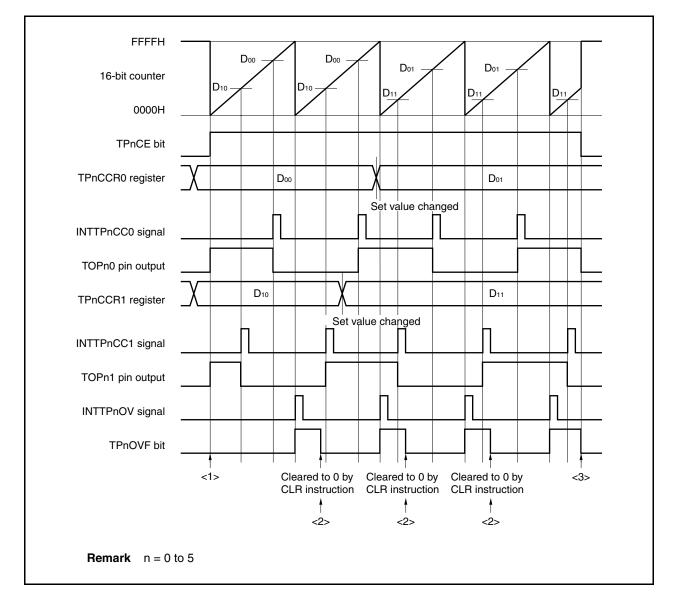




Figure 7-30. Basic Timing in Free-Running Timer Mode (Capture Function)





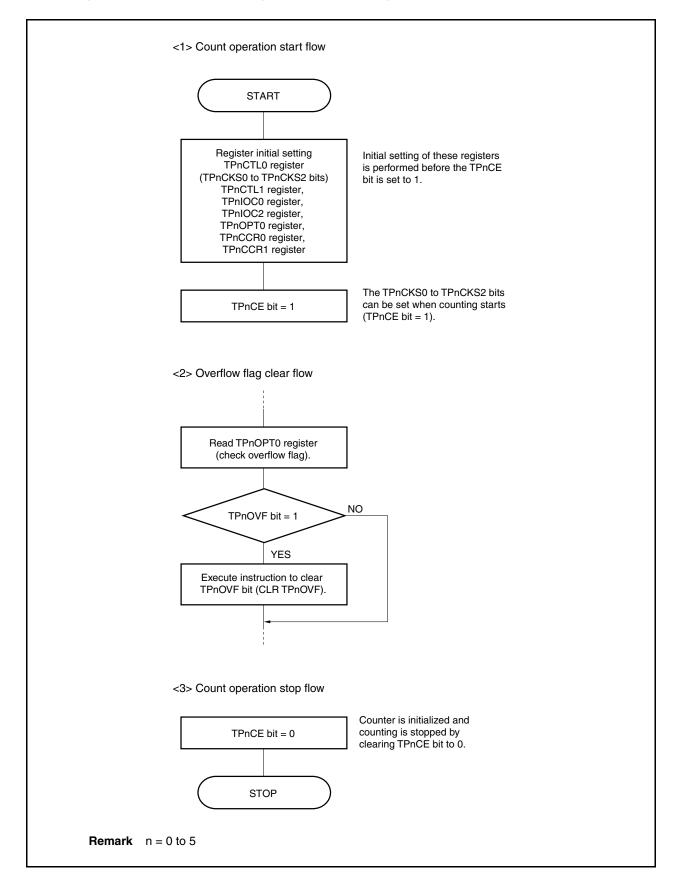


Figure 7-31. Register Setting in Free-Running Timer Mode (2/2)

- (1) Operation flow in free-running timer mode
 - (a) When using capture/compare register as compare register

(b) When using capture/compare register as capture register

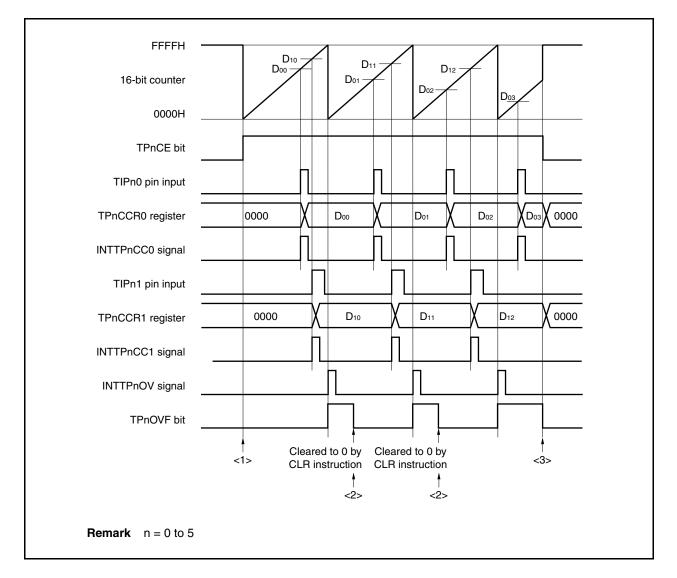
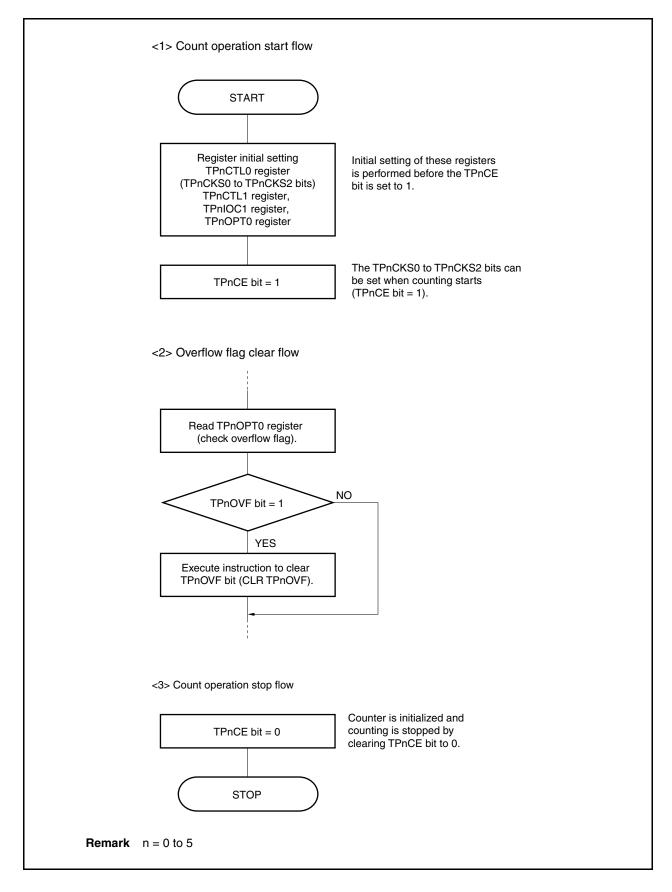
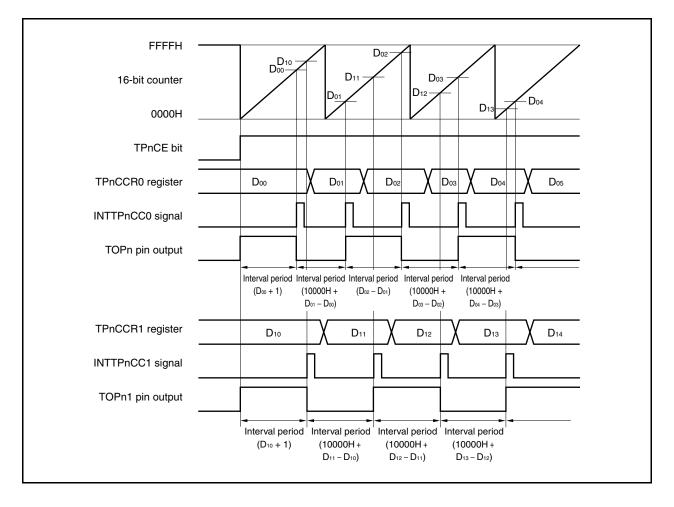



Figure 7-33. Software Processing Flow in Free-Running Timer Mode (Capture Function) (1/2)



(2) Operation timing in free-running timer mode

(a) Interval operation with compare register

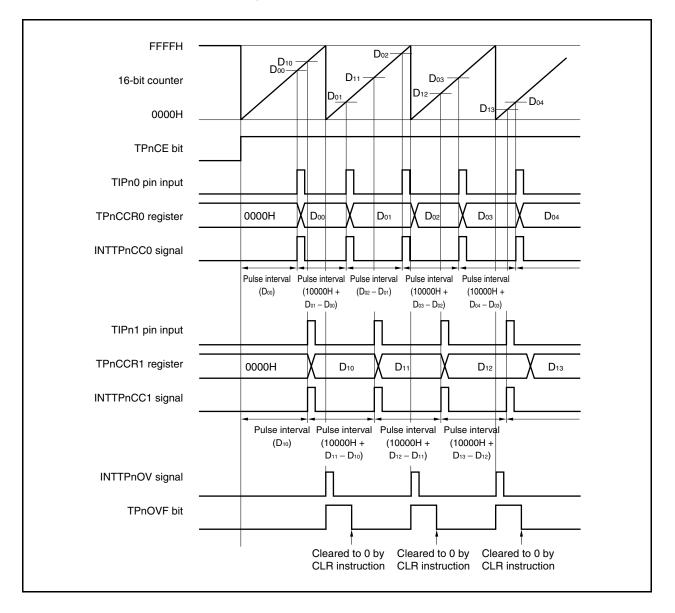
When 16-bit timer/event counter P is used as an interval timer with the TPnCCRm register used as a compare register, software processing is necessary for setting a comparison value to generate the next interrupt request signal each time the INTTPnCCm signal has been detected.

When performing an interval operation in the free-running timer mode, two intervals can be set with one channel.

To perform the interval operation, the value of the corresponding TPnCCRm register must be re-set in the interrupt servicing that is executed when the INTTPnCCm signal is detected.

The set value for re-setting the TPnCCRm register can be calculated by the following expression, where "D_m" is the interval period.

Compare register default value: Dm - 1

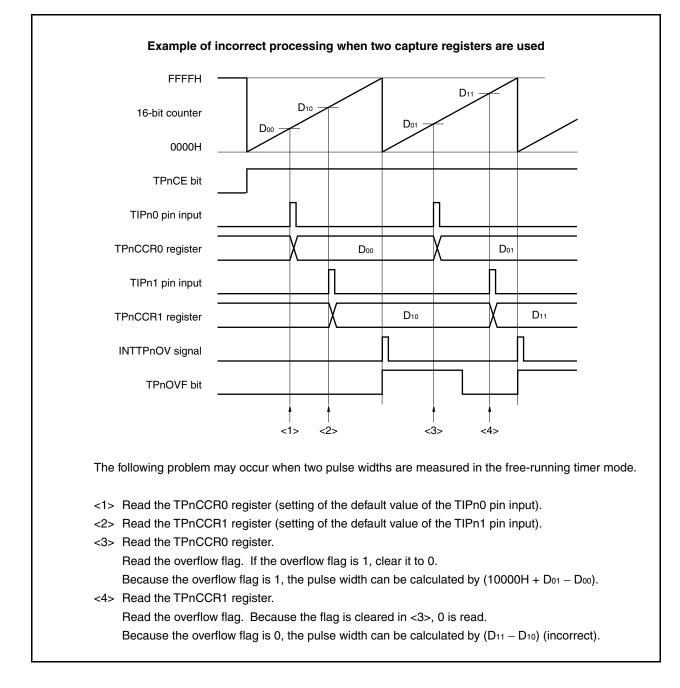

Value set to compare register second and subsequent time: Previous set value + D_m

(If the calculation result is greater than FFFFH, subtract 10000H from the result and set this value to the register.)

Remark n = 0 to 5m = 0, 1

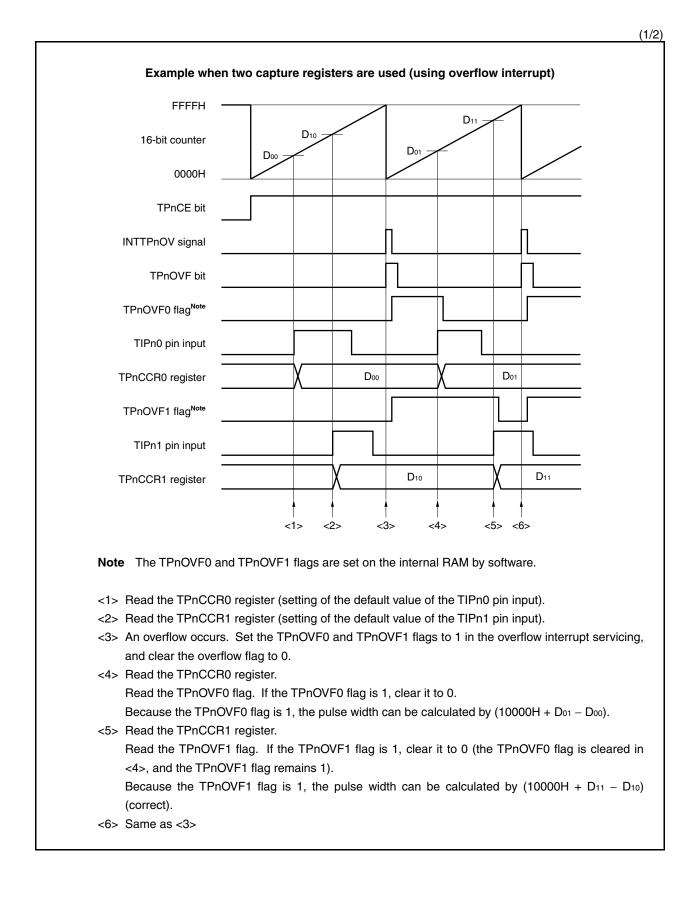
(b) Pulse width measurement with capture register

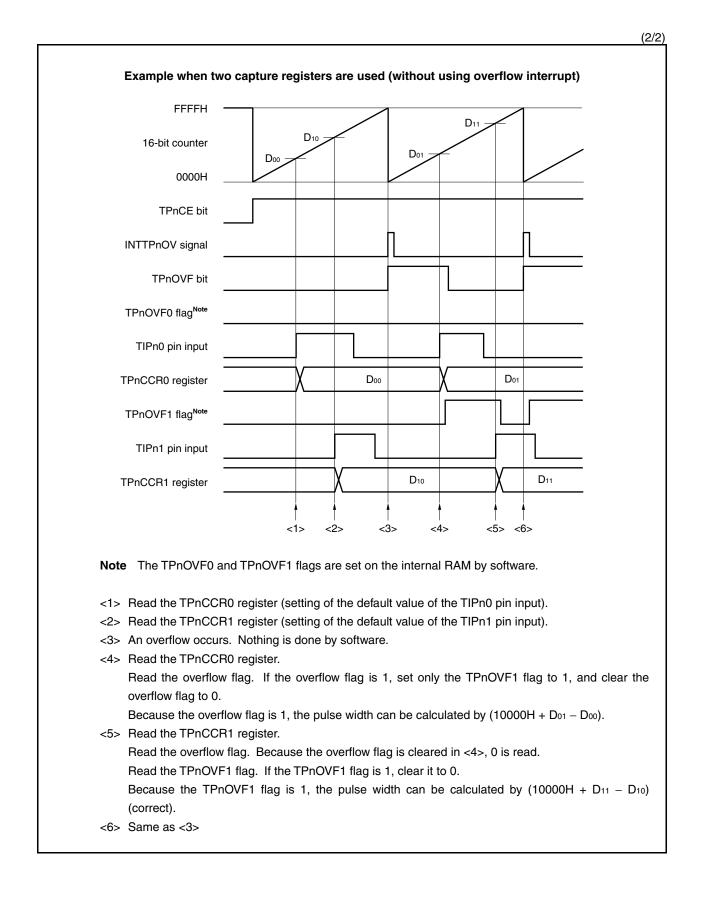
When pulse width measurement is performed with the TPnCCRm register used as a capture register, software processing is necessary for reading the capture register each time the INTTPnCCm signal has been detected and for calculating an interval.


When executing pulse width measurement in the free-running timer mode, two pulse widths can be measured with one channel.

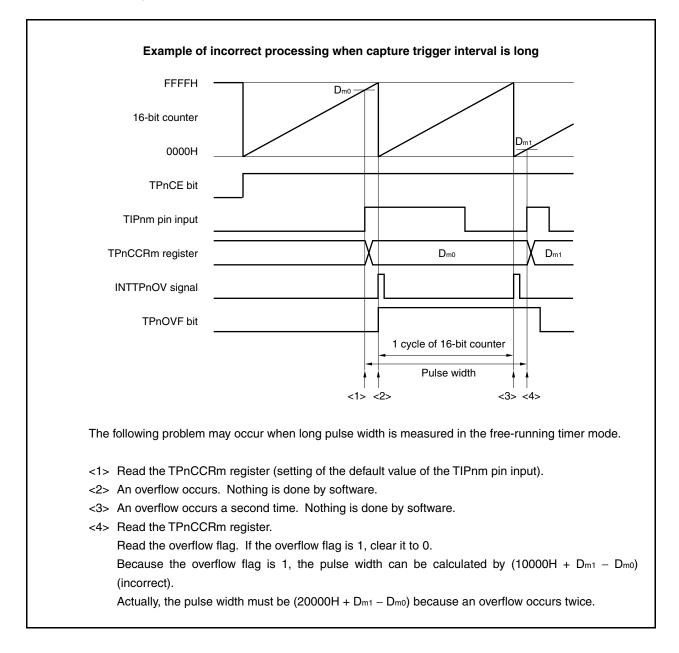
To measure a pulse width, the pulse width can be calculated by reading the value of the TPnCCRm register in synchronization with the INTTPnCCm signal, and calculating the difference between the read value and the previously read value.

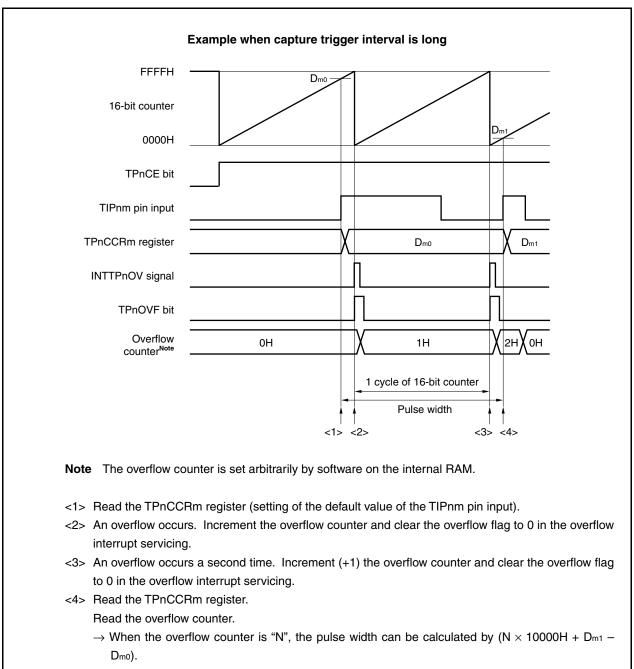
Remark n = 0 to 5m = 0, 1


(c) Processing of overflow when two capture registers are used


Care must be exercised in processing the overflow flag when two capture registers are used. First, an example of incorrect processing is shown below.

When two capture registers are used, and if the overflow flag is cleared to 0 by one capture register, the other capture register may not obtain the correct pulse width.


Use software when using two capture registers. An example of how to use software is shown below.


(d) Processing of overflow if capture trigger interval is long

If the pulse width is greater than one cycle of the 16-bit counter, care must be exercised because an overflow may occur more than once from the first capture trigger to the next. First, an example of incorrect processing is shown below.

If an overflow occurs twice or more when the capture trigger interval is long, the correct pulse width may not be obtained.

If the capture trigger interval is long, slow the count clock to lengthen one cycle of the 16-bit counter, or use software. An example of how to use software is shown next.

In this example, the pulse width is $(20000H + D_{m1} - D_{m0})$ because an overflow occurs twice. Clear the overflow counter (0H).

(e) Clearing overflow flag

The overflow flag can be cleared to 0 by clearing the TPnOVF bit to 0 with the CLR instruction and by writing 8-bit data (bit 0 is 0) to the TPnOPT0 register. To accurately detect an overflow, read the TPnOVF bit when it is 1, and then clear the overflow flag by using a bit manipulation instruction.

(i) Operation to write 0 (without conflict with setting)	(iii) Operation to clear to 0 (without conflict with setting)
Overflow set signal 0 write signal Overflow flag (TPnOVF bit)	Overflow L 0 write signal Register access signal Read Write Overflow flag (TPnOVF bit)
(ii) Operation to write 0 (conflict with setting)	(iv) Operation to clear to 0 (conflict with setting)
Overflowset signal	Overflow set signal
0 write signal	0 write signal
Overflow flag (TPnOVF bit)	Register Read Write
	Overflow flag (TPnOVF bit)
Remark $n = 0$ to 5	

To clear the overflow flag to 0, read the overflow flag to check if it is set to 1, and clear it with the CLR instruction. If 0 is written to the overflow flag without checking if the flag is 1, the set information of overflow may be erased by writing 0 ((ii) in the above chart). Therefore, software may judge that no overflow has occurred even when an overflow actually has occurred.

If execution of the CLR instruction conflicts with occurrence of an overflow when the overflow flag is cleared to 0 with the CLR instruction, the overflow flag remains set even after execution of the clear instruction.

7.5.7 Pulse width measurement mode (TPnMD2 to TPnMD0 bits = 110)

In the pulse width measurement mode, 16-bit timer/event counter P starts counting when the TPnCTL0.TPnCE bit is set to 1. Each time the valid edge input to the TIPnm pin has been detected, the count value of the 16-bit counter is stored in the TPnCCRm register, and the 16-bit counter is cleared to 0000H.

The interval of the valid edge can be measured by reading the TPnCCRm register after a capture interrupt request signal (INTTPnCCm) occurs.

Select either the TIPn0 or TIPn1 pin as the capture trigger input pin. Specify "No edge detected" by using the TPnIOC1 register for the unused pins.

When an external clock is used as the count clock, measure the pulse width of the TIPn1 pin because the external clock is fixed to the TIPn0 pin. At this time, clear the TPnIOC1.TPnIS1 and TPnIOC1.TPnIS0 bits to 00 (capture trigger input (TIPn0 pin): No edge detected).

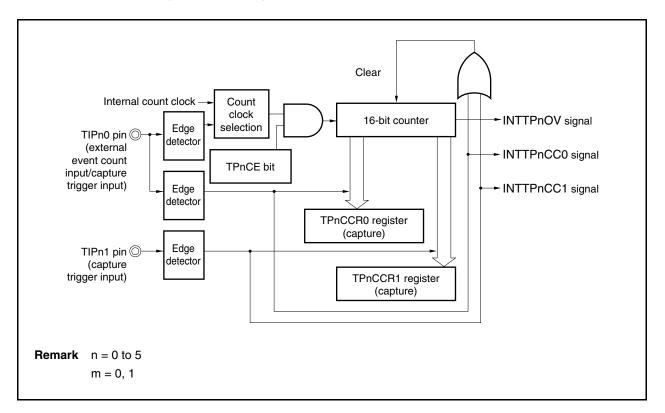


Figure 7-34. Configuration in Pulse Width Measurement Mode

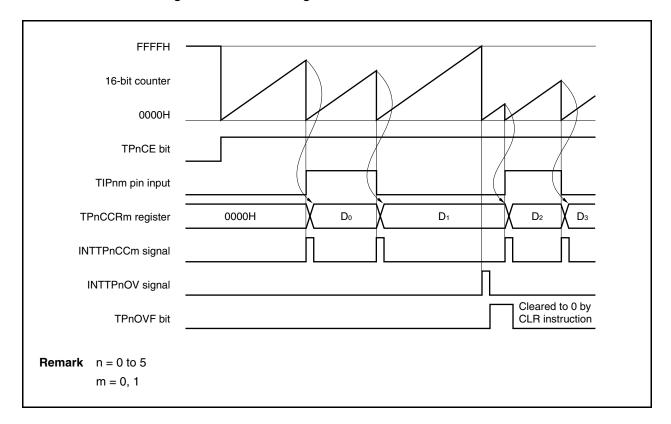
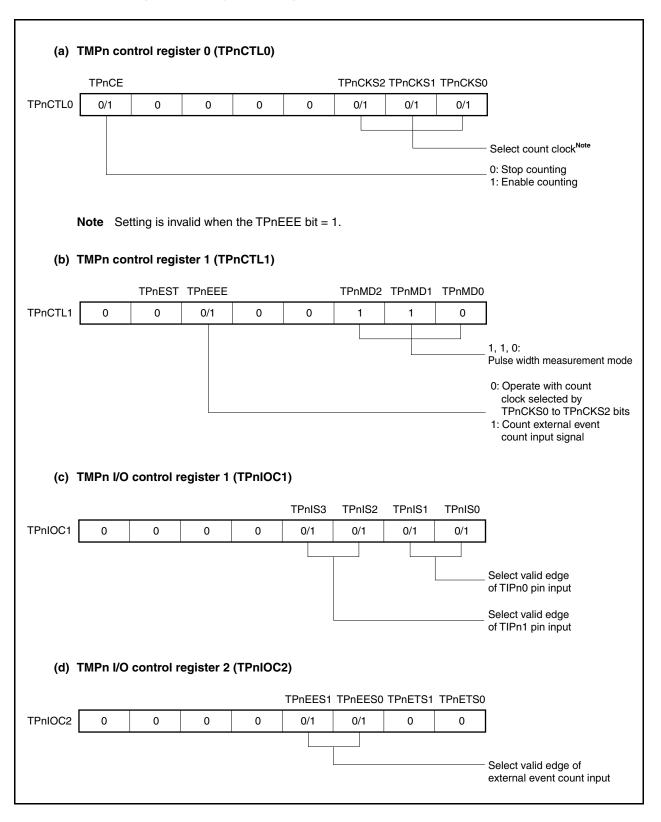


Figure 7-35. Basic Timing in Pulse Width Measurement Mode

When the TPnCE bit is set to 1, the 16-bit counter starts counting. When the valid edge input to the TIPnm pin is later detected, the count value of the 16-bit counter is stored in the TPnCCRm register, the 16-bit counter is cleared to 0000H, and a capture interrupt request signal (INTTPnCCm) is generated.

The pulse width is calculated as follows.


Pulse width = Captured value × Count clock cycle

If the valid edge is not input to the TIPnm pin even when the 16-bit counter counted up to FFFFH, an overflow interrupt request signal (INTTPnOV) is generated at the next count clock, and the counter is cleared to 0000H and continues counting. At this time, the overflow flag (TPnOPT0.TPnOVF bit) is also set to 1. Clear the overflow flag to 0 by executing the CLR instruction via software.

If the overflow flag is set to 1, the pulse width can be calculated as follows.

Pulse width = $(10000H \times TPnOVF$ bit set (1) count + Captured value) × Count clock cycle

Remark n = 0 to 5 m = 0, 1

Figure 7-36. Register Setting in Pulse Width Measurement Mode (1/2)

(e)	TMPn opt	ion regis	ter 0 (TPr	OPT0)				
			TPnCCS1	TPnCCS0)			TPnOVF
TPnOPT0	0	0	0	0	0	0	0	0/1
								Overflow flag
.,	TMPn coι The value			• •	,	ading the	TPnCNT	register.
	TMPn cap These reg is detected	isters sto			=			R1) e valid edge input to the TIPnm pin
	Remarks	 TMPr n = 0 m = 0 	to 5	ol register	^r 0 (TPnlC	0C0) is no	t used in t	the pulse width measurement mode.

Figure 7-36. Register Setting in Pulse Width Measurement Mode (2/2)

(1) Operation flow in pulse width measurement mode

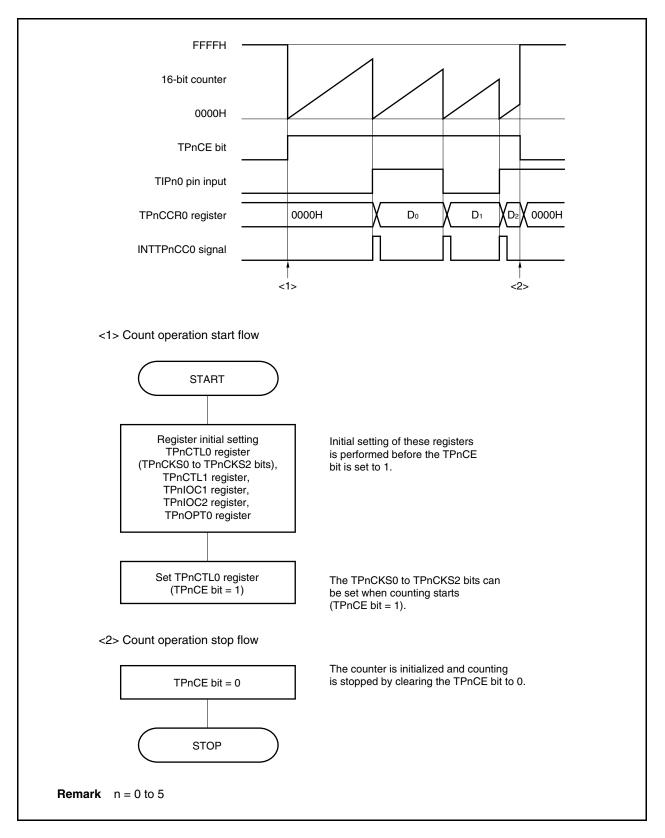


Figure 7-37. Software Processing Flow in Pulse Width Measurement Mode

(2) Operation timing in pulse width measurement mode

(a) Clearing overflow flag

Г

The overflow flag can be cleared to 0 by clearing the TPnOVF bit to 0 with the CLR instruction and by writing 8-bit data (bit 0 is 0) to the TPnOPT0 register. To accurately detect an overflow, read the TPnOVF bit when it is 1, and then clear the overflow flag by using a bit manipulation instruction.

(i) Operation to write 0 (without conflict with setting)	(iii) Operation to clear to 0 (without conflict with setting)
Overflow set signal 0 write signal Overflow flag (TPnOVF bit)	Overflow set signal 0 write signal Register access signal Overflow flag (TPnOVF bit)
(ii) Operation to write 0 (conflict with setting)	(iv) Operation to clear to 0 (conflict with setting)
Overflow	Overflowset signal
0 write signal	0 write signal
Overflow flag (TPnOVF bit)	Register Read Write
	Overflow flag (TPnOVF bit)
Remark n = 0 to 5	

To clear the overflow flag to 0, read the overflow flag to check if it is set to 1, and clear it with the CLR instruction. If 0 is written to the overflow flag without checking if the flag is 1, the set information of overflow may be erased by writing 0 ((ii) in the above chart). Therefore, software may judge that no overflow has occurred even when an overflow actually has occurred.

If execution of the CLR instruction conflicts with occurrence of an overflow when the overflow flag is cleared to 0 with the CLR instruction, the overflow flag remains set even after execution of the clear instruction.

7.5.8 Timer output operations

The following table shows the operations and output levels of the TOPn0 and TOPn1 pins.

Operation Mode	TOPn1 Pin	TOPn0 Pin
Interval timer mode	Square wave output	
External event count mode	Square wave output	-
External trigger pulse output mode	External trigger pulse output	Square wave output
One-shot pulse output mode	One-shot pulse output	
PWM output mode	PWM output	
Free-running timer mode	Square wave output (only when con	npare function is used)
Pulse width measurement mode		_

Table 7-4. Timer Output Control in Each Mode

Remark n = 0 to 5

Table 7-5. Truth Table of TOPn0 and TOPn1 Pins Under Control of Timer Output Control Bits

TPnIOC0.TPnOLm Bit	TPnIOC0.TPnOEm Bit	TPnCTL0.TPnCE Bit	Level of TOPnm Pin
0	0	×	Low-level output
	1	0	Low-level output
		1	Low level immediately before counting, high level after counting is started
1	0	×	High-level output
	1	0	High-level output
		1	High level immediately before counting, low level after counting is started

Remark n = 0 to 5

m = 0, 1

7.6 Selector Function

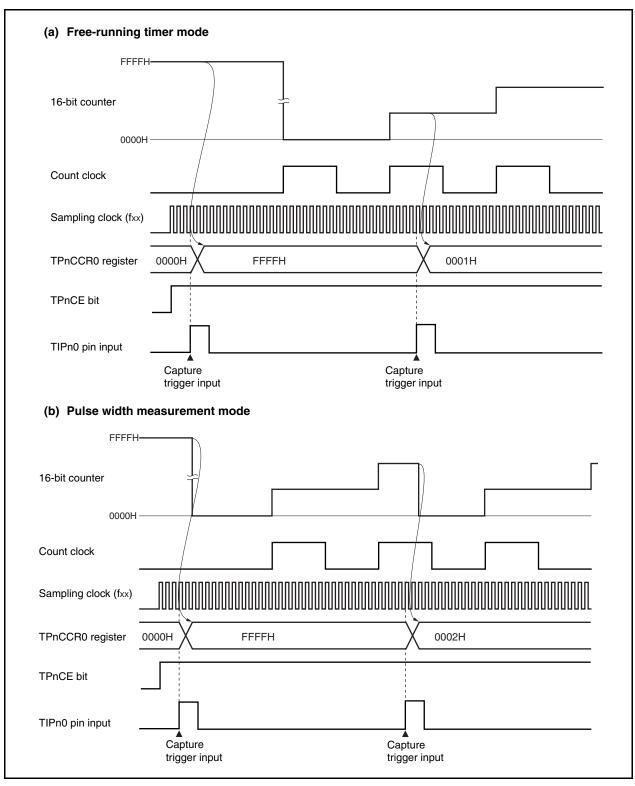
In the V850ES/JG2, the capture trigger input for TMP1 can be selected from the input signal via the port/timer alternate-function pin (TIP10/TIP11) and the peripheral I/O (TMP/UARTA) input signal via the UARTA reception alternate-function pin (RXDA0/RXDA1).

By using this function, the following is possible.

- The TIP10 and TIP11 input signals of TMP1 can be selected from the port/timer alternate-function pins (TIP10 and TIP11 pins) and the UARTA reception alternate-function pins (RXDA0 and RXDA1).
 - → When the RXDA0 or RXDA1 signal of UART0 or UART1 is selected, the LIN reception transfer rate and baud rate error of UARTA can be calculated.
 - Cautions 1. When using the selector function, set the capture trigger input of TMP before connecting the timer.
 - 2. When setting the selector function, first disable the peripheral I/O to be connected (TMP or UARTA).

The capture input for the selector function is specified by the following register.

(1) Selector operation control register 0 (SELCNT0)


The SELCNT0 register is an 8-bit register that selects the capture trigger for TMP1. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

After res	set: 00H	R/W	Address: I	FFFF308H	ł				
	7	6	5	<4>	<3>	2	1	0	
SELCNT0	0	0	0	ISEL4	ISEL3	0	0	0	
	ISEL4		Se	election of T	IP11 input	signal (TN	IP1)		
	0	TIP11 pin	input						
	1	RXDA1 pi	in input						
	ISEL3		Se	election of T	IP10 input	signal (TN	IP1)		
	0	TIP10 pin	input						
	1	RXDA0 pi	in input						
	Caution	capt	ture input			-		esponding	pin in the

7.7 Cautions

(1) Capture operation

When the capture operation is used and a slow clock is selected as the count clock, FFFFH, not 0000H, may be captured in the TPnCCR0 and TPnCCR1 registers if the capture trigger is input immediately after the TPnCE bit is set to 1.

CHAPTER 8 16-BIT TIMER/EVENT COUNTER Q (TMQ)

Timer Q (TMQ) is a 16-bit timer/event counter. The V850ES/JG2 incorporates TMQ0.

8.1 Overview

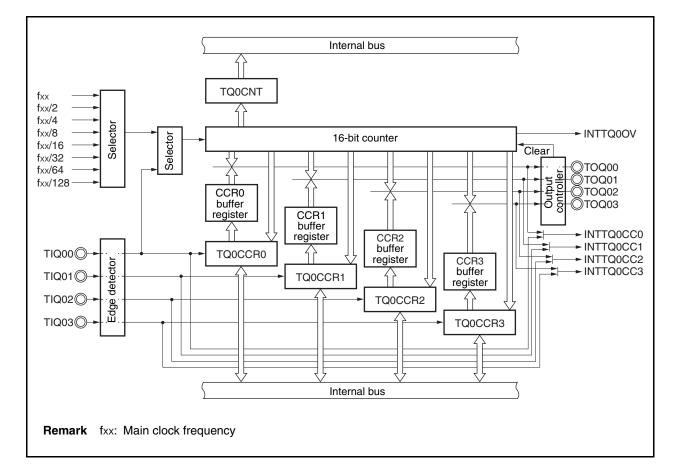
An outline of TMQ0 is shown below.

Clock selection:	8 ways
Capture/trigger input pins:	4
 External event count input pins: 	1
 External trigger input pins: 	1
Timer/counters:	1
Capture/compare registers:	4
• Capture/compare match interrupt request signals:	4
Timer output pins:	4

8.2 Functions

TMQ0 has the following functions.

- Interval timer
- External event counter
- External trigger pulse output
- One-shot pulse output
- PWM output
- Free-running timer
- Pulse width measurement


8.3 Configuration

TMQ0 includes the following hardware.

Table 8-1.	Configuration of TMQ)
------------	----------------------	---

Item	Configuration
Timer register	16-bit counter
Registers	TMQ0 capture/compare registers 0 to 3 (TQ0CCR0 to TQ0CCR3) TMQ0 counter read buffer register (TQ0CNT) CCR0 to CCR3 buffer registers
Timer inputs	4 (TIQ00 ^{Note 1} to TIQ03 pins)
Timer outputs	4 (TOQ00 to TOQ03 pins)
Control registers ^{Note 2}	TMQ0 control registers 0, 1 (TQ0CTL0, TQ0CTL1) TMQ0 I/O control registers 0 to 2 (TQ0IOC0 to TQ0IOC2) TMQ0 option register 0 (TQ0OPT0)

- **Notes 1.** The TIQ00 pin functions alternately as a capture trigger input signal, external event count input signal, and external trigger input signal.
 - 2. When using the functions of the TIQ00 to TIQ03 and TOQ00 to TOQ03 pins, see Table 4-15 Settings When Port Pins Are Used for Alternate Functions.

Figure 8-1.	Block D	iadram	of TMQ0

(1) 16-bit counter

This 16-bit counter can count internal clocks or external events.

The count value of this counter can be read by using the TQ0CNT register.

When the TQ0CTL0.TQ0CE bit = 0, the value of the 16-bit counter is FFFFH. If the TQ0CNT register is read at this time, 0000H is read.

Reset sets the TQ0CE bit to 0. Therefore, the 16-bit counter is set to FFFFH.

(2) CCR0 buffer register

This is a 16-bit compare register that compares the count value of the 16-bit counter.

When the TQ0CCR0 register is used as a compare register, the value written to the TQ0CCR0 register is transferred to the CCR0 buffer register. When the count value of the 16-bit counter matches the value of the CCR0 buffer register, a compare match interrupt request signal (INTTQ0CC0) is generated.

The CCR0 buffer register cannot be read or written directly.

The CCR0 buffer register is cleared to 0000H after reset, as the TQ0CCR0 register is cleared to 0000H.

(3) CCR1 buffer register

This is a 16-bit compare register that compares the count value of the 16-bit counter.

When the TQ0CCR1 register is used as a compare register, the value written to the TQ0CCR1 register is transferred to the CCR1 buffer register. When the count value of the 16-bit counter matches the value of the CCR1 buffer register, a compare match interrupt request signal (INTTQ0CC1) is generated.

The CCR1 buffer register cannot be read or written directly.

The CCR1 buffer register is cleared to 0000H after reset, as the TQ0CCR1 register is cleared to 0000H.

(4) CCR2 buffer register

This is a 16-bit compare register that compares the count value of the 16-bit counter.

When the TQ0CCR2 register is used as a compare register, the value written to the TQ0CCR2 register is transferred to the CCR2 buffer register. When the count value of the 16-bit counter matches the value of the CCR2 buffer register, a compare match interrupt request signal (INTTQ0CC2) is generated.

The CCR2 buffer register cannot be read or written directly.

The CCR2 buffer register is cleared to 0000H after reset, as the TQ0CCR2 register is cleared to 0000H.

(5) CCR3 buffer register

This is a 16-bit compare register that compares the count value of the 16-bit counter.

When the TQ0CCR3 register is used as a compare register, the value written to the TQ0CCR3 register is transferred to the CCR3 buffer register. When the count value of the 16-bit counter matches the value of the CCR3 buffer register, a compare match interrupt request signal (INTTQ0CC3) is generated.

The CCR3 buffer register cannot be read or written directly.

The CCR3 buffer register is cleared to 0000H after reset, as the TQ0CCR3 register is cleared to 0000H.

(6) Edge detector

This circuit detects the valid edges input to the TIQ00 and TIQ03 pins. No edge, rising edge, falling edge, or both the rising and falling edges can be selected as the valid edge by using the TQ0IOC1 and TQ0IOC2 registers.

(7) Output controller

This circuit controls the output of the TOQ00 to TOQ03 pins. The output controller is controlled by the TQ0IOC0 register.

(8) Selector

This selector selects the count clock for the 16-bit counter. Eight types of internal clocks or an external event can be selected as the count clock.

8.4 Registers

The registers that control TMQ0 are as follows.

- TMQ0 control register 0 (TQ0CTL0)
- TMQ0 control register 1 (TQ0CTL1)
- TMQ0 I/O control register 0 (TQ0IOC0)
- TMQ0 I/O control register 1 (TQ0IOC1)
- TMQ0 I/O control register 2 (TQ0IOC2)
- TMQ0 option register 0 (TQ0OPT0)
- TMQ0 capture/compare register 0 (TQ0CCR0)
- TMQ0 capture/compare register 1 (TQ0CCR1)
- TMQ0 capture/compare register 2 (TQ0CCR2)
- TMQ0 capture/compare register 3 (TQ0CCR3)
- TMQ0 counter read buffer register (TQ0CNT)
- Remark When using the functions of the TIQ00 to TIQ03 and TOQ00 to TOQ03 pins, see Table 4-15 Settings When Port Pins Are Used for Alternate Functions.

(1) TMQ0 control register 0 (TQ0CTL0)

The TQ0CTL0 register is an 8-bit register that controls the operation of TMQ0.

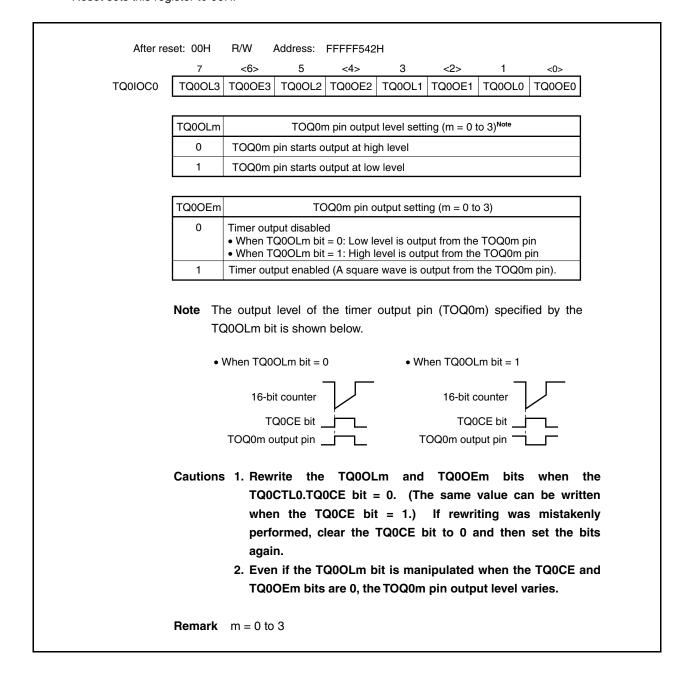
This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

The same value can always be written to the TQ0CTL0 register by software.

	<7>	R/W /	Address: 5	FFFF54	3	2	1	0
TQ0CTL0	TQOCE	0	0	0	0	TQ0CKS2		
	TQ0CE			TMQ0	operatio	n control		
	0	TMQ0 ope	eration disa	bled (TMQ) reset a	synchronous	ly ^{Note}).	
	1	TMQ0 ope	eration enat	oled. TMQ) operat	ion started.		
	TQ0CKS2	TQ0CKS1	TQ0CKS0		Interna	al count clock	selection	
	0	0	0	fxx				
	0	0	1	fxx/2				
	0	1	0	fxx/4				
	0	1	1	fxx/8				
	1	0	0	fxx/16				
	1	0	1	fxx/32				
	1	1	0	fxx/64				
	1	1	1	fxx/128				
		5 1. Set t Whe	he TQ0Ck n the va	(S2 to TQ lue of th	0CKS0 le TQ0 bits ca	timer outpu bits when CE bit is n be set si	the TQ00 change	CE bit = 0 d from 0

(2) TMQ0 control register 1 (TQ0CTL1)


Г

The TQ0CTL1 register is an 8-bit register that controls the operation of TMQ0. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

TQOCTL1 0 TQOEST TQOEEE 0 0 TQOMD2 TQOMD1 TQOMD 0 -
0 - 1 Generate a valid signal for external trigger input. • In one-shot pulse output mode: A one-shot pulse is output with writing 1 to the TQ0EST bit as the trigger. • In external trigger pulse output mode: A PWM waveform is output with writing 1 to the TQ0EST bit as the trigger. TQ0EEE Count clock selection 0 Disable operation with external event count input. (Perform counting with the count clock selected by the TQ0CTL0.TQ0CK to TQ0CK2 bits.) 1 Enable operation with external event count input.
0 - 1 Generate a valid signal for external trigger input. • In one-shot pulse output mode: A one-shot pulse is output with writing 1 to the TQ0EST bit as the trigger. • In external trigger pulse output mode: A PWM waveform is output with writing 1 to the TQ0EST bit as the trigger. TQ0EEE Count clock selection 0 Disable operation with external event count input. (Perform counting with the count clock selected by the TQ0CTL0.TQ0CK to TQ0CK2 bits.) 1 Enable operation with external event count input.
1 Generate a valid signal for external trigger input. • In one-shot pulse output mode: A one-shot pulse is output with writing 1 to the TQ0EST bit as the trigger. • In external trigger pulse output mode: A PWM waveform is output with writing 1 to the TQ0EST bit as the trigger. TQ0EEE Count clock selection 0 Disable operation with external event count input. (Perform counting with the count clock selected by the TQ0CTL0.TQ0Ck to TQ0CK2 bits.) 1 Enable operation with external event count input.
 In one-shot pulse output mode: A one-shot pulse is output with writing to the TQ0EST bit as the trigger. In external trigger pulse output mode: A PWM waveform is output with
In external trigger pulse output mode: A PWM waveform is output with writing 1 to the TQ0EST bit as the trigger. TQ0EEE Count clock selection Disable operation with external event count input. (Perform counting with the count clock selected by the TQ0CTL0.TQ0Ck to TQ0CK2 bits.) Enable operation with external event count input.
TQ0EEE Count clock selection 0 Disable operation with external event count input. (Perform counting with the count clock selected by the TQ0CTL0.TQ0Ck to TQ0CK2 bits.) 1 Enable operation with external event count input.
 Disable operation with external event count input. (Perform counting with the count clock selected by the TQ0CTL0.TQ0Ck to TQ0CK2 bits.) Enable operation with external event count input.
 Disable operation with external event count input. (Perform counting with the count clock selected by the TQ0CTL0.TQ0Ck to TQ0CK2 bits.) Enable operation with external event count input.
 (Perform counting with the count clock selected by the TQ0CTL0.TQ0CK to TQ0CK2 bits.) 1 Enable operation with external event count input.
signal.)
The TQ0EEE bit selects whether counting is performed with the internal count clock or the valid edge of the external event count input.
TQ0MD2 TQ0MD1 TQ0MD0 Timer mode selection
0 0 0 Interval timer mode
0 0 1 External event count mode
0 1 0 External trigger pulse output mode
0 1 1 One-shot pulse output mode
1 0 0 PWM output mode
1 0 1 Free-running timer mode
1 1 0 Pulse width measurement mode
1 1 1 Setting prohibited

<R> (3) TMQ0 I/O control register 0 (TQ0IOC0)

The TQ0IOC0 register is an 8-bit register that controls the timer output (TOQ00 to TOQ03 pins). This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

(4) TMQ0 I/O control register 1 (TQ0IOC1)

The TQ0IOC1 register is an 8-bit register that controls the valid edge of the capture trigger input signals (TIQ00 to TIQ03 pins).

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

After re	eset: 00H	R/W	Address:	FFFFF54	ЗH			
	7	6	5	4	3	2	1	0
TQ0IOC1	TQ0IS7	TQ0IS6	TQ0IS5	TQ0IS4	TQ0IS3	TQ0IS2	TQ0IS1	TQ0IS0
			1					
	TQ0IS7	TQ0IS6	Capture	e trigger inp	ut signal (TIQ03 pin)	valid edge	setting
	0	0	No edge	detection (c	apture ope	eration inva	lid)	
	0	1	Detection	of rising e	lge			
	1	0	Detection	of falling e	dge			
	1	1	Detection	of both ed	ges			
	TQ0IS5	TQ0IS4	Capture	trigger inpu	t signal (TI	Q02 pin) v	alid edge c	detection
	0	0	No edge	detection (c	apture ope	eration inva	ılid)	
	0	1	Detection	of rising e	lge			
	1	0	Detection	of falling e	dge			
	1	1	Detection	of both ed	ges			
	TQ0IS3	TQ0IS2	Capture	e trigger inp	ut signal (TIQ01 pin)	valid edge	setting
	0	0	No edge	detection (o	apture ope	eration inva	ılid)	
	0	1	Detection	of rising e	lge			
	1	0	Detection	of falling e	dge			
	1	1	Detection	of both ed	ges			
	TQ0IS1	TQ0IS0		e trigger inp		. ,		setting
	0	0		detection (c		eration inva	ılid)	
	0	1		of rising e	-			
	1	0		of falling e	•			
	1	1	Detection	of both ed	ges			
	Cautions	TQ0 whe perf agai 2. The runr	CTL0.TQ(n the TQ ormed, cl n. TQ0IS7 ning time	DCE bit = 20CE bit ear the T to TQ0IS r mode a	0. (The = 1.) If QOCE bit 50 bits a and the	rewritin t to 0 and are valid pulse wi	lue can l g was n d then se only in idth mea	hen the be written histakenly et the bits the free- isurement on is not

(5) TMQ0 I/O control register 2 (TQ0IOC2)

The TQ0IOC2 register is an 8-bit register that controls the valid edge of the external event count input signal (TIQ00 pin) and external trigger input signal (TIQ00 pin).

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

After res	set: 00H		Address:	FFFFF5				
	7	6	5	4	3	2	1	0
TQ0IOC2	0	0	0	0	TQ0EES1	TQ0EES0 1	Q0ETS1	TQ0ETS0
			1					
	TQ0EES1	TQ0EES0	External e	vent count	t input signa	ll (TIQ00 pin) valid edg	ge setting
	0	0	No edge	detection (external ev	ent count inv	valid)	
	0	1	Detection	of rising e	edge			
	1	0	Detection	of falling e	edge			
	1	1	Detection	of both ec	dges			
			1					
	TQ0ETS1	TQ0ETS0	Externa	I trigger in	put signal (TIQ00 pin) v	alid edge	setting
	0	0	No edge	detection (external trig	ger invalid)		
	0	1	Detection	of rising e	edge			
	1	0	Detection	of falling e	edge			
	1	1	Detection	of both ec	dges			
	1	1 1. Rew bits can mist set t 2. The TQ0 cou	Detection rite the T when the be writte akenly p he bits a TQ0EES CTL1.TQ	GODEES1 TQOEES1 TQOCT n when the erformed gain. 1 and TC DEEE bit TQOCTL	, TQ0EES L0.TQ0CE the TQ0C I, clear th Q0EES0 b t = 1 or	0, TQ0ETS E bit = 0. E bit = 1.) e TQ0CE I its are val when the 2 to TQ0C	(The sau If rewri bit to 0 a id only v e extern	me value iting was and then when the val event

(6) TMQ0 option register 0 (TQ0OPT0)

The TQ0OPT0 register is an 8-bit register used to set the capture/compare operation and detect an overflow. This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

Г

After re	eset: 00H	R/W	Address:	FFFF545	н			
	7	6	5	4	3	2	1	<0>
TQ0OPT0	TQ0CCS3	TQ0CCS2	TQ0CCS1	TQ0CCS0	0	0	0	TQ00VF
	TQ0CCSm		TQ0C0	CRm register	capture/c	compare se	election	
	0	Compare	register se	elected				
	1		egister sele					
	The TQ0	CCSm bit s	setting is va	alid only in th	e free-rur	nning timer	mode.	
		OVF			verflow de	etection		
	Set (1)		Overflow					
	Reset (0)			bit 0 written the 16-bit co				om
	mode. • An inter TQ00V than the • The TC register • The TC	rrupt reque F bit is set free-runni 00VF bit is are read w 00VF bit c	st signal (II to 1. The ling timer m s not cleare when the TC an be both	unning timer NTTQOOV) is INTTQOOV so ode and the ed even whe QOOVF bit = read and what as no influen	s generate ignal is ne pulse wid n the TQ0 1. itten, but	ed at the sa ot generate th measure OVF bit or the TQ0OV	ame time t ed in mode ement mode the TQ0O /F bit canr	hat the es other de. IPT0
	Cautions	TQ00 wher perfo agair	CTLO.TQC n the TQ ormed, cl n.	TQ0CCS DCE bit = (DCE bit = DCE bit = ear the TC ear bits 1 to	0. (The 1.) If 0CE bit	same val rewriting to 0 and	ue can b g was m	be written histakenly
	Remark	m = 0 to	3					

(7) TMQ0 capture/compare register 0 (TQ0CCR0)

The TQ0CCR0 register can be used as a capture register or a compare register depending on the mode.

This register can be used as a capture register or a compare register only in the free-running timer mode, depending on the setting of the TQ0OPT0.TQ0CCS0 bit. In the pulse width measurement mode, the TQ0CCR0 register can be used only as a capture register. In any other mode, this register can be used only as a compare register.

The TQ0CCR0 register can be read or written during operation.

This register can be read or written in 16-bit units.

Reset sets this register to 0000H.

Caution Accessing the TQ0CCR0 register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers.

- When the CPU operates with the subclock and the main clock oscillation is stopped
- When the CPU operates with the internal oscillation clock

TQOCCR0	After res	set: 0	000H	F	R/W	Ad	dress:	F	FFFF	546F	I						
TQ0CCR0		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TQ0CCR0																

(a) Function as compare register

The TQ0CCR0 register can be rewritten even when the TQ0CTL0.TQ0CE bit = 1.

The set value of the TQ0CCR0 register is transferred to the CCR0 buffer register. When the value of the 16-bit counter matches the value of the CCR0 buffer register, a compare match interrupt request signal (INTTQ0CC0) is generated. If TOQ00 pin output is enabled at this time, the output of the TOQ00 pin is inverted.

When the TQ0CCR0 register is used as a cycle register in the interval timer mode, external event count mode, external trigger pulse output mode, one-shot pulse output mode, or PWM output mode, the value of the 16-bit counter is cleared (0000H) if its count value matches the value of the CCR0 buffer register.

(b) Function as capture register

When the TQ0CCR0 register is used as a capture register in the free-running timer mode, the count value of the 16-bit counter is stored in the TQ0CCR0 register if the valid edge of the capture trigger input pin (TIQ00 pin) is detected. In the pulse-width measurement mode, the count value of the 16-bit counter is stored in the TQ0CCR0 register and the 16-bit counter is cleared (0000H) if the valid edge of the capture trigger input pin (TIQ00 pin) is detected.

Even if the capture operation and reading the TQ0CCR0 register conflict, the correct value of the TQ0CCR0 register can be read.

The following table shows the functions of the capture/compare register in each mode, and how to write data to the compare register.

Operation Mode	Capture/Compare Register	How to Write Compare Register
Interval timer	Compare register	Anytime write
External event counter	Compare register	Anytime write
External trigger pulse output	Compare register	Batch write
One-shot pulse output	Compare register	Anytime write
PWM output	Compare register	Batch write
Free-running timer	Capture/compare register	Anytime write
Pulse width measurement	Capture register	_

Table 8-2. Function of Capture/Compare Register in Each Mode and How to Write Compare Register

(8) TMQ0 capture/compare register 1 (TQ0CCR1)

The TQ0CCR1 register can be used as a capture register or a compare register depending on the mode.

This register can be used as a capture register or a compare register only in the free-running timer mode, depending on the setting of the TQ0OPT0.TQ0CCS1 bit. In the pulse width measurement mode, the TQ0CCR1 register can be used only as a capture register. In any other mode, this register can be used only as a compare register.

The TQ0CCR1 register can be read or written during operation.

This register can be read or written in 16-bit units.

Reset sets this register to 0000H.

Caution Accessing the TQ0CCR1 register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers.

- When the CPU operates with the subclock and the main clock oscillation is stopped
- When the CPU operates with the internal oscillation clock

TQ0CCR1	After res	set: 0	000H	F	R/W	Ad	dress:	F	FFFF	548H							
TQ0CCR1		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TQ0CCR1																

(a) Function as compare register

The TQ0CCR1 register can be rewritten even when the TQ0CTL0.TQ0CE bit = 1.

The set value of the TQ0CCR1 register is transferred to the CCR1 buffer register. When the value of the 16-bit counter matches the value of the CCR1 buffer register, a compare match interrupt request signal (INTTQ0CC1) is generated. If TOQ01 pin output is enabled at this time, the output of the TOQ01 pin is inverted.

(b) Function as capture register

When the TQ0CCR1 register is used as a capture register in the free-running timer mode, the count value of the 16-bit counter is stored in the TQ0CCR1 register if the valid edge of the capture trigger input pin (TIQ01 pin) is detected. In the pulse-width measurement mode, the count value of the 16-bit counter is stored in the TQ0CCR1 register and the 16-bit counter is cleared (0000H) if the valid edge of the capture trigger input pin (TIQ01 pin) is detected.

Even if the capture operation and reading the TQ0CCR1 register conflict, the correct value of the TQ0CCR1 register can be read.

The following table shows the functions of the capture/compare register in each mode, and how to write data to the compare register.

Operation Mode	Capture/Compare Register	How to Write Compare Register
Interval timer	Compare register	Anytime write
External event counter	Compare register	Anytime write
External trigger pulse output	Compare register	Batch write
One-shot pulse output	Compare register	Anytime write
PWM output	Compare register	Batch write
Free-running timer	Capture/compare register	Anytime write
Pulse width measurement	Capture register	_

Table 8-3. Function of Capture/Compare Register in Each Mode and How to Write Compare Register

(9) TMQ0 capture/compare register 2 (TQ0CCR2)

The TQ0CCR2 register can be used as a capture register or a compare register depending on the mode.

This register can be used as a capture register or a compare register only in the free-running timer mode, depending on the setting of the TQ0OPT0.TQ0CCS2 bit. In the pulse width measurement mode, the TQ0CCR2 register can be used only as a capture register. In any other mode, this register can be used only as a compare register.

The TQ0CCR2 register can be read or written during operation.

This register can be read or written in 16-bit units.

Reset sets this register to 0000H.

Caution Accessing the TQ0CCR2 register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers.

- When the CPU operates with the subclock and the main clock oscillation is stopped
- When the CPU operates with the internal oscillation clock

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TQ0CCR2	After res	set: 0	000H	F	R/W	Ad	dress	F	FFFF	54AH	ł						
TQ0CCR2		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TQ0CCR2																

(a) Function as compare register

The TQ0CCR2 register can be rewritten even when the TQ0CTL0.TQ0CE bit = 1.

The set value of the TQ0CCR2 register is transferred to the CCR2 buffer register. When the value of the 16-bit counter matches the value of the CCR2 buffer register, a compare match interrupt request signal (INTTQ0CC2) is generated. If TOQ02 pin output is enabled at this time, the output of the TOQ02 pin is inverted.

(b) Function as capture register

When the TQ0CCR2 register is used as a capture register in the free-running timer mode, the count value of the 16-bit counter is stored in the TQ0CCR2 register if the valid edge of the capture trigger input pin (TIQ02 pin) is detected. In the pulse-width measurement mode, the count value of the 16-bit counter is stored in the TQ0CCR2 register and the 16-bit counter is cleared (0000H) if the valid edge of the capture trigger input pin (TIQ02 pin) is detected.

Even if the capture operation and reading the TQ0CCR2 register conflict, the correct value of the TQ0CCR2 register can be read.

The following table shows the functions of the capture/compare register in each mode, and how to write data to the compare register.

Operation Mode	Capture/Compare Register	How to Write Compare Register
Interval timer	Compare register	Anytime write
External event counter	Compare register	Anytime write
External trigger pulse output	Compare register	Batch write
One-shot pulse output	Compare register	Anytime write
PWM output	Compare register	Batch write
Free-running timer	Capture/compare register	Anytime write
Pulse width measurement	Capture register	_

Table 8-4. Function of Capture/Compare Register in Each Mode and How to Write Compare Register

(10) TMQ0 capture/compare register 3 (TQ0CCR3)

The TQ0CCR3 register can be used as a capture register or a compare register depending on the mode.

This register can be used as a capture register or a compare register only in the free-running timer mode, depending on the setting of the TQ0OPT0.TQ0CCS3 bit. In the pulse width measurement mode, the TQ0CCR3 register can be used only as a capture register. In any other mode, this register can be used only as a compare register.

The TQ0CCR3 register can be read or written during operation.

This register can be read or written in 16-bit units.

Reset sets this register to 0000H.

Caution Accessing the TQ0CCR3 register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers.

- When the CPU operates with the subclock and the main clock oscillation is stopped
- When the CPU operates with the internal oscillation clock

After res	set: 0	000H	F	R/W	Ad	dress:	F	FFFF	54CH	ł						
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TQ0CCR3																

(a) Function as compare register

The TQ0CCR3 register can be rewritten even when the TQ0CTL0.TQ0CE bit = 1.

The set value of the TQ0CCR3 register is transferred to the CCR3 buffer register. When the value of the 16-bit counter matches the value of the CCR3 buffer register, a compare match interrupt request signal (INTTQ0CC3) is generated. If TOQ03 pin output is enabled at this time, the output of the TOQ03 pin is inverted.

(b) Function as capture register

When the TQ0CCR3 register is used as a capture register in the free-running timer mode, the count value of the 16-bit counter is stored in the TQ0CCR3 register if the valid edge of the capture trigger input pin (TIQ03 pin) is detected. In the pulse-width measurement mode, the count value of the 16-bit counter is stored in the TQ0CCR3 register and the 16-bit counter is cleared (0000H) if the valid edge of the capture trigger input pin (TIQ03 pin) is detected.

Even if the capture operation and reading the TQ0CCR3 register conflict, the correct value of the TQ0CCR3 register can be read.

The following table shows the functions of the capture/compare register in each mode, and how to write data to the compare register.

Operation Mode	Capture/Compare Register	How to Write Compare Register
Interval timer	Compare register	Anytime write
External event counter	Compare register	Anytime write
External trigger pulse output	Compare register	Batch write
One-shot pulse output	Compare register	Anytime write
PWM output	Compare register	Batch write
Free-running timer	Capture/compare register	Anytime write
Pulse width measurement	Capture register	_

Table 8-5. Function of Capture/Compare Register in Each Mode and How to Write Compare Register

(11) TMQ0 counter read buffer register (TQ0CNT)

The TQ0CNT register is a read buffer register that can read the count value of the 16-bit counter. If this register is read when the TQ0CTL0.TQ0CE bit = 1, the count value of the 16-bit timer can be read. This register is read-only, in 16-bit units.

The value of the TQ0CNT register is cleared to 0000H when the TQ0CE bit = 0. If the TQ0CNT register is read at this time, the value of the 16-bit counter (FFFFH) is not read, but 0000H is read.

The value of the TQ0CNT register is cleared to 0000H after reset, as the TQ0CE bit is cleared to 0.

Caution Accessing the TQ0CNT register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers.

- When the CPU operates with the subclock and the main clock oscillation is stopped
- When the CPU operates with the internal oscillation clock

15 14 13	12 11 10	987	6 5 4 3	2 1 0
TQ0CNT				

8.5 Operation

TMQ0 can perform the following operations.

Operation	TQ0CTL1.TQ0EST Bit (Software Trigger Bit)	TIQ00 Pin (External Trigger Input)	Capture/Compare Register Setting	Compare Register Write
Interval timer mode	Invalid	Invalid	Compare only	Anytime write
External event count mode ^{Note 1}	Invalid	Invalid	Compare only	Anytime write
External trigger pulse output mode ^{Note 2}	Valid	Valid	Compare only	Batch write
One-shot pulse output mode ^{Note 2}	Valid	Valid	Compare only	Anytime write
PWM output mode	Invalid	Invalid	Compare only	Batch write
Free-running timer mode	Invalid	Invalid	Switching enabled	Anytime write
Pulse width measurement mode ^{Note 2}	Invalid	Invalid	Capture only	Not applicable

Notes 1. To use the external event count mode, specify that the valid edge of the TIQ00 pin capture trigger input is not detected (by clearing the TQ0IOC1.TQ0IS1 and TQ0IOC1.TQ0IS0 bits to "00").

 When using the external trigger pulse output mode, one-shot pulse output mode, and pulse width measurement mode, select the internal clock as the count clock (by clearing the TQ0CTL1.TQ0EEE bit to 0).

8.5.1 Interval timer mode (TQ0MD2 to TQ0MD0 bits = 000)

In the interval timer mode, an interrupt request signal (INTTQ0CC0) is generated at the specified interval if the TQ0CTL0.TQ0CE bit is set to 1. A square wave whose half cycle is equal to the interval can be output from the TOQ00 pin.

Usually, the TQ0CCR1 to TQ0CCR3 registers are not used in the interval timer mode.

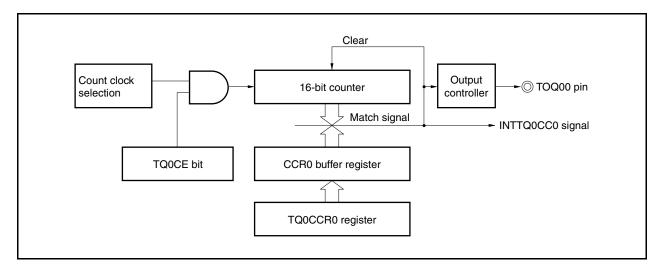
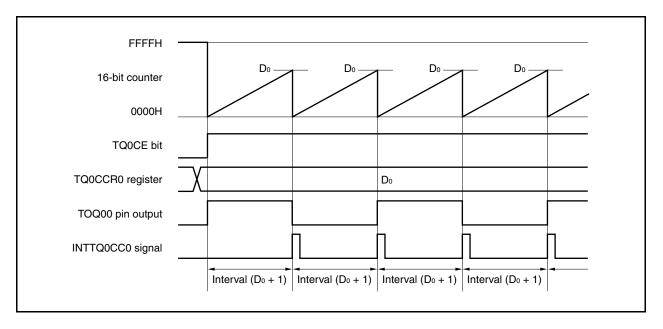



Figure 8-3. Basic Timing of Operation in Interval Timer Mode

When the TQ0CE bit is set to 1, the value of the 16-bit counter is cleared from FFFFH to 0000H in synchronization with the count clock, and the counter starts counting. At this time, the output of the TOQ00 pin is inverted. Additionally, the set value of the TQ0CCR0 register is transferred to the CCR0 buffer register.

When the count value of the 16-bit counter matches the value of the CCR0 buffer register, the 16-bit counter is cleared to 0000H, the output of the TOQ00 pin is inverted, and a compare match interrupt request signal (INTTQ0CC0) is generated.

The interval can be calculated by the following expression.

Interval = (Set value of TQ0CCR0 register + 1) × Count clock cycle

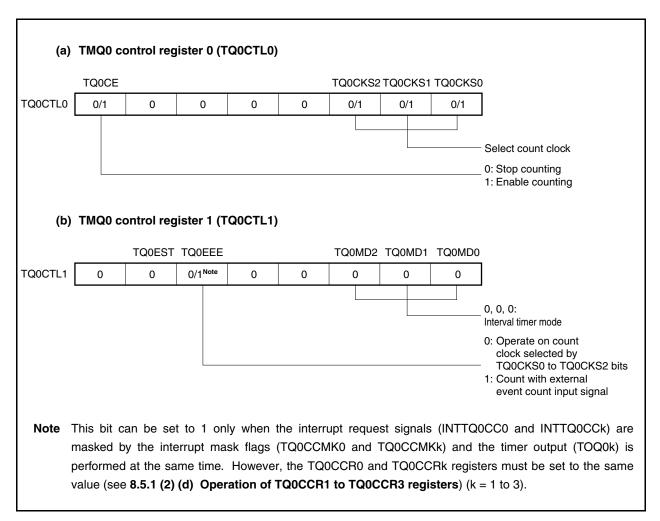
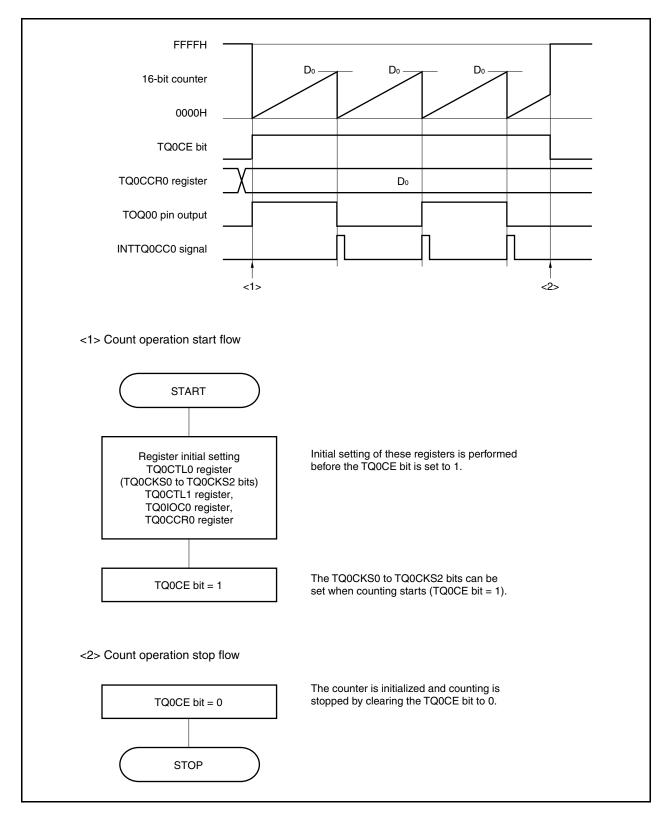


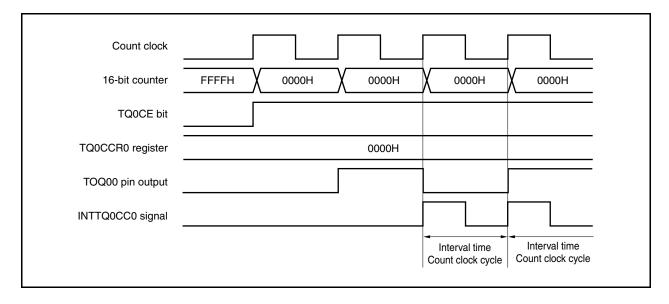
Figure 8-4. Register Setting for Interval Timer Mode Operation (1/2)

	TQ0OL3	TQ0OE3	TQ0OL2	TQ0OE2	TQ0OL1	TQ0OE1	TQ0OL0	TQ0OE0	
TQ0IOC0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	
									0: Disable TOQ00 pin output 1: Enable TOQ00 pin output
									Setting of output level with operation of TOQ00 pin disable 0: Low level 1: High level
									0: Disable TOQ01 pin output 1: Enable TOQ01 pin output
									Setting of output level with operation of TOQ01 pin disable 0: Low level 1: High level
									0: Disable TOQ02 pin output 1: Enable TOQ02 pin output
									Setting of output level with operation of TOQ02 pin disable 0: Low level 1: High level
									0: Disable TOQ03 pin output 1: Enable TOQ03 pin output
									Setting of output level with operation of TOQ03 pin disable 0: Low level 1: High level
	By readi TMQ0 c a If the TQ	ng the TQ apture/co	0CNT reg mpare re gister is s	gister , the o gister 0 (et to Do, t	count valu TQ0CCR(he interva	e of the 1))		ter can b	e read.
	By readi TMQ0 c a If the TQ	ng the TQ apture/co	0CNT reg mpare re gister is s	gister , the o gister 0 (et to Do, t	count valu TQ0CCR(he interva	e of the 1))		ter can b	e read.
(e)	By readi TMQ0 ca If the TQ Interval = TMQ0 ca Usually, value of compare value of	ng the TQ apture/co 0CCR0 re = $(D_0 + 1)$ apture/co the TQ0C the TQ0C the TQ0C match in the 16-bit e, mask ti	Marter of the second se	gister, the o gister 0 (et to Do, t lock cycle gisters 1 QOCCR3 QOCCR3 n quest sign natches th	to 3 (TQC registers a registers a nals (INT revalue of	e of the 1)) CCR1 to are not us ire transfe TQ0CC1 the CCR	ows. TQOCCR: and in the erred to the to INTTQC 1 to CCR:	3) interval ti ∋ CCR1 to)CCR3) is 3 buffer re	mer mode. However, the set o CCR3 buffer registers. The s generated when the count

Figure 8-4. Register Setting for Interval Timer Mode Operation (2/2)

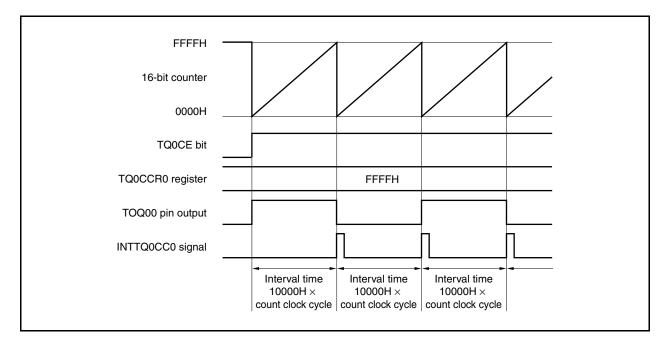
(1) Interval timer mode operation flow




Figure 8-5. Software Processing Flow in Interval Timer Mode

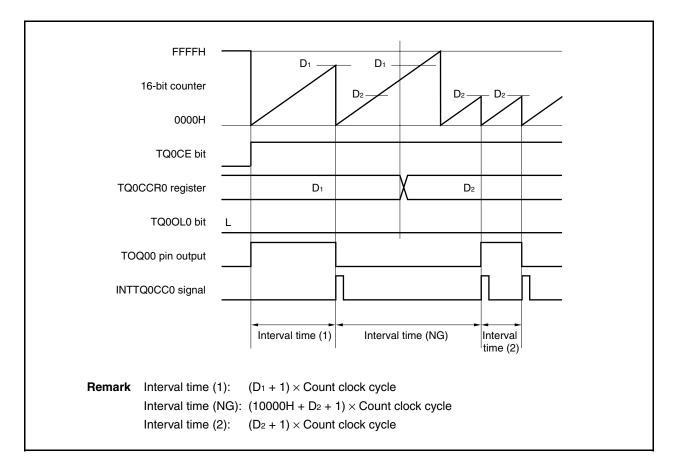
(2) Interval timer mode operation timing

(a) Operation if TQ0CCR0 register is set to 0000H


If the TQ0CCR0 register is set to 0000H, the INTTQ0CC0 signal is generated at each count clock of the second clock or later, and the output of the TOQ00 pin is inverted.

The value of the 16-bit counter is always 0000H.

(b) Operation if TQ0CCR0 register is set to FFFFH


If the TQ0CCR0 register is set to FFFFH, the 16-bit counter counts up to FFFFH. The counter is cleared to 0000H in synchronization with the next count-up timing. The INTTQ0CC0 signal is generated and the output of the TOQ00 pin is inverted. At this time, an overflow interrupt request signal (INTTQ0OV) is not generated, nor is the overflow flag (TQ00PT0.TQ00VF bit) set to 1.

(c) Notes on rewriting TQ0CCR0 register

To change the value of the TQ0CCR0 register to a smaller value, stop counting once and then change the set value.

If the value of the TQ0CCR0 register is rewritten to a smaller value during counting, the 16-bit counter may overflow.

If the value of the TQ0CCR0 register is changed from D_1 to D_2 while the count value is greater than D_2 but less than D_1 , the count value is transferred to the CCR0 buffer register as soon as the TQ0CCR0 register has been rewritten. Consequently, the value of the 16-bit counter that is compared is D_2 .

Because the count value has already exceeded D₂, however, the 16-bit counter counts up to FFFFH, overflows, and then counts up again from 0000H. When the count value matches D₂, the INTTQ0CC0 signal is generated and the output of the TOQ00 pin is inverted.

Therefore, the INTTQ0CC0 signal may not be generated at the interval time " $(D_1 + 1) \times Count clock cycle$ " or " $(D_2 + 1) \times Count clock cycle$ " originally expected, but may be generated at an interval of " $(10000H + D_2 + 1) \times Count clock period$ ".

(d) Operation of TQ0CCR1 to TQ0CCR3 registers

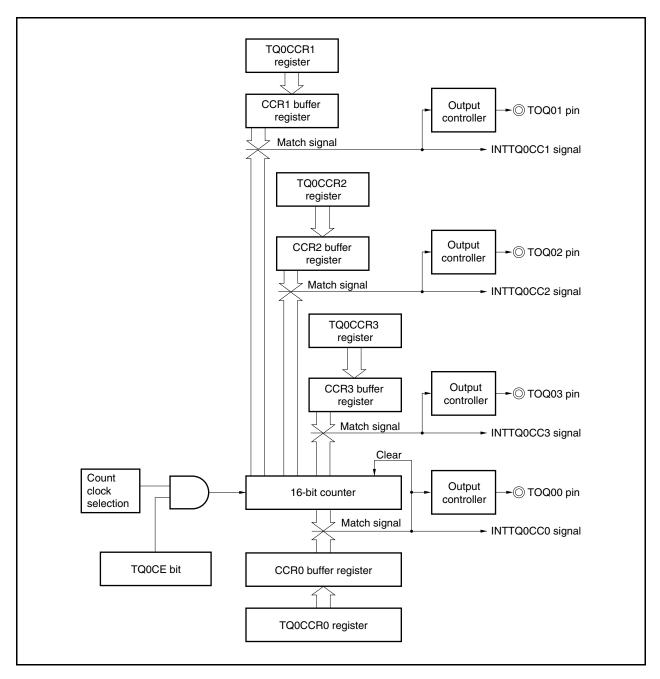
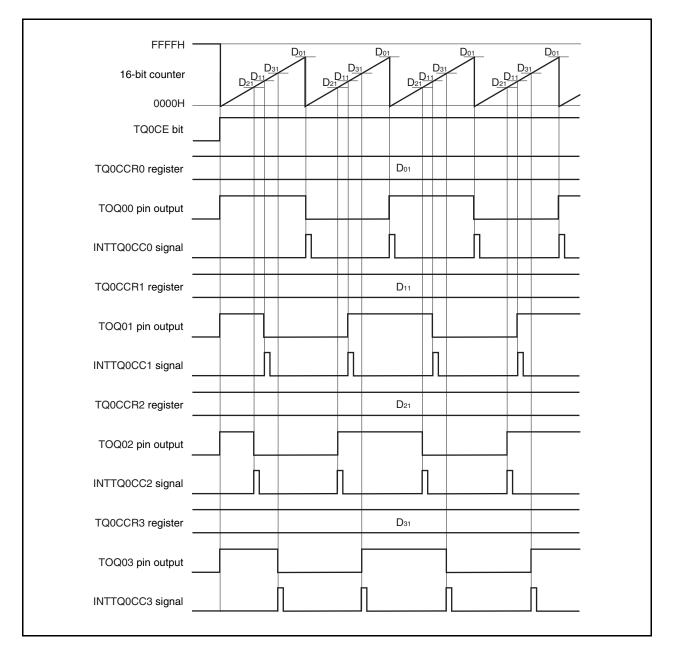
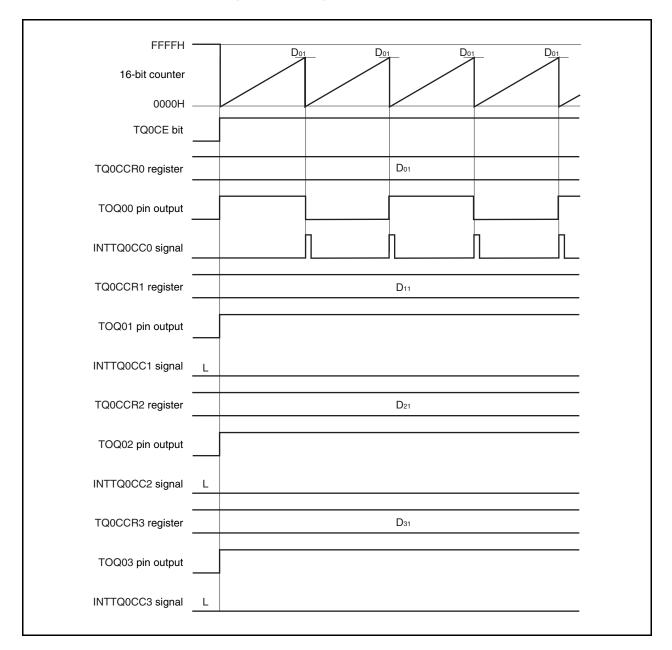



Figure 8-6. Configuration of TQ0CCR1 to TQ0CCR3 Registers

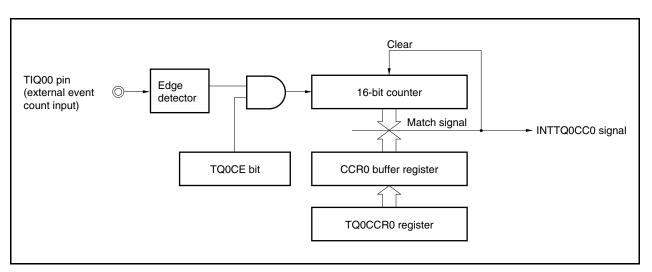
If the set value of the TQ0CCRk register is less than the set value of the TQ0CCR0 register, the INTTQ0CCk signal is generated once per cycle. At the same time, the output of the TOPQ0k pin is inverted.

The TOQ0k pin outputs a square wave with the same cycle as that output by the TOQ00 pin.

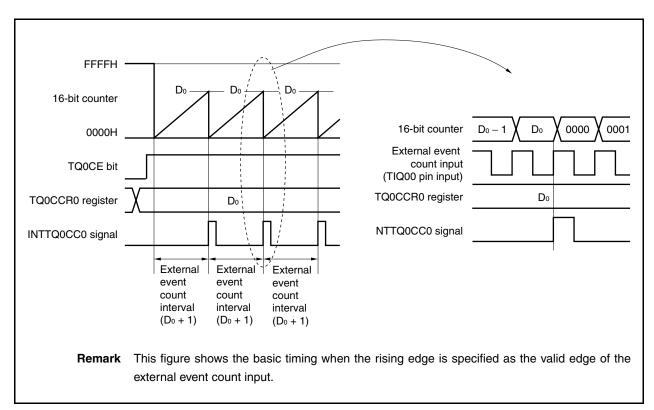

Remark k = 1 to 3

If the set value of the TQ0CCRk register is greater than the set value of the TQ0CCR0 register, the count value of the 16-bit counter does not match the value of the TQ0CCRk register. Consequently, the INTTQ0CCk signal is not generated, nor is the output of the TOQ0k pin changed.

Remark k = 1 to 3



8.5.2 External event count mode (TQ0MD2 to TQ0MD0 bits = 001)


In the external event count mode, the valid edge of the external event count input is counted when the TQ0CTL0.TQ0CE bit is set to 1, and an interrupt request signal (INTTQ0CC0) is generated each time the specified number of edges have been counted. The TOQ00 pin cannot be used.

Usually, the TQ0CCR1 to TQ0CCR3 registers are not used in the external event count mode.

Figure 8-9. Configuration in External Event Count Mode

Figure 8-10. Basic Timing in External Event Count Mode

When the TQ0CE bit is set to 1, the value of the 16-bit counter is cleared from FFFFH to 0000H. The counter counts each time the valid edge of external event count input is detected. Additionally, the set value of the TQ0CCR0 register is transferred to the CCR0 buffer register.

When the count value of the 16-bit counter matches the value of the CCR0 buffer register, the 16-bit counter is cleared to 0000H, and a compare match interrupt request signal (INTTQ0CC0) is generated.

The INTTQ0CC0 signal is generated each time the valid edge of the external event count input has been detected (set value of TQ0CCR0 register + 1) times.

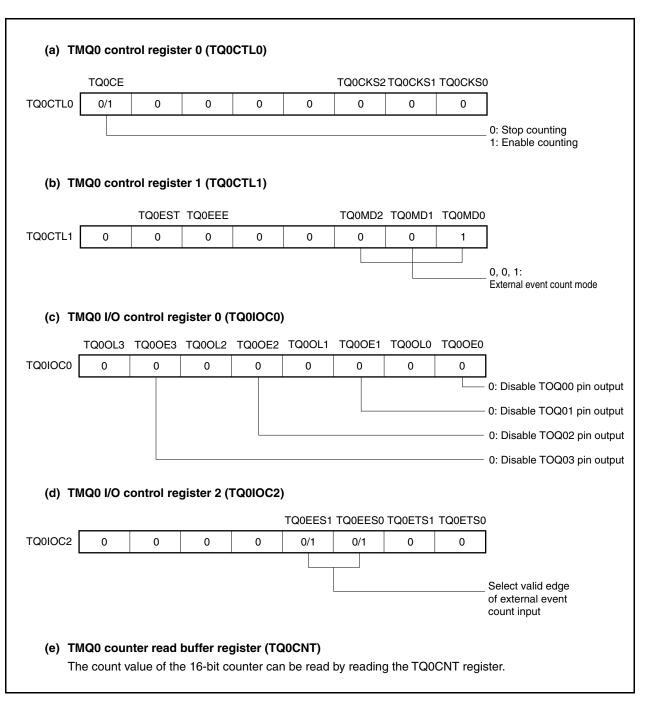


Figure 8-11. Register Setting for Operation in External Event Count Mode (1/2)

Figure 8-11. Register Setting for Operation in External Event Count Mode (2/2)

(f) TMQ0 capture/compare register 0 (TQ0CCR0)

If D_0 is set to the TQ0CCR0 register, the counter is cleared and a compare match interrupt request signal (INTTQ0CC0) is generated when the number of external event counts reaches ($D_0 + 1$).

(g) TMQ0 capture/compare registers 1 to 3 (TQ0CCR1 to TQ0CCR3)

Usually, the TQ0CCR1 to TQ0CCR3 registers are not used in the external event count mode. However, the set value of the TQ0CCR1 to TQ0CCR3 registers are transferred to the CCR1 to CCR3 buffer registers. When the count value of the 16-bit counter matches the value of the CCR1 to CCR3 buffer registers, compare match interrupt request signals (INTTQ0CC1 to INTTQ0CC3) are generated. Therefore, mask the interrupt signal by using the interrupt mask flags (TQ0CCMK1 to TQ0CCMK3).

Caution When an external clock is used as the count clock, the external clock can be input only from the TIQ00 pin. At this time, set the TQ0IOC1.TQ0IS1 and TQ0IOC1.TQ0IS0 bits to 00 (capture trigger input (TIQ00 pin): no edge detection).

Remark The TMQ0 I/O control register 1 (TQ0IOC1) and TMQ0 option register 0 (TQ0OPT0) are not used in the external event count mode.

<R>

(1) External event count mode operation flow

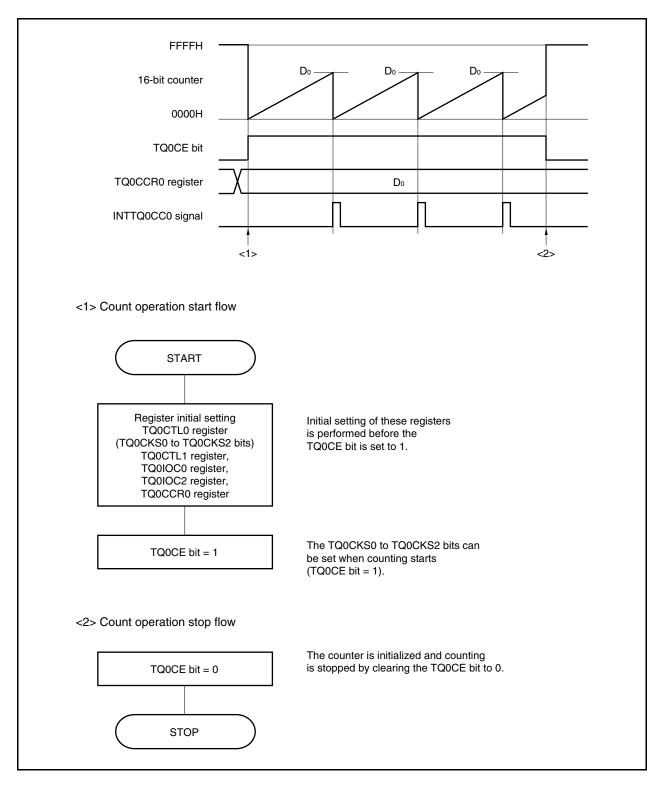
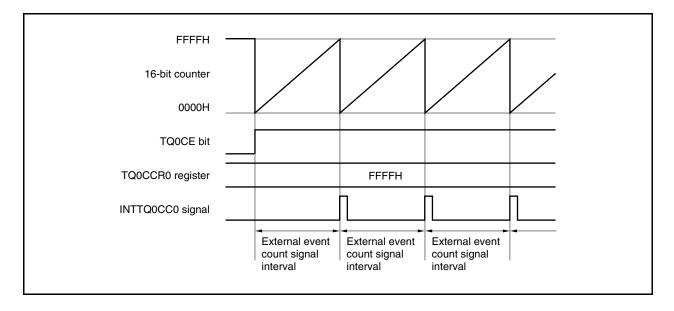


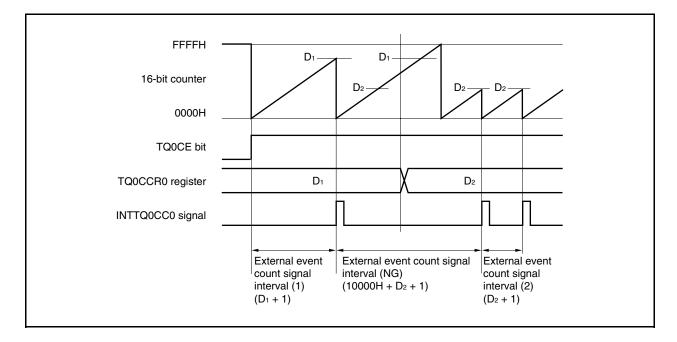
Figure 8-12. Flow of Software Processing in External Event Count Mode


(2) Operation timing in external event count mode

Cautions 1. In the external event count mode, do not set the TQ0CCR0 register to 0000H.

 In the external event count mode, use of the timer output is disabled. If performing timer output using external event count input, set the interval timer mode, and select the operation enabled by the external event count input for the count clock (TQ0CTL1.TQ0MD2 to TQ0CTL1.TQ0MD0 bits = 000, TQ0CTL1.TQ0EEE bit = 1).

(a) Operation if TQ0CCR0 register is set to FFFFH


If the TQ0CCR0 register is set to FFFFH, the 16-bit counter counts to FFFFH each time the valid edge of the external event count signal has been detected. The 16-bit counter is cleared to 0000H in synchronization with the next count-up timing, and the INTTQ0CC0 signal is generated. At this time, the TQ0OPT0.TQ0OVF bit is not set.

(b) Notes on rewriting the TQ0CCR0 register

To change the value of the TQ0CCR0 register to a smaller value, stop counting once and then change the set value.

If the value of the TQ0CCR0 register is rewritten to a smaller value during counting, the 16-bit counter may overflow.

If the value of the TQ0CCR0 register is changed from D_1 to D_2 while the count value is greater than D_2 but less than D_1 , the count value is transferred to the CCR0 buffer register as soon as the TQ0CCR0 register has been rewritten. Consequently, the value that is compared with the 16-bit counter is D_2 .

Because the count value has already exceeded D₂, however, the 16-bit counter counts up to FFFFH, overflows, and then counts up again from 0000H. When the count value matches D₂, the INTTQ0CC0 signal is generated.

Therefore, the INTTQ0CC0 signal may not be generated at the valid edge count of " $(D_1 + 1)$ times" or " $(D_2 + 1)$ times" originally expected, but may be generated at the valid edge count of " $(10000H + D_2 + 1)$ times".

(c) Operation of TQ0CCR1 to TQ0CCR3 registers

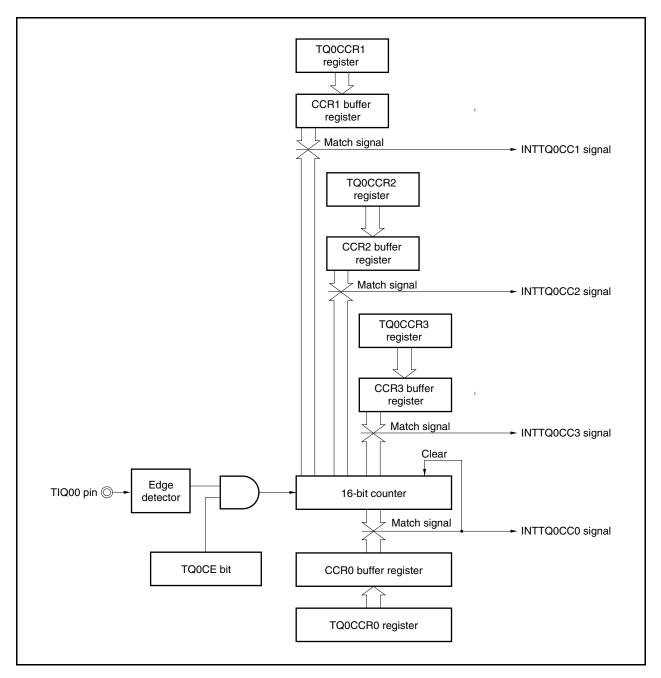


Figure 8-13. Configuration of TQ0CCR1 to TQ0CCR3 Registers

If the set value of the TQ0CCRk register is smaller than the set value of the TQ0CCR0 register, the INTTQ0CCk signal is generated once per cycle.

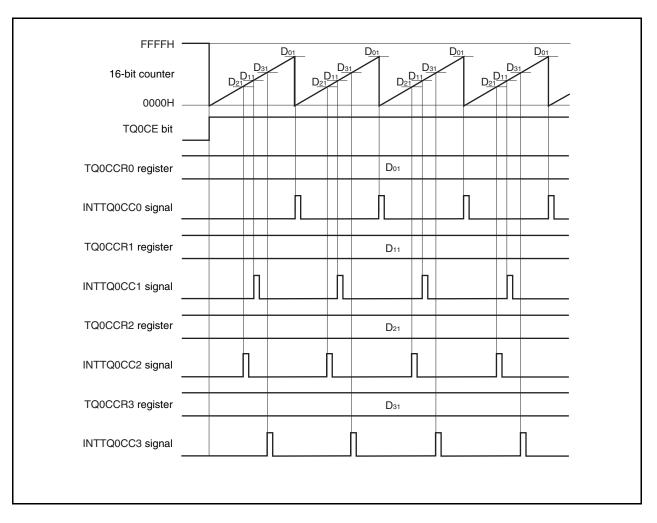
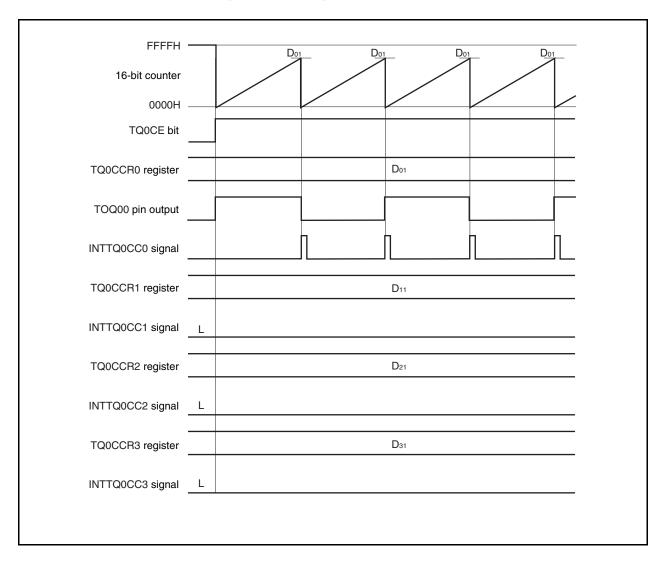
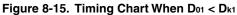
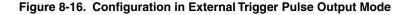
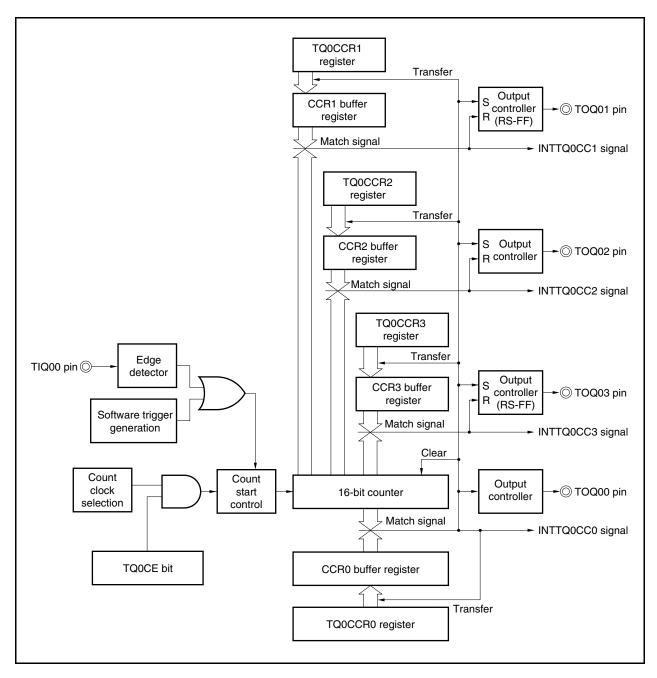




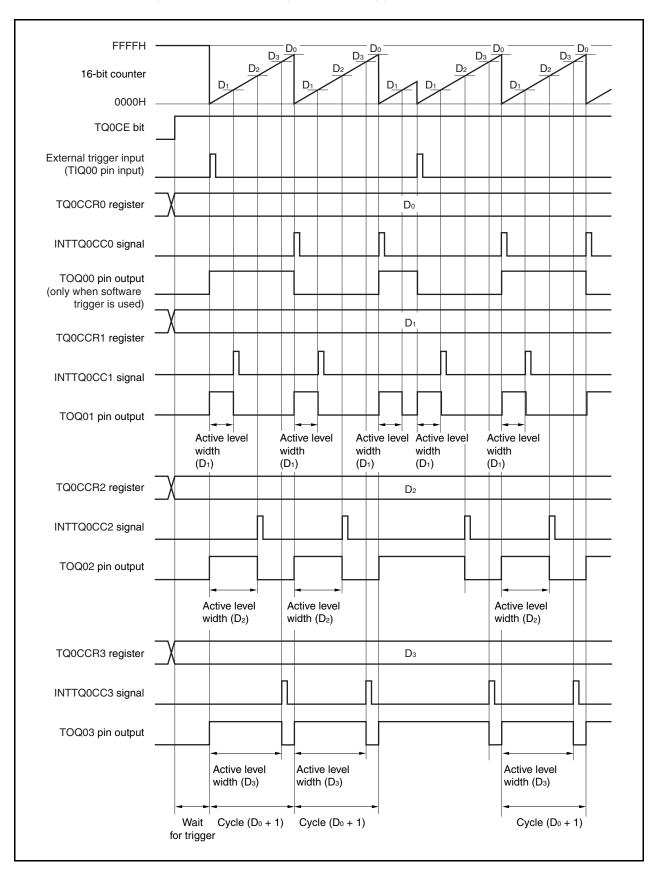
Figure 8-14. Timing Chart When $D_{01} \ge D_{k1}$

If the set value of the TQ0CCRk register is greater than the set value of the TQ0CCR0 register, the INTTQ0CCk signal is not generated because the count value of the 16-bit counter and the value of the TQ0CCRk register do not match.

Remark k = 1 to 3






8.5.3 External trigger pulse output mode (TQ0MD2 to TQ0MD0 bits = 010)

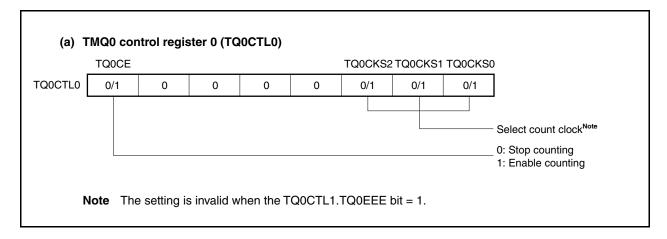
In the external trigger pulse output mode, 16-bit timer/event counter Q waits for a trigger when the TQ0CTL0.TQ0CE bit is set to 1. When the valid edge of an external trigger input signal is detected, 16-bit timer/event counter Q starts counting, and outputs a PWM waveform from the TOQ01 to TOQ03 pins.

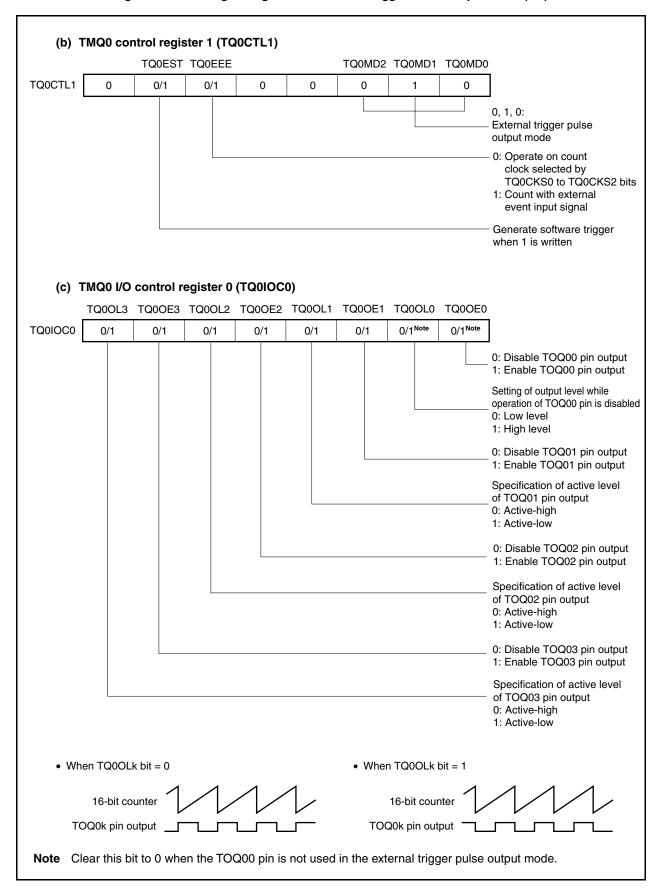
Pulses can also be output by generating a software trigger instead of using the external trigger. When using a software trigger, a square wave that has one cycle of the PWM waveform as half its cycle can also be output from the TOQ00 pin.

16-bit timer/event counter Q waits for a trigger when the TQ0CE bit is set to 1. When the trigger is generated, the 16-bit counter is cleared from FFFFH to 0000H, starts counting at the same time, and outputs a PWM waveform from the TOQ0k pin. If the trigger is generated again while the counter is operating, the counter is cleared to 0000H and restarted. (The output of the TOQ00 pin is inverted. The TOQ0k pin outputs a high-level regardless of the status (high/low) when a trigger is generated.)

The active level width, cycle, and duty factor of the PWM waveform can be calculated as follows.

Active level width = (Set value of TQ0CCRk register) × Count clock cycle Cycle = (Set value of TQ0CCR0 register + 1) × Count clock cycle Duty factor = (Set value of TQ0CCRk register)/(Set value of TQ0CCR0 register + 1)


The compare match request signal INTTQ0CC0 is generated when the 16-bit counter counts next time after its count value matches the value of the CCR0 buffer register, and the 16-bit counter is cleared to 0000H. The compare match interrupt request signal INTTQ0CCk is generated when the count value of the 16-bit counter matches the value of the CCRk buffer register.


The value set to the TQ0CCRm register is transferred to the CCRm buffer register when the count value of the 16bit counter matches the value of the CCR0 buffer register and the 16-bit counter is cleared to 0000H.

The valid edge of an external trigger input signal, or setting the software trigger (TQ0CTL1.TQ0EST bit) to 1 is used as the trigger.

Remark k = 1 to 3 m = 0 to 3

Figure 8-18. Setting of Registers in External Trigger Pulse Output Mode (1/3)

Figure 8-18. Setting of Registers in External Trigger Pulse Output Mode (2/3)

(d) TMQ0 I/O control register 2 (TQ0IOC2)									
					TQ0EES1	TQ0EES0	TQ0ETS1	TQ0ETS0	
TQ0IOC2	0	0	0	0	0/1	0/1	0/1	0/1	
									Select valid edge of external trigger input Select valid edge of external event count input
(e)	(e) TMQ0 counter read buffer register (TQ0CNT) The value of the 16-bit counter can be read by reading the TQ0CNT register.								
(f)	TMQ0 ca	pture/com	pare reg	isters 0 t	o 3 (TQ00	CCR0 to T	QOCCR3)	
				•			•		TQ0CCR2 register, and D ₃ ,
		JCCH3 re	gister, the	cycle and	a active le	vel of the	P WW wav	eiorm are	e as follows.
	Cycle =	(D ₀ + 1) ×	Count cl	ock cycle					
	TOQ01	pin PWM	waveform	n active le	vel width :	= D1 × Cou	unt clock o	cycle	
	TOQ02 pin PWM waveform active level width = $D_2 \times Count clock cycle$								
	TOQ03	pin PWM	waveform	active le	vel width :	= D ₃ × Coι	unt clock o	cycle	
	Remarks	used 2. Updat	in the extenting TMC	ernal trigg 0 captur	ger pulse o e/compare	output mo e register	de. 2 (TQ00	CCR2) an	ister 0 (TQ0OPT0) are not d TMQ0 capture/compare pare register 1 (TQ0CCR1).

Figure 8-18. Setting of Registers in External Trigger Pulse Output Mode (3/3)

(1) Operation flow in external trigger pulse output mode

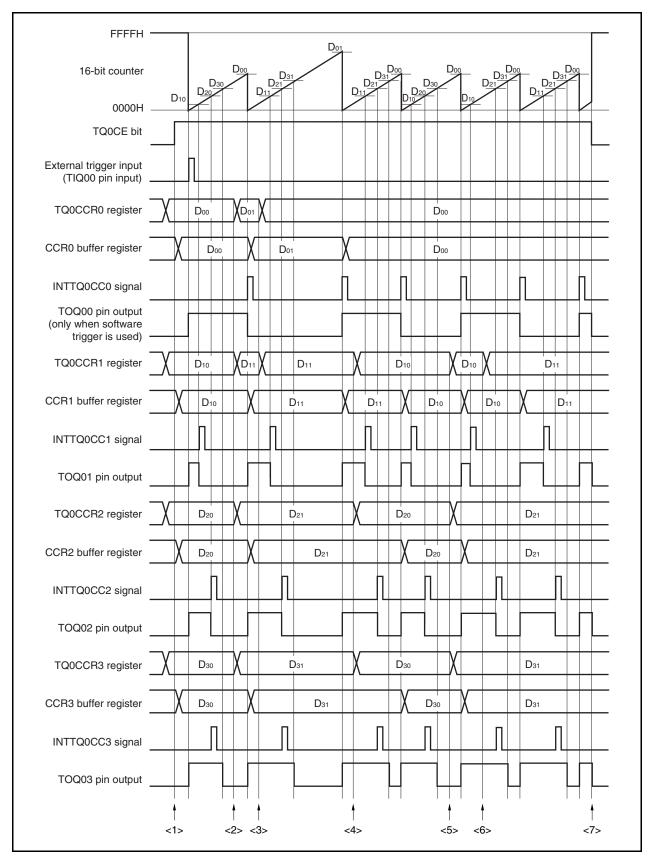
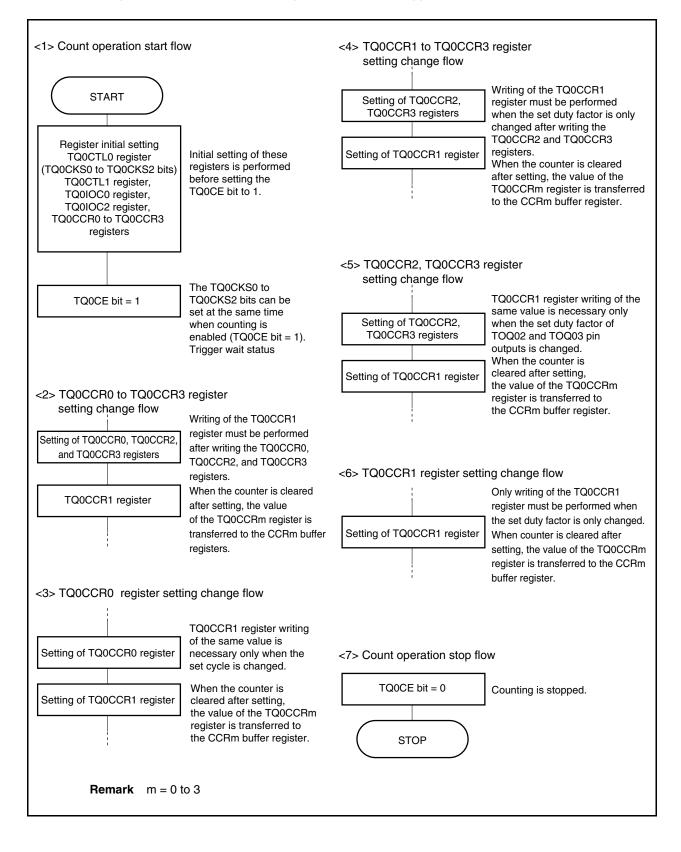
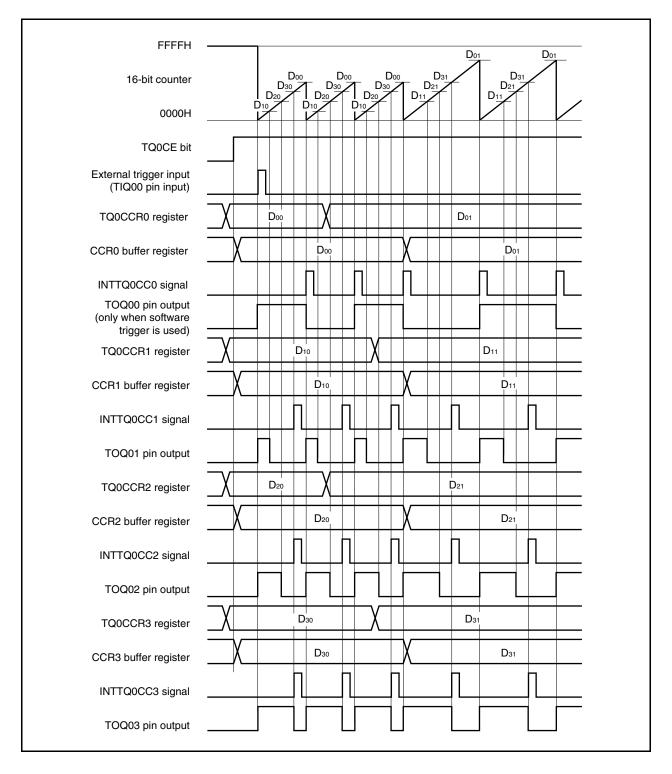



Figure 8-19. Software Processing Flow in External Trigger Pulse Output Mode (1/2)



(2) External trigger pulse output mode operation timing

(a) Note on changing pulse width during operation

To change the PWM waveform while the counter is operating, write the TQ0CCR1 register last. Rewrite the TQ0CCRk register after writing the TQ0CCR1 register after the INTTQ0CC0 signal is detected.

In order to transfer data from the TQ0CCRm register to the CCRm buffer register, the TQ0CCR1 register must be written.

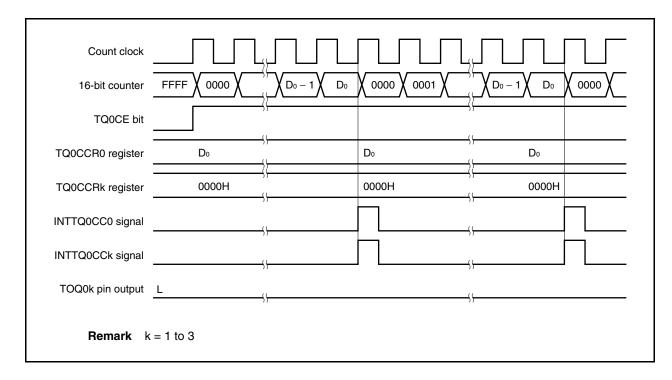
To change both the cycle and active level width of the PWM waveform at this time, first set the cycle to the TQ0CCR0 register, set the active level width to the TQ0CCR2 and TQ0CCR3 registers, and then set an active level to the TQ0CCR1 register.

To change only the cycle of the PWM waveform, first set the cycle to the TQ0CCR0 register, and then write the same value to the TQ0CCR1 register.

To change only the active level width (duty factor) of the PWM waveform, first set an active level to the TQ0CCR2 and TQ0CCR3 registers and then set an active level to the TQ0CCR1 register.

To change only the active level width (duty factor) of the PWM waveform output by the TOQ01 pin, only the TQ0CCR1 register has to be set.

To change only the active level width (duty factor) of the PWM waveform output by the TOQ02 and TOQ03 pins, first set an active level width to the TQ0CCR2 and TQ0CCR3 registers, and then write the same value to the TQ0CCR1 register.

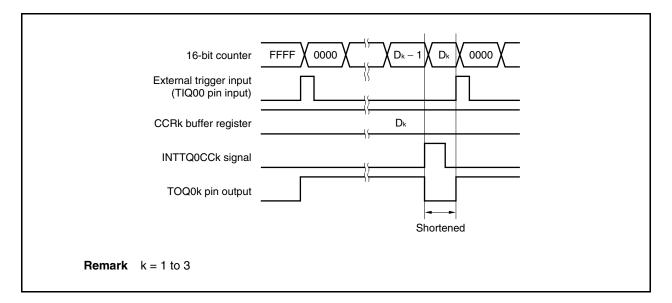

After data is written to the TQ0CCR1 register, the value written to the TQ0CCRm register is transferred to the CCRm buffer register in synchronization with clearing of the 16-bit counter, and is used as the value compared with the 16-bit counter.

To write the TQ0CCR0 to TQ0CCR3 registers again after writing the TQ0CCR1 register once, do so after the INTTQ0CC0 signal is generated. Otherwise, the value of the CCRm buffer register may become undefined because timing of transferring data from the TQ0CCRm register to the CCRm buffer register conflicts with writing the TQ0CCRm register.

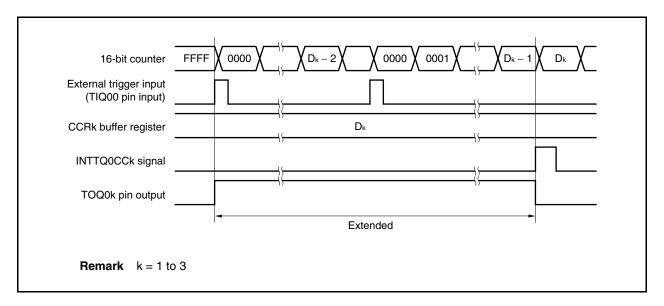
Remark m = 0 to 3

(b) 0%/100% output of PWM waveform

To output a 0% waveform, set the TQ0CCRk register to 0000H. If the set value of the TQ0CCR0 register is FFFFH, the INTTQ0CCk signal is generated periodically.

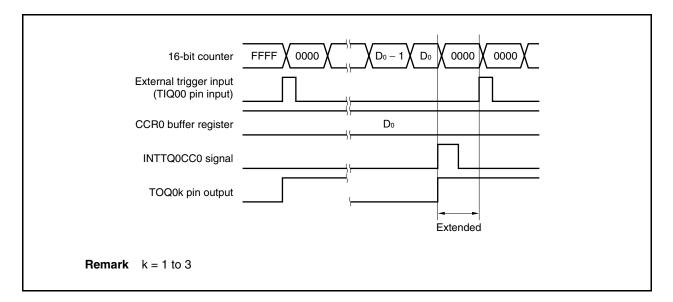


To output a 100% waveform, set a value of (set value of TQ0CCR0 register + 1) to the TQ0CCRk register. If the set value of the TQ0CCR0 register is FFFFH, 100% output cannot be produced.

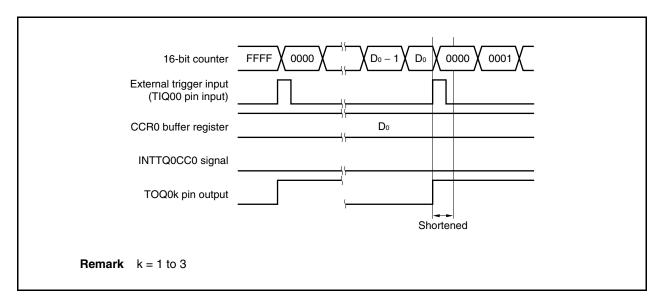

Count clock 16-bit counter		$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	$\frac{1}{\sqrt{D_0 - 1}} D_0 \sqrt{0000} \sqrt{2}$
TQ0CE bit		\ <u>{</u>	{;
TQ0CCR0 register		55	55
TQ0CCRk register	Do + 1	D₀ + 1	5 Do + 1
INTTQ0CC0 signal	(ζ <u>,</u>	ζς
INTTQ0CCk signal		\$5	<u>ر</u>
TOQ0k pin output		\ }	5;
Remark k	x = 1 to 3		

(c) Conflict between trigger detection and match with CCRk buffer register

If the trigger is detected immediately after the INTTQ0CCk signal is generated, the 16-bit counter is immediately cleared to 0000H, the output signal of the TOQ0k pin is asserted, and the counter continues counting. Consequently, the inactive period of the PWM waveform is shortened.

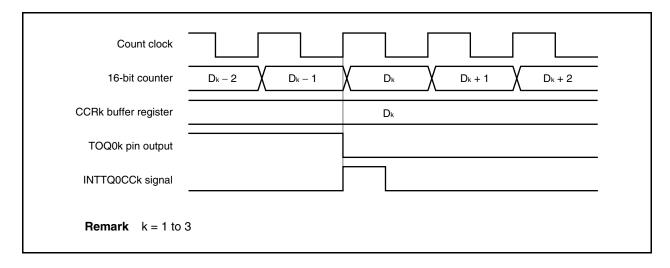


If the trigger is detected immediately before the INTTQ0CCk signal is generated, the INTTQ0CCk signal is not generated, and the 16-bit counter is cleared to 0000H and continues counting. The output signal of the TOQ0k pin remains active. Consequently, the active period of the PWM waveform is extended.



(d) Conflict between trigger detection and match with CCR0 buffer register

If the trigger is detected immediately after the INTTQ0CC0 signal is generated, the 16-bit counter is cleared to 0000H and continues counting up. Therefore, the active period of the TOQ0k pin is extended by time from generation of the INTTQ0CC0 signal to trigger detection.

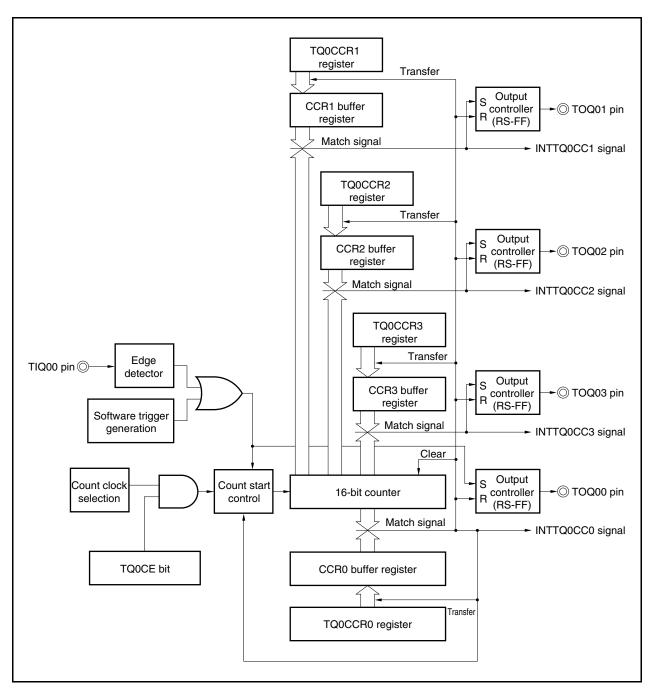


If the trigger is detected immediately before the INTTQ0CC0 signal is generated, the INTTQ0CC0 signal is not generated. The 16-bit counter is cleared to 0000H, the TOQ0k pin is asserted, and the counter continues counting. Consequently, the inactive period of the PWM waveform is shortened.

(e) Generation timing of compare match interrupt request signal (INTTQ0CCk)

The timing of generation of the INTTQ0CCk signal in the external trigger pulse output mode differs from the timing of other INTTQ0CCk signals; the INTTQ0CCk signal is generated when the count value of the 16-bit counter matches the value of the CCRk buffer register.

Usually, the INTTQ0CCk signal is generated in synchronization with the next count up after the count value of the 16-bit counter matches the value of the CCRk buffer register.


In the external trigger pulse output mode, however, it is generated one clock earlier. This is because the timing is changed to match the timing of changing the output signal of the TOQ0k pin.

8.5.4 One-shot pulse output mode (TQ0MD2 to TQ0MD0 bits = 011)

In the one-shot pulse output mode, 16-bit timer/event counter Q waits for a trigger when the TQ0CTL0.TQ0CE bit is set to 1. When the valid edge of an external trigger input is detected, 16-bit timer/event counter Q starts counting, and outputs a one-shot pulse from the TOQ01 to TOQ03 pins.

Instead of the external trigger, a software trigger can also be generated to output the pulse. When the software trigger is used, the TOQ00 pin outputs the active level while the 16-bit counter is counting, and the inactive level when the counter is stopped (waiting for a trigger).

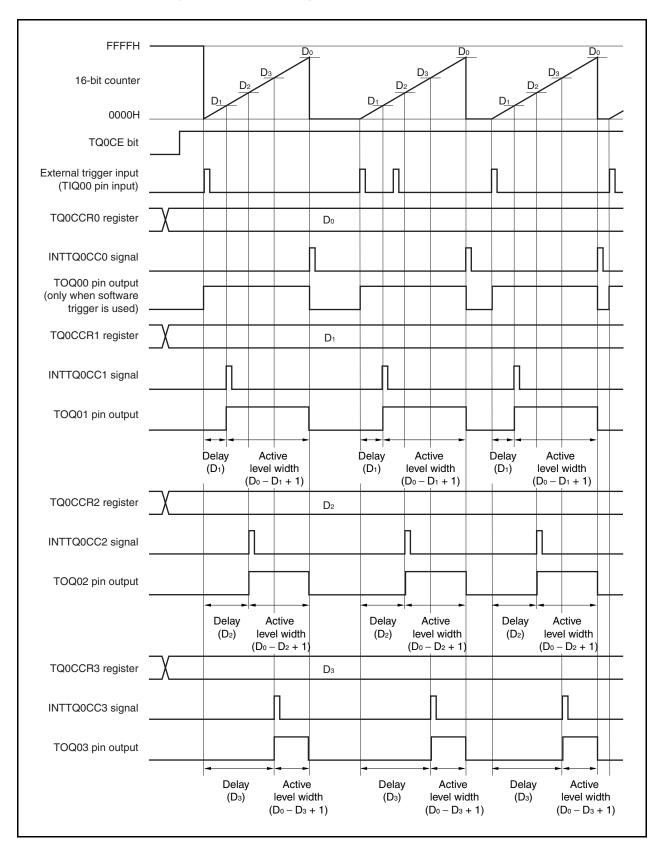
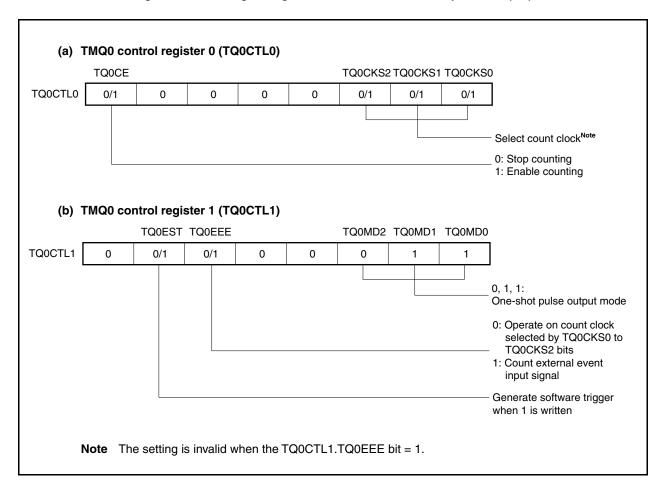
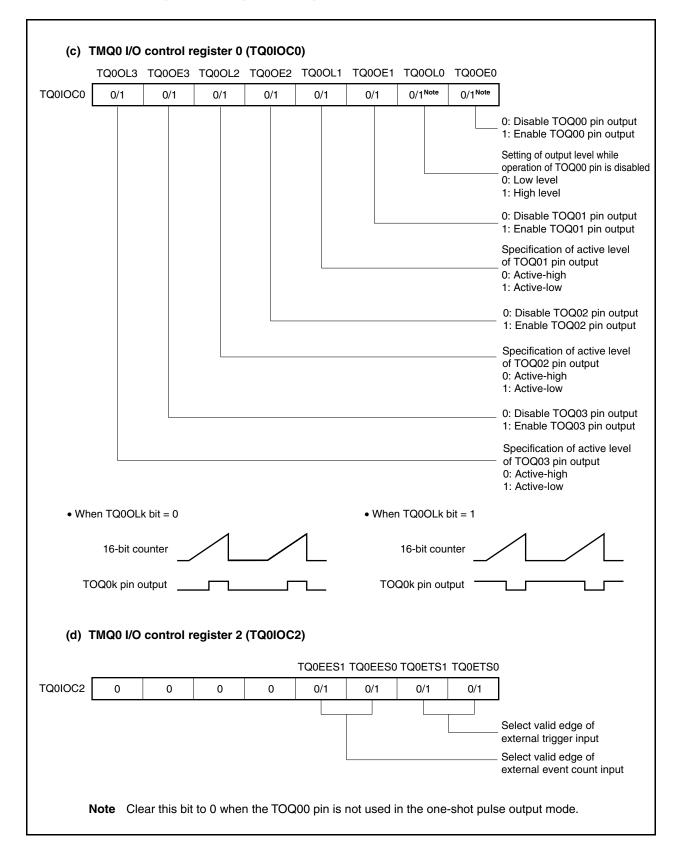


Figure 8-21. Basic Timing in One-Shot Pulse Output Mode

When the TQ0CE bit is set to 1, 16-bit timer/event counter Q waits for a trigger. When the trigger is generated, the 16-bit counter is cleared from FFFFH to 0000H, starts counting, and outputs a one-shot pulse from the TOQ0k pin. After the one-shot pulse is output, the 16-bit counter is set to FFFFH, stops counting, and waits for a trigger. If a trigger is generated again while the one-shot pulse is being output, it is ignored.


The output delay period and active level width of the one-shot pulse can be calculated as follows.

Output delay period = (Set value of TQ0CCRk register) × Count clock cycle Active level width = (Set value of TQ0CCR0 register – Set value of TQ0CCRk register + 1) × Count clock cycle


The compare match interrupt request signal INTTQ0CC0 is generated when the 16-bit counter counts after its count value matches the value of the CCR0 buffer register. The compare match interrupt request signal INTTQ0CCk is generated when the count value of the 16-bit counter matches the value of the CCRk buffer register.

The valid edge of an external trigger input or setting the software trigger (TQ0CTL1.TQ0EST bit) to 1 is used as the trigger.

Remark k = 1 to 3

Figure 8-22. Setting of Registers in One-Shot Pulse Output Mode (1/3)

Figure 8-22. Register Setting in One-Shot Pulse Output Mode (2/3)

Figure 8-22. Register Setting in One-Shot Pulse Output Mode (3/3)

(e)		counter read buffer register (TQ0CNT) ue of the 16-bit counter can be read by reading the TQ0CNT register.						
(f)	If D ₀ is se delay peri Active lev	TMQ0 capture/compare registers 0 to 3 (TQ0CCR0 to TQ0CCR3) If D ₀ is set to the TQ0CCR0 register and D _k to the TQ0CCRk register, the active level width and output delay period of the one-shot pulse are as follows. Active level width = $(D_0 - D_k + 1) \times \text{Count clock cycle}$ Output delay period = D _k × Count clock cycle						
	Caution	One-shot pulses are not output in the one-shot pulse output mode if the value set for the TQ0CCRk register is greater than that for the TQ0CCR0 register.						
	Remarks	 TMQ0 I/O control register 1 (TQ0IOC1) and TMQ0 option register 0 (TQ0OPT0) are not used in the one-shot pulse output mode. k = 1 to 3 						

<R>

(1) Operation flow in one-shot pulse output mode

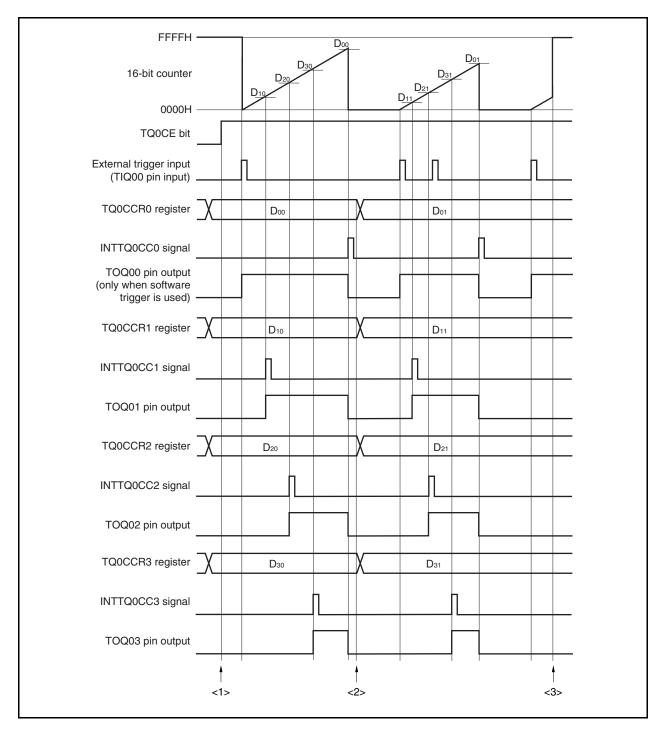
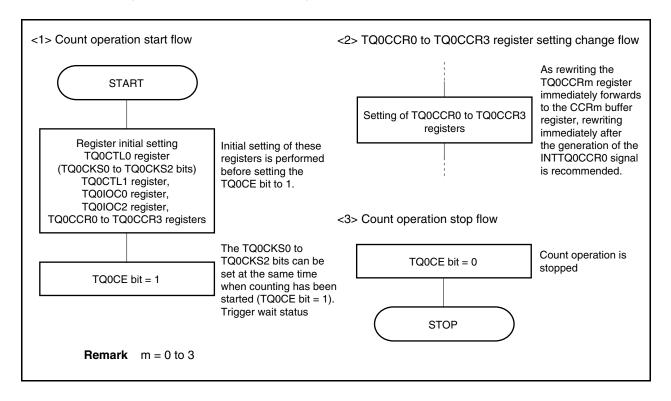
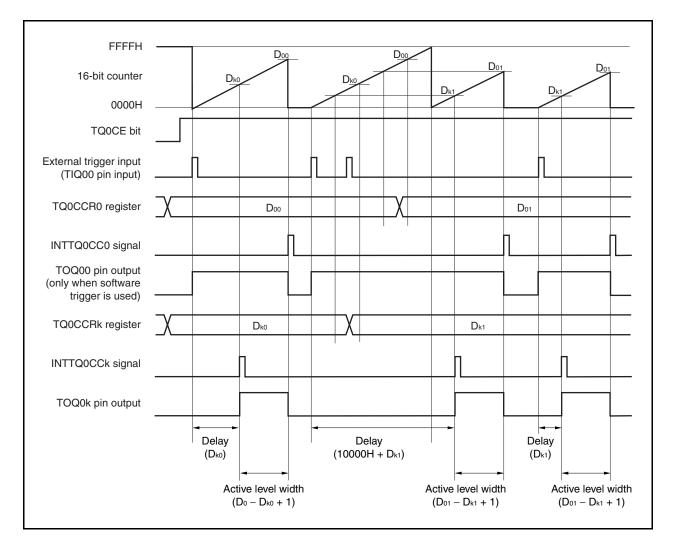



Figure 8-23. Software Processing Flow in One-Shot Pulse Output Mode (1/2)

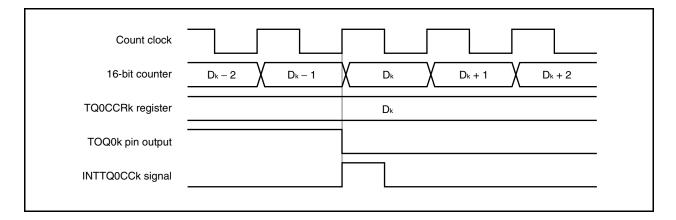


(2) Operation timing in one-shot pulse output mode

(a) Note on rewriting TQ0CCRm register

To change the set value of the TQ0CCRm register to a smaller value, stop counting once, and then change the set value.

If the value of the TQ0CCR0 register is rewritten to a smaller value during counting, the 16-bit counter may overflow.


When the TQ0CCR0 register is rewritten from D₀₀ to D₀₁ and the TQ0CCRk register from D_{k0} to D_{k1} where D₀₀ > D₀₁ and D_{k0} > D_{k1}, if the TQ0CCRk register is rewritten when the count value of the 16-bit counter is greater than D_{k1} and less than D_{k0} and if the TQ0CCR0 register is rewritten when the count value is greater than D₀₁ and less than D₀₀, each set value is reflected as soon as the register has been rewritten and compared with the count value. The counter counts up to FFFFH and then counts up again from 0000H. When the count value matches D_{k1}, the counter generates the INTTQ0CCk signal and asserts the TOQ0k pin. When the count value matches D₀₁, the counter generates the INTTQ0CC0 signal, deasserts the TOQ0k pin, and stops counting.

Therefore, the counter may output a pulse with a delay period or active period different from that of the one-shot pulse that is originally expected.

Remark k = 1 to 3

(b) Generation timing of compare match interrupt request signal (INTTQ0CCk)

The generation timing of the INTTQ0CCk signal in the one-shot pulse output mode is different from other INTTQ0CCk signals; the INTTQ0CCk signal is generated when the count value of the 16-bit counter matches the value of the TQ0CCRk register.

Usually, the INTTQ0CCk signal is generated when the 16-bit counter counts up next time after its count value matches the value of the TQ0CCRk register.

In the one-shot pulse output mode, however, it is generated one clock earlier. This is because the timing is changed to match the change timing of the TOQ0k pin.

Remark k = 1 to 3

8.5.5 PWM output mode (TQ0MD2 to TQ0MD0 bits = 100)

In the PWM output mode, a PWM waveform is output from the TOQ01 to TOQ03 pins when the TQ0CTL0.TQ0CE bit is set to 1.

In addition, a pulse with one cycle of the PWM waveform as half its cycle is output from the TOQ00 pin.

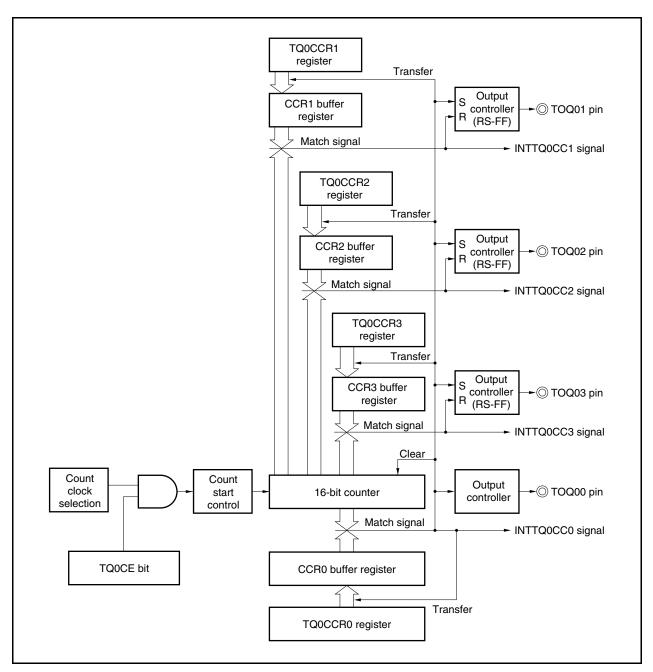


Figure 8-24. Configuration in PWM Output Mode

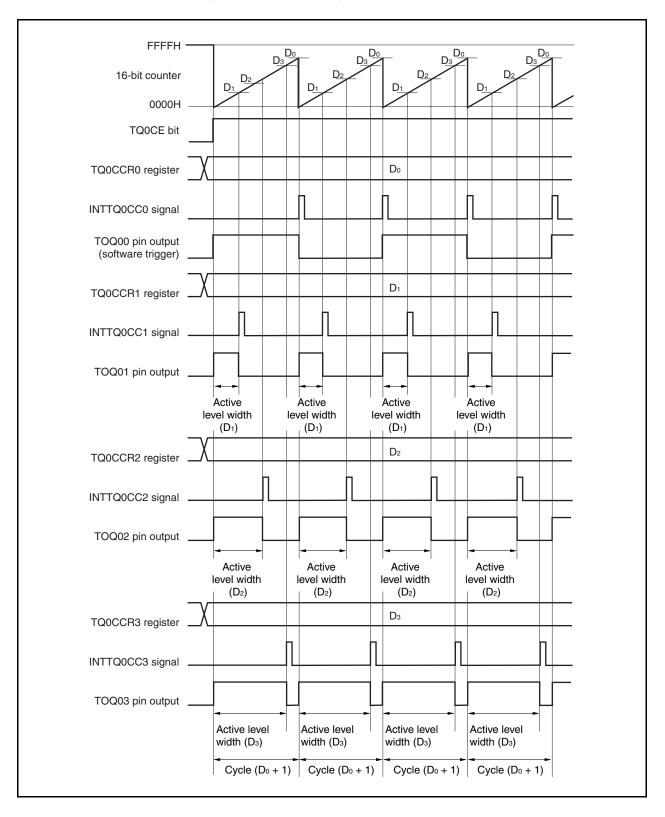
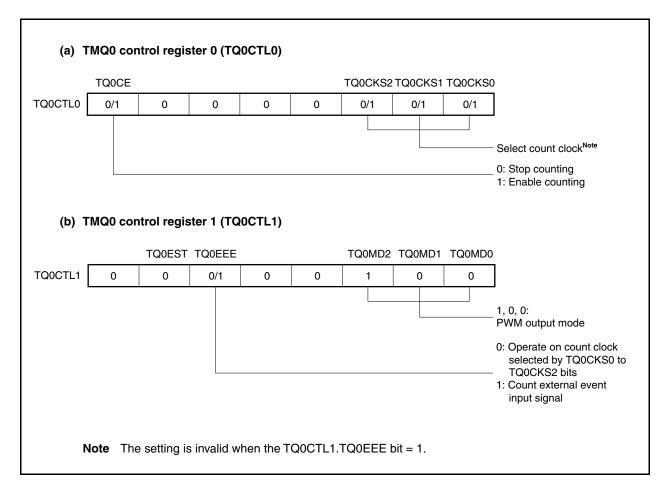


Figure 8-25. Basic Timing in PWM Output Mode

When the TQ0CE bit is set to 1, the 16-bit counter is cleared from FFFFH to 0000H, starts counting, and outputs PWM waveform from the TOQ0k pin.

The active level width, cycle, and duty factor of the PWM waveform can be calculated as follows.


Active level width = (Set value of TQ0CCRk register) × Count clock cycle Cycle = (Set value of TQ0CCR0 register + 1) × Count clock cycle Duty factor = (Set value of TQ0CCRk register)/(Set value of TQ0CCR0 register + 1)

The PWM waveform can be changed by rewriting the TQ0CCRm register while the counter is operating. The newly written value is reflected when the count value of the 16-bit counter matches the value of the CCR0 buffer register and the 16-bit counter is cleared to 0000H.

The compare match interrupt request signal INTTQ0CC0 is generated when the 16-bit counter counts next time after its count value matches the value of the CCR0 buffer register, and the 16-bit counter is cleared to 0000H. The compare match interrupt request signal INTTQ0CCk is generated when the count value of the 16-bit counter matches the value of the CCRk buffer register.

```
Remark k = 1 to 3
m = 0 to 3
```

Figure 8-26. Setting of Registers in PWM Output Mode (1/3)

(c)	TMQ0 I/O	control r	egister 0	(TQ0IOC	0)				
		T000E3		T000E2	TQ00I 1	TO0OF1	TQ0OL0		
TQ0IOC0	0/1	0/1	0/1	0/1	0/1	0/1	0/1 ^{Note}	0/1 ^{Note}	
									0: Disable TOQ00 pin output 1: Enable TOQ00 pin output
									Setting of output level while operation of TOQ00 pin is disabled 0: Low level 1: High level
									0: Disable TOQ01 pin output 1: Enable TOQ01 pin output
									Specification of active level of TOQ01 pin output 0: Active-high 1: Active-low
									0: Disable TOQ02 pin output 1: Enable TOQ02 pin output
									Specification of active level of TOQ02 pin output 0: Active-high 1: Active-low
									0: Disable TOQ03 pin output 1: Enable TOQ03 pin output
									Specification of active level of TOQ03 pin output 0: Active-high 1: Active-low
• Wh	en TQ0OLł	k bit = 0				 When 	TQ0OLk b	it = 1	
	16-bit co	unter 1	\wedge		1		16-bit coun	ter	
T	OQ0k pin o	utput		<u> </u>		тос	Q0k pin outp	out	
(d)	TMQ0 I/O	control r	egister 2	(TQ0IOC	2)				
					TQ0EES1	TQ0EES0	TQ0ETS1	TQ0ETS0	
TQ0IOC2	0	0	0	0	0/1	0/1	0	0	
									Select valid edge of external event count input.
	Note Clear this bit to 0 when the TOQ00 pin is not used in the PWM output mode.								

Figure 8-26. Setting of Registers in PWM Output Mode (2/3)

Figure 8-26. Register Setting in PWM Output Mode (3/3)

(e)	TMQ0 counter read buffer register (TQ0CNT) The value of the 16-bit counter can be read by reading the TQ0CNT register.						
(f)	TMQ0 capture/compare registers 0 to 3 (TQ0CCR0 and TQ0CCR3) If D ₀ is set to the TQ0CCR0 register and D _k to the TQ0CCR1 register, the cycle and active level of the PWM waveform are as follows.						
	Cycle = $(D_0 + 1) \times$ Count clock cycle Active level width = $D_k \times$ Count clock cycle						
	 Remarks 1. TMQ0 I/O control register 1 (TQ0IOC1) and TMQ0 option register 0 (TQ0OPT0) are not used in the PWM output mode. Updating the TMQ0 capture/compare register 2 (TQ0CCR2) and TMQ0 capture/compare register 3 (TQ0CCR3) is validated by writing the TMQ0 capture/compare register 1 (TQ0CCR1). 						

(1) Operation flow in PWM output mode

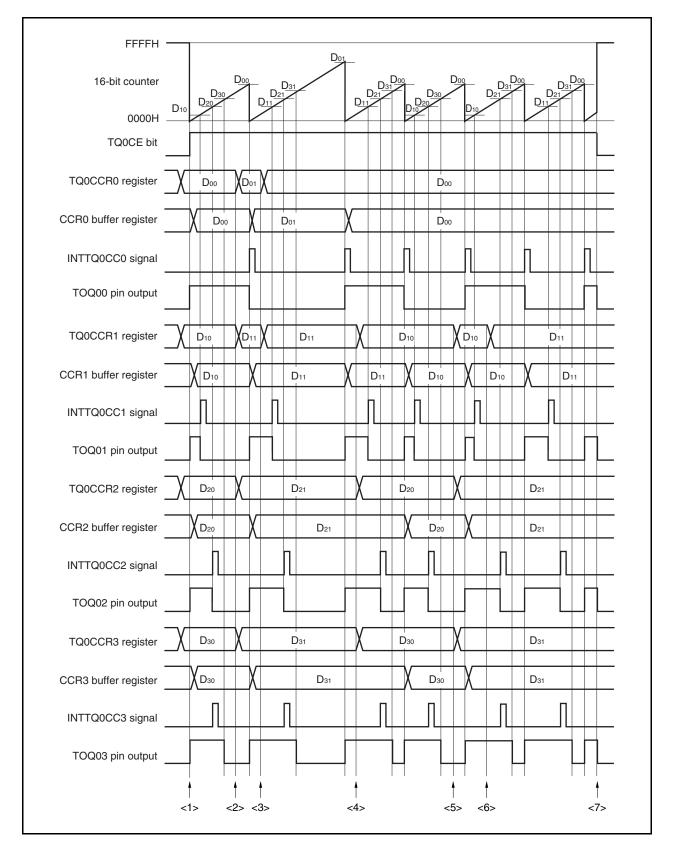
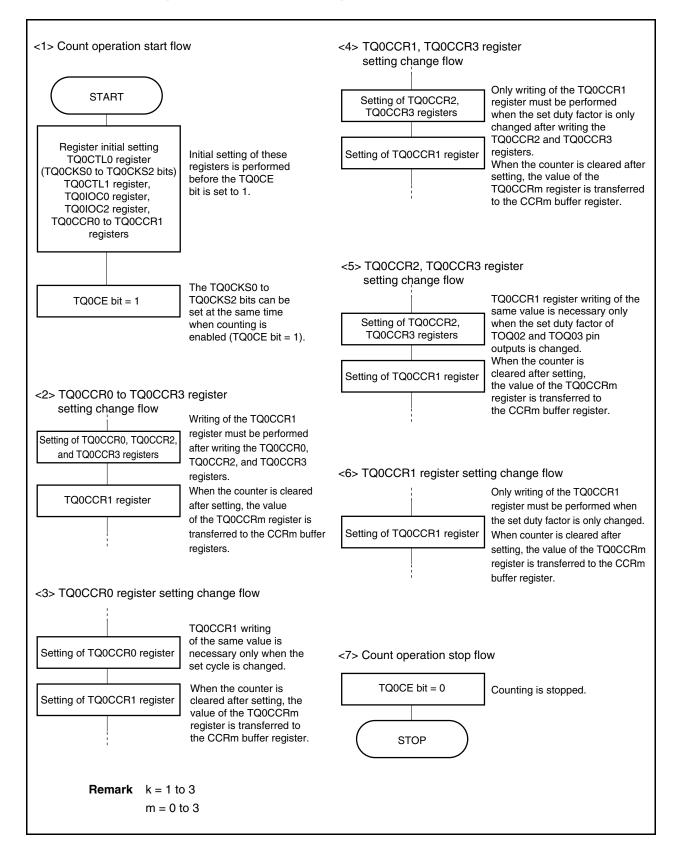



Figure 8-27. Software Processing Flow in PWM Output Mode (1/2)

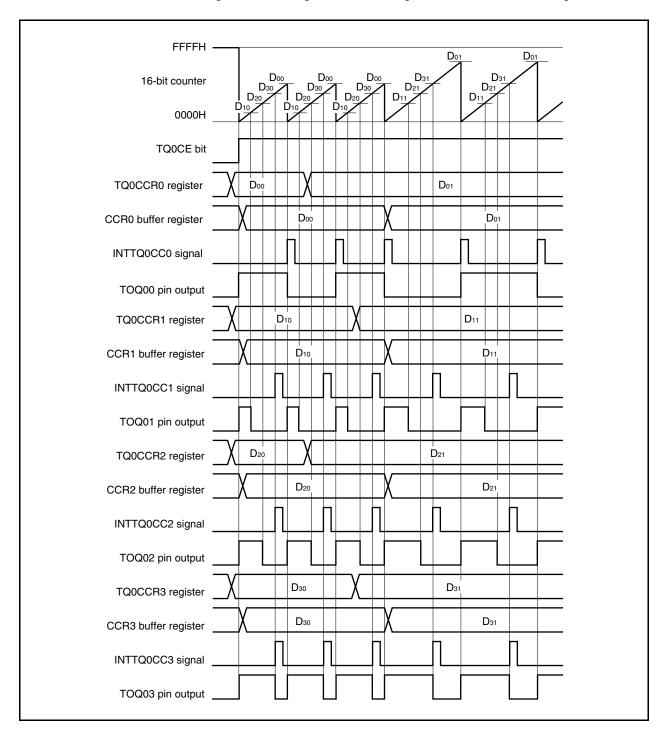


Figure 8-27. Software Processing Flow in PWM Output Mode (2/2)

(2) PWM output mode operation timing

(a) Changing pulse width during operation

To change the PWM waveform while the counter is operating, write the TQ0CCR1 register last. Rewrite the TQ0CCRk register after writing the TQ0CCR1 register after the INTTQ0CC1 signal is detected.

To transfer data from the TQ0CCRm register to the CCRm buffer register, the TQ0CCR1 register must be written.

To change both the cycle and active level of the PWM waveform at this time, first set the cycle to the TQ0CCR0 register, set the active level width to the TQ0CCR2 and TQ0CCR3 registers, and then set an active level width to the TQ0CCR1 register.

To change only the active level width (duty factor) of PWM wave, first set the active level to the TQ0CCR2 and TQ0CCR3 registers, and then set an active level to the TQ0CCR1 register.

To change only the active level width (duty factor) of the PWM waveform output by the TOQ01 pin, only the TQ0CCR1 register has to be set.

To change only the active level width (duty factor) of the PWM waveform output by the TOQ02 and TOQ03 pins, first set an active level width to the TQ0CCR2 and TQ0CCR3 registers, and then write the same value to the TQ0CCR1 register.

After the TQ0CCR1 register is written, the value written to the TQ0CCRm register is transferred to the CCRm buffer register in synchronization with the timing of clearing the 16-bit counter, and is used as a value to be compared with the value of the 16-bit counter.

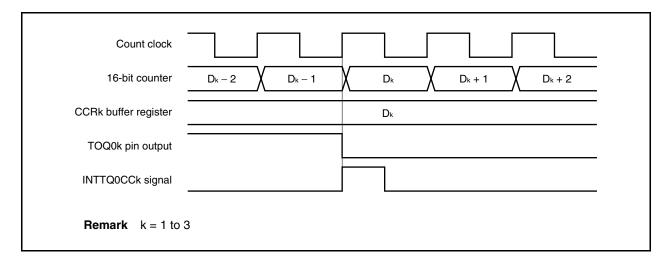

To change only the cycle of the PWM waveform, first set a cycle to the TQ0CCR0 register, and then write the same value to the TQ0CCR1 register.

To write the TQ0CCR0 to TQ0CCR3 registers again after writing the TQ0CCR1 register once, do so after the INTTQ0CC0 signal is generated. Otherwise, the value of the CCRm buffer register may become undefined because the timing of transferring data from the TQ0CCRm register to the CCRm buffer register conflicts with writing the TQ0CCRm register.

Remark m = 0 to 3

(b) 0%/100% output of PWM waveform

To output a 0% waveform, set the TQ0CCRk register to 0000H. If the set value of the TQ0CCR0 register is FFFFH, the INTTQ0CCk signal is generated periodically.



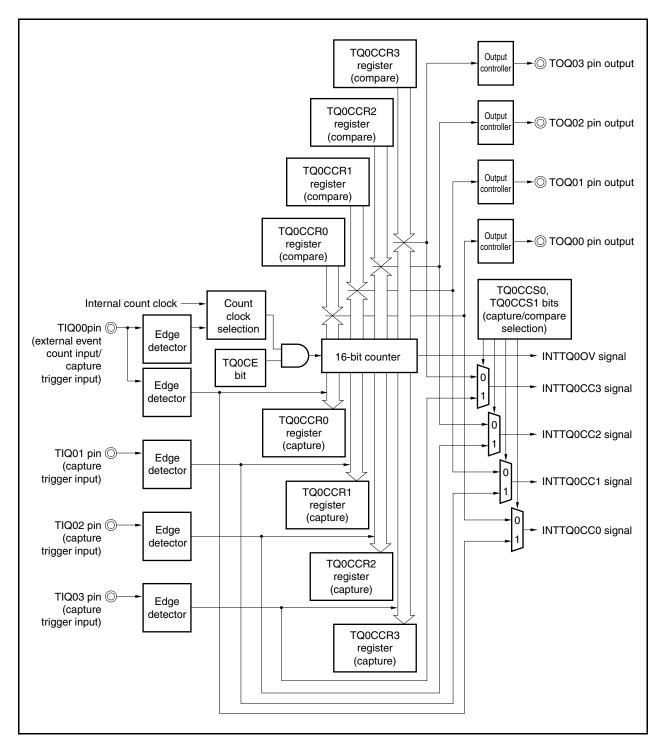
To output a 100% waveform, set a value of (set value of TQ0CCR0 register + 1) to the TQ0CCRk register. If the set value of the TQ0CCR0 register is FFFFH, 100% output cannot be produced.

Count clock			
16-bit counter	FFFF 0000	$\int_{1}^{1} \sqrt{D_0 - 1} \sqrt{D_0} \sqrt{0000} \sqrt{0001} \sqrt{0001}$	$D_0 - 1$ D_0 0000
TQ0CE bit			
TQ0CCR0 register	Do	5)	
TQ0CCRk register	Do + 1	D0 + 1	Do + 1
INTTQ0CC0 signal		<u>ر</u>	,
INTTQ0CCk signal		s <u></u> s	<u>, </u>
TOQ0k pin output) . 	}
Remark k	= 1 to 3		

(c) Generation timing of compare match interrupt request signal (INTTQ0CCk)

The timing of generation of the INTTQ0CCk signal in the PWM output mode differs from the timing of other INTTQ0CCk signals; the INTTQ0CCk signal is generated when the count value of the 16-bit counter matches the value of the TQ0CCRk register.

Usually, the INTTQ0CCk signal is generated in synchronization with the next counting up after the count value of the 16-bit counter matches the value of the TQ0CCRk register.


In the PWM output mode, however, it is generated one clock earlier. This is because the timing is changed to match the change timing of the output signal of the TOQ0k pin.

8.5.6 Free-running timer mode (TQ0MD2 to TQ0MD0 bits = 101)

In the free-running timer mode, 16-bit timer/event counter Q starts counting when the TQ0CTL0.TQ0CE bit is set to 1. At this time, the TQ0CCRm register can be used as a compare register or a capture register, depending on the setting of the TQ0OPT0.TQ0CCS0 and TQ0OPT0.TQ0CCS1 bits.

Remark m = 0 to 3

When the TQ0CE bit is set to 1, 16-bit timer/event counter Q starts counting, and the output signals of the TOQ00 to TOQ03 pins are inverted. When the count value of the 16-bit counter later matches the set value of the TQ0CCRm register, a compare match interrupt request signal (INTTQ0CCm) is generated, and the output signal of the TOQ0m pin is inverted.

The 16-bit counter continues counting in synchronization with the count clock. When it counts up to FFFH, it generates an overflow interrupt request signal (INTTQ0OV) at the next clock, is cleared to 0000H, and continues counting. At this time, the overflow flag (TQ0OPT0.TQ0OVF bit) is also set to 1. Clear the overflow flag to 0 by executing the CLR instruction by software.

The TQ0CCRm register can be rewritten while the counter is operating. If it is rewritten, the new value is reflected at that time, and compared with the count value.

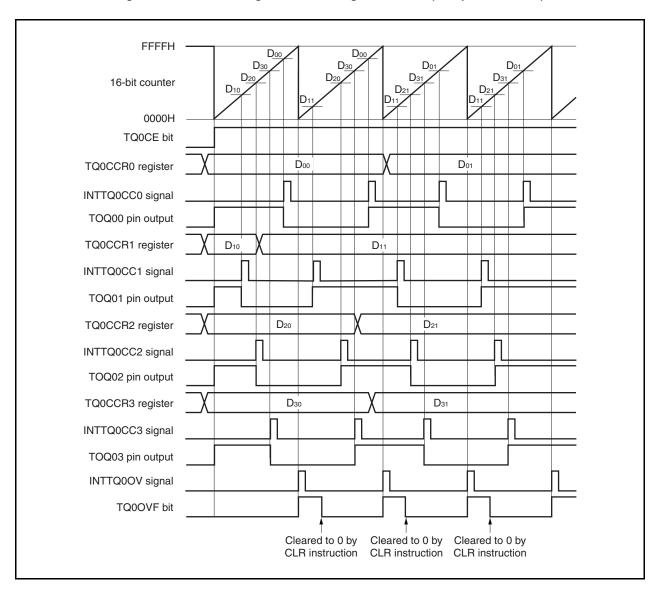
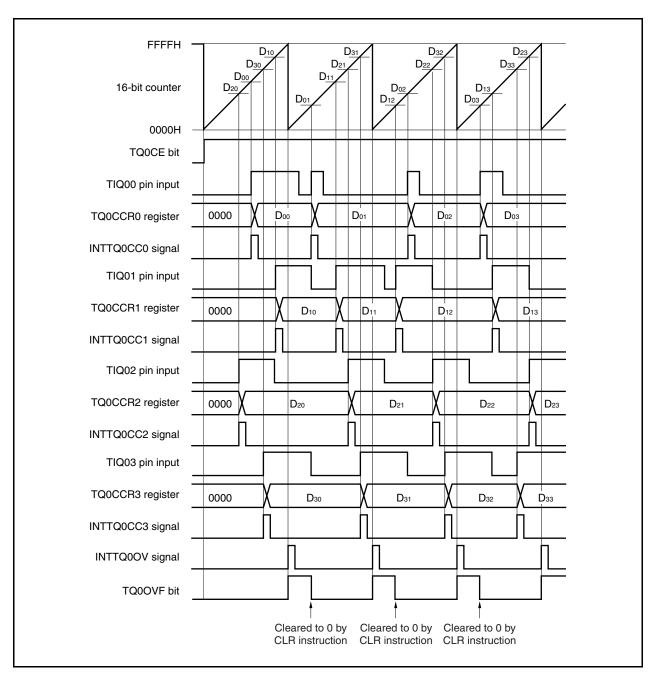
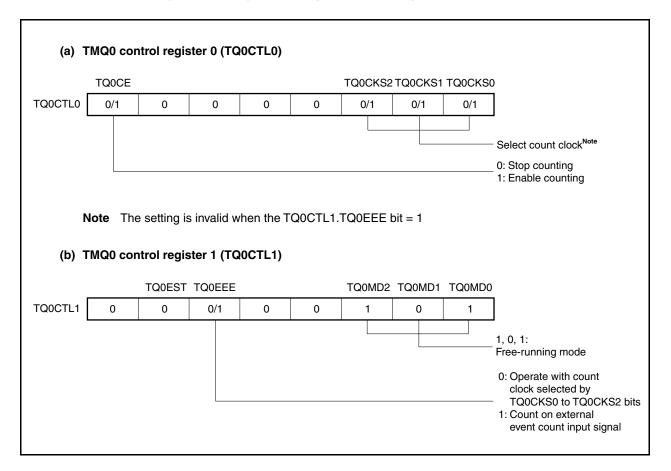
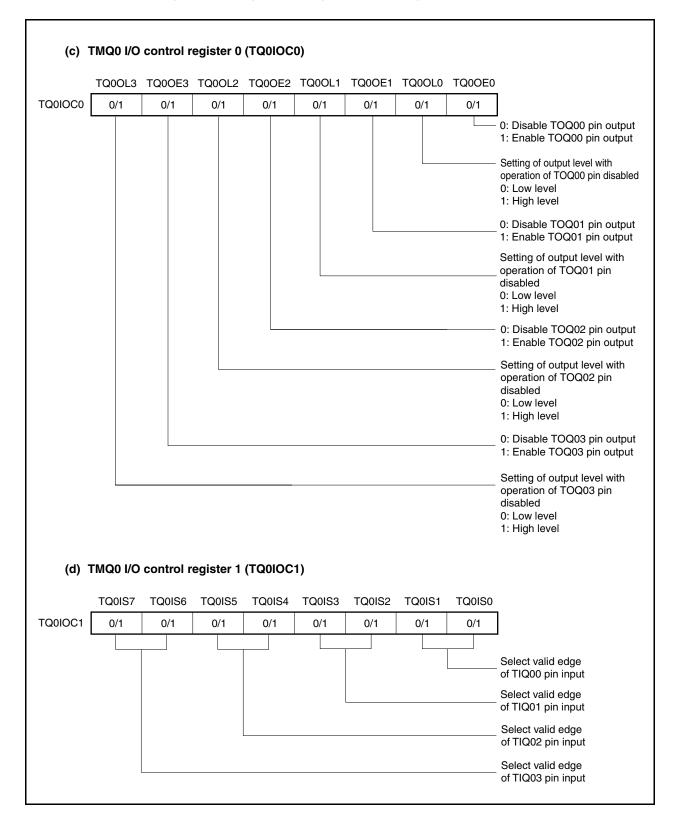


Figure 8-29. Basic Timing in Free-Running Timer Mode (Compare Function)

When the TQ0CE bit is set to 1, the 16-bit counter starts counting. When the valid edge input to the TIQ0m pin is detected, the count value of the 16-bit counter is stored in the TQ0CCRm register, and a capture interrupt request signal (INTTQ0CCm) is generated.

The 16-bit counter continues counting in synchronization with the count clock. When it counts up to FFFFH, it generates an overflow interrupt request signal (INTTQ0OV) at the next clock, is cleared to 0000H, and continues counting. At this time, the overflow flag (TQ0OVF bit) is also set to 1. Clear the overflow flag to 0 by executing the CLR instruction by software.

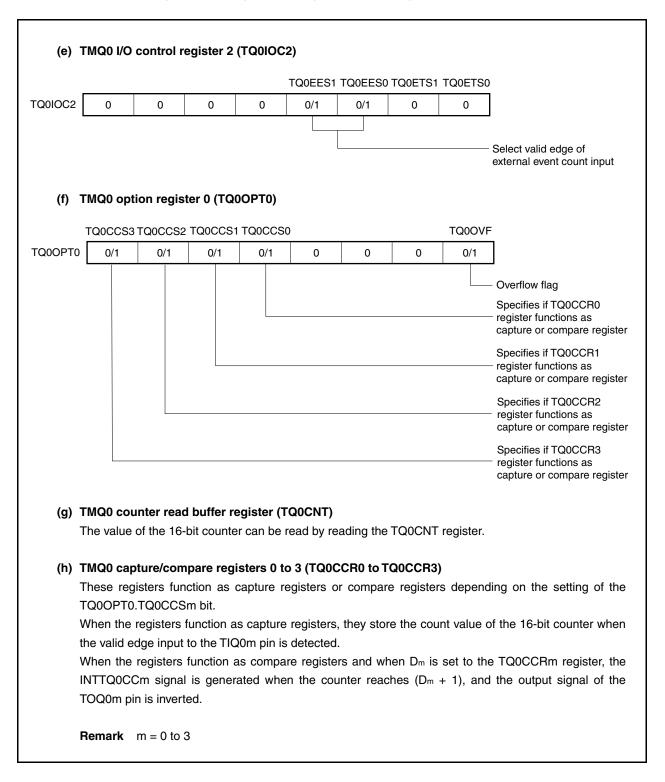
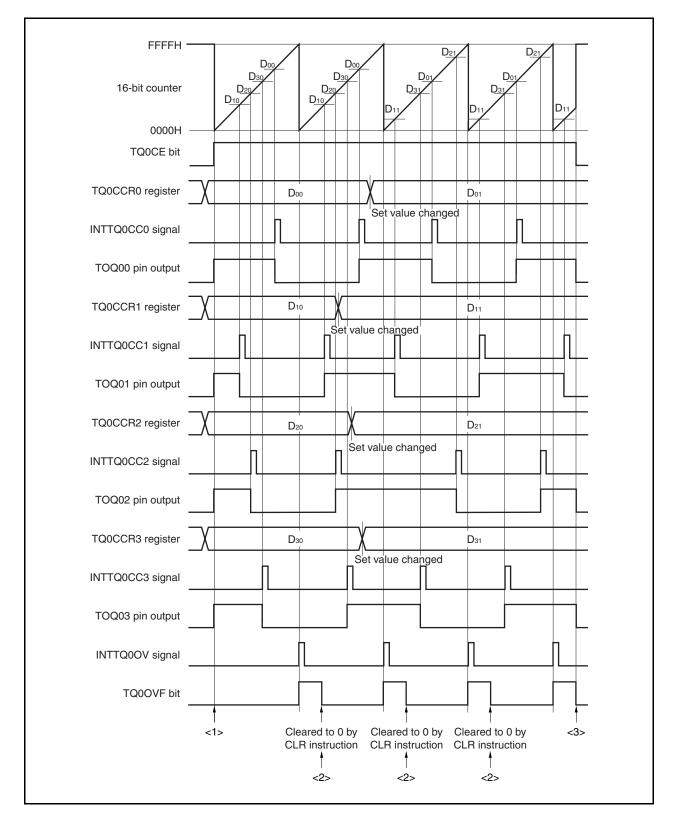

Figure 8-30. Basic Timing in Free-Running Timer Mode (Capture Function)

Figure 8-31. Register Setting in Free-Running Timer Mode (1/3)


Figure 8-31. Register Setting in Free-Running Timer Mode (2/3)

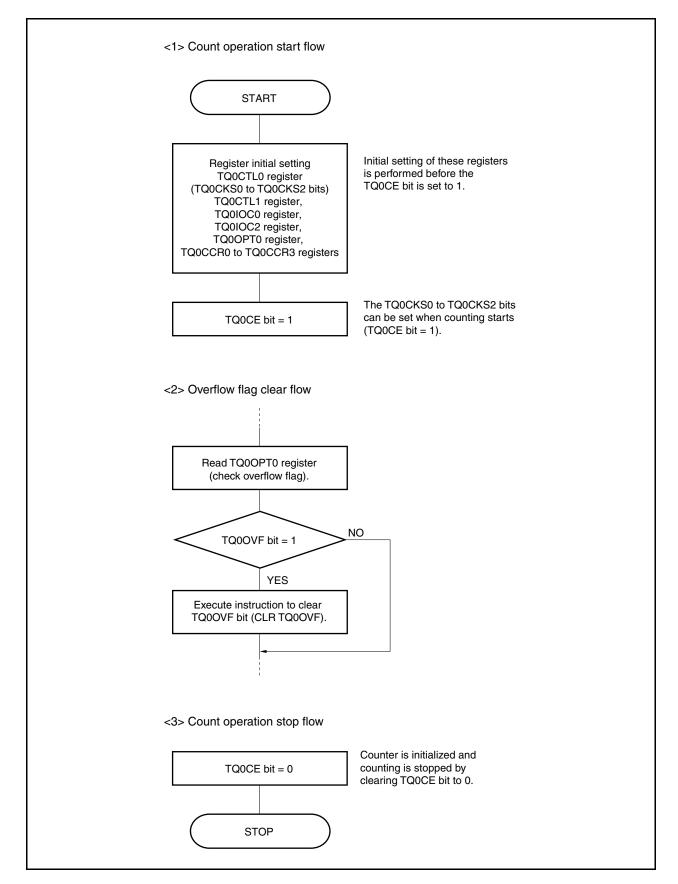
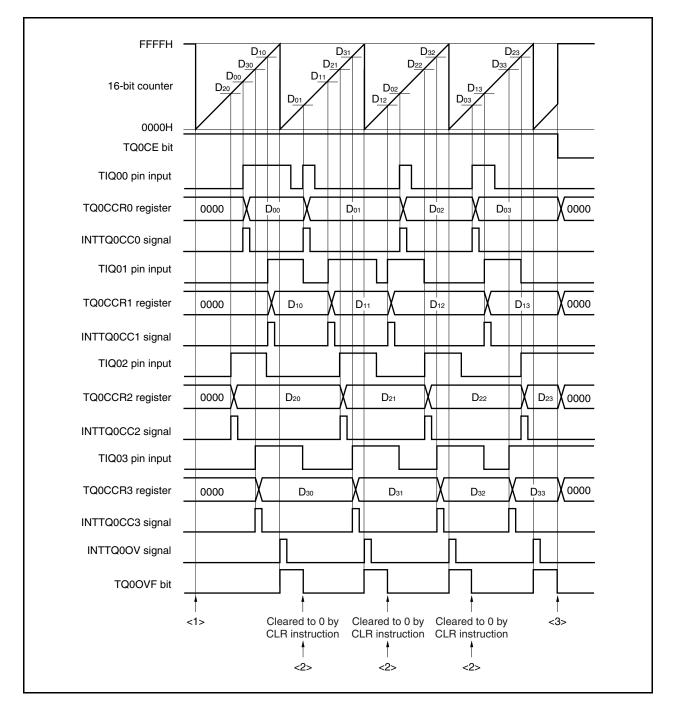
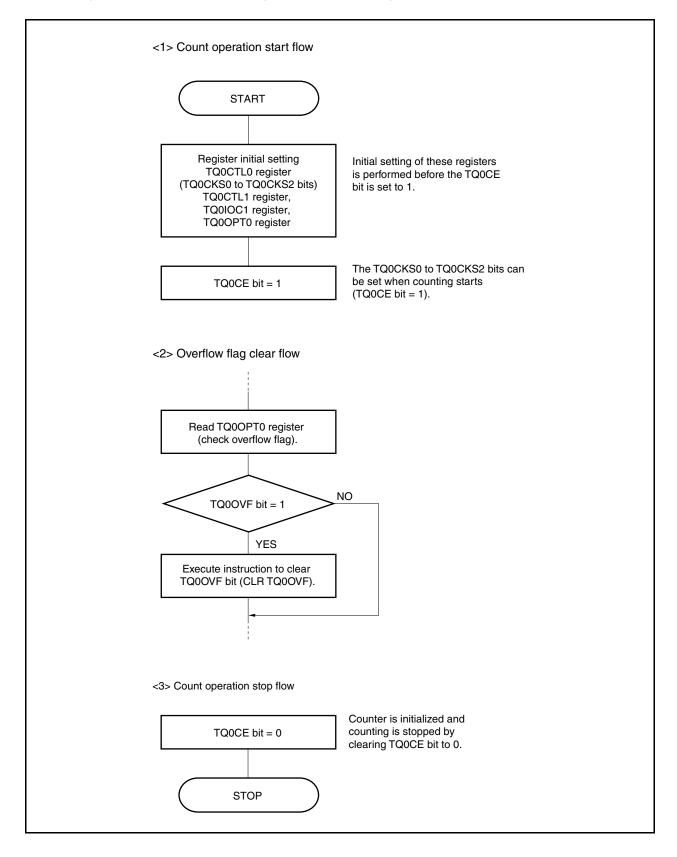
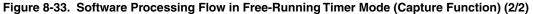


Figure 8-31. Register Setting in Free-Running Timer Mode (3/3)

- (1) Operation flow in free-running timer mode
 - (a) When using capture/compare register as compare register

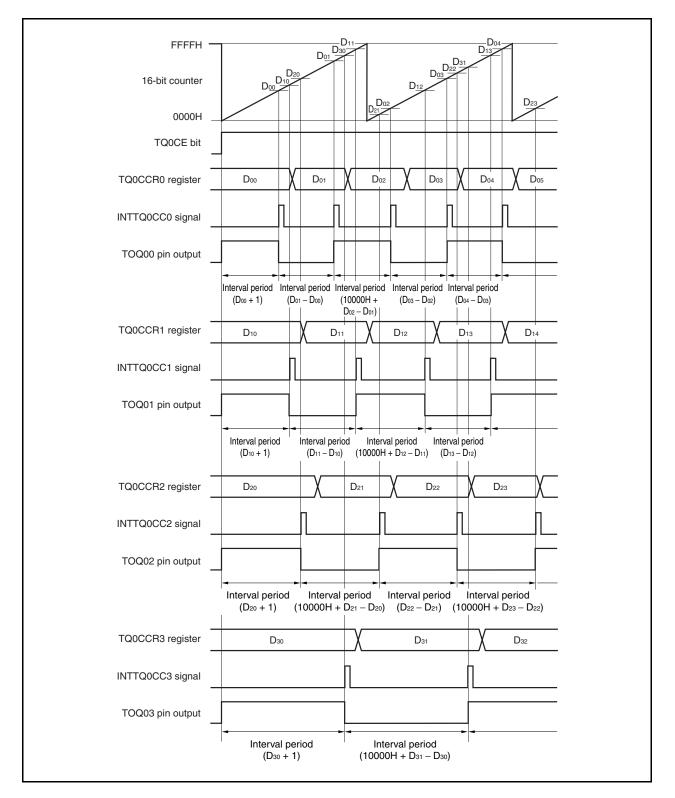






(b) When using capture/compare register as capture register

Figure 8-33. Software Processing Flow in Free-Running Timer Mode (Capture Function) (1/2)



(2) Operation timing in free-running timer mode

(a) Interval operation with compare register

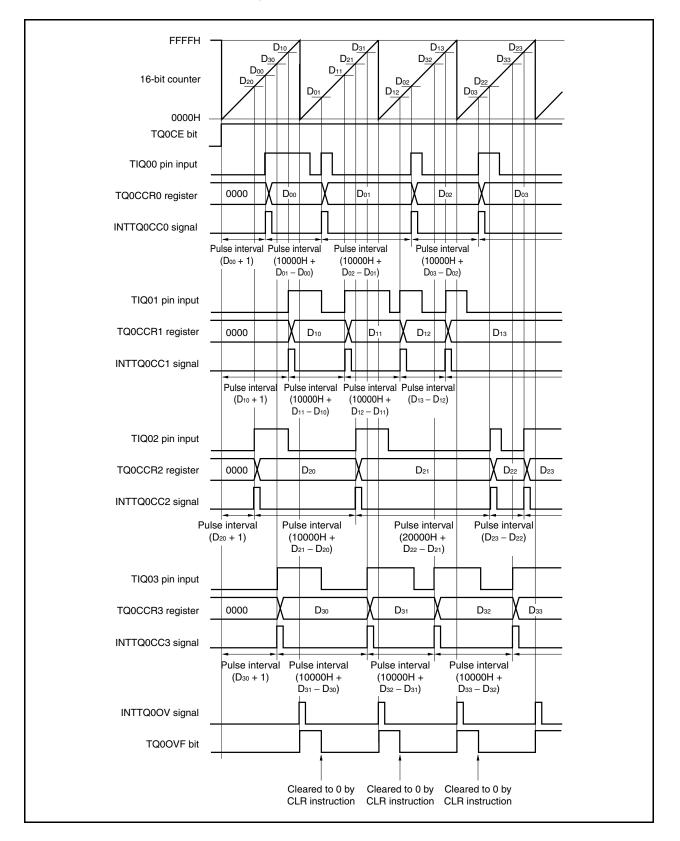
When 16-bit timer/event counter Q is used as an interval timer with the TQ0CCRm register used as a compare register, software processing is necessary for setting a comparison value to generate the next interrupt request signal each time the INTTQ0CCm signal has been detected.

When performing an interval operation in the free-running timer mode, two intervals can be set with one channel.

To perform the interval operation, the value of the corresponding TQ0CCRm register must be re-set in the interrupt servicing that is executed when the INTTQ0CCm signal is detected.

The set value for re-setting the TQ0CCRm register can be calculated by the following expression, where " D_m " is the interval period.

Compare register default value: Dm - 1

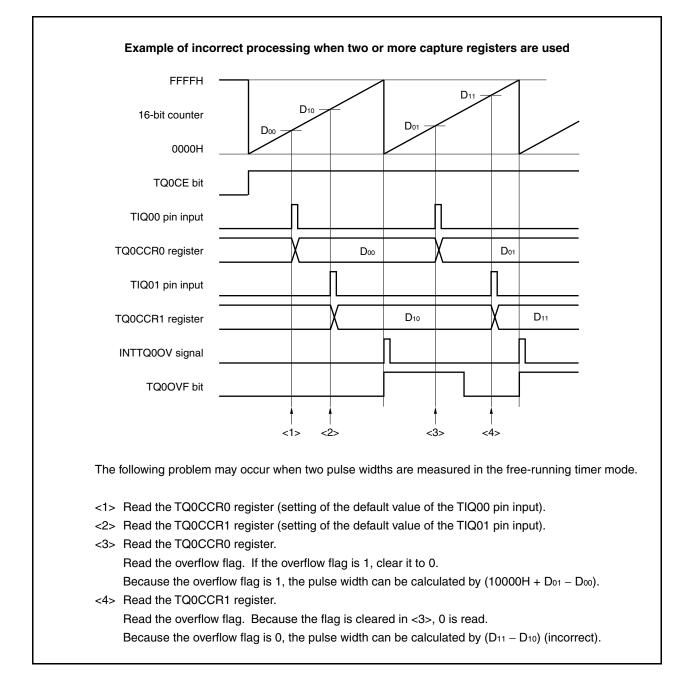

Value set to compare register second and subsequent time: Previous set value + Dm

(If the calculation result is greater than FFFFH, subtract 10000H from the result and set this value to the register.)

Remark m = 0 to 3

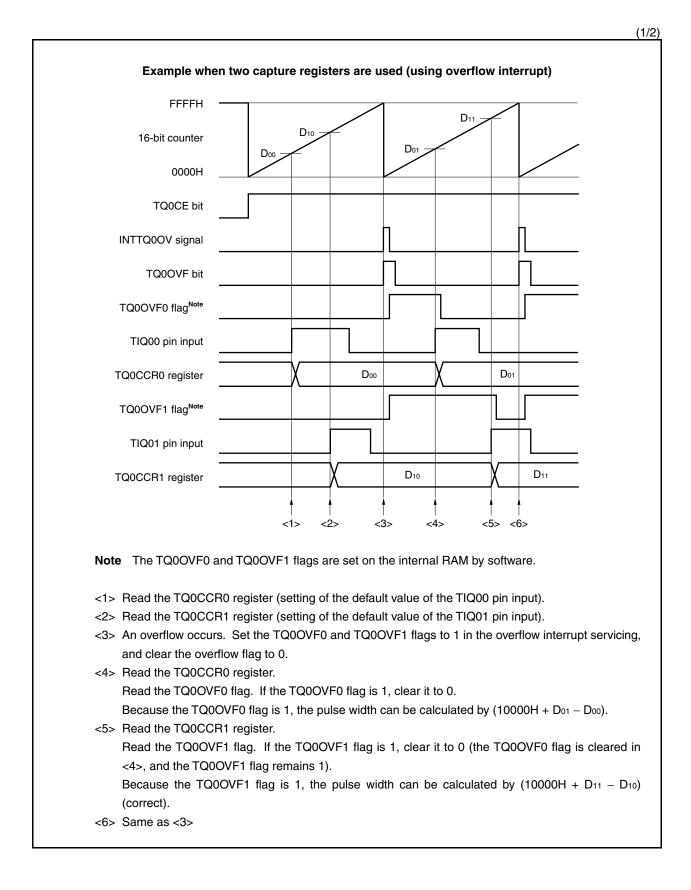
(b) Pulse width measurement with capture register

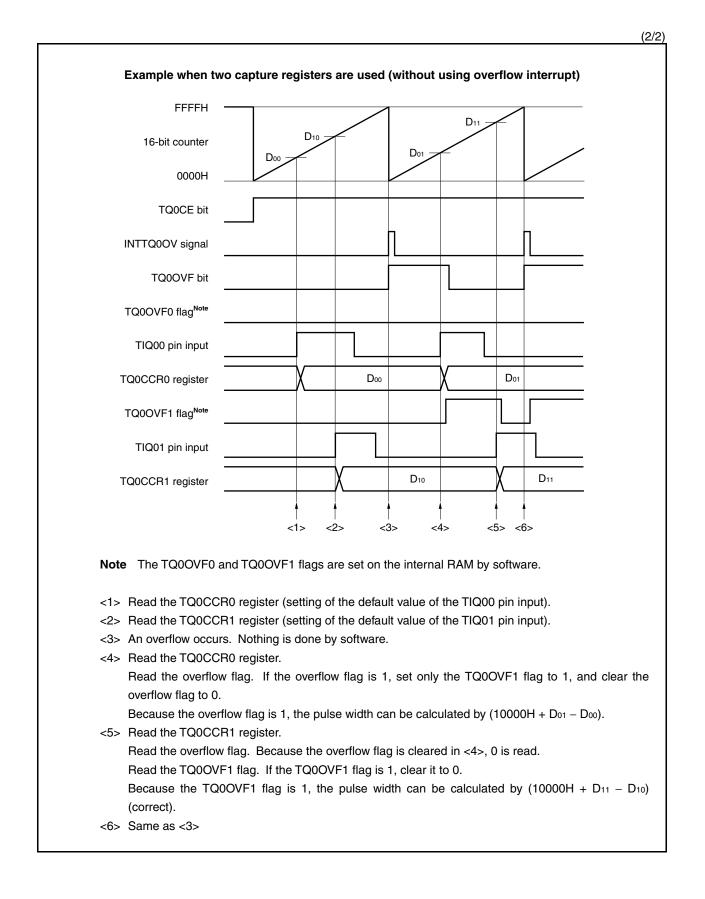
When pulse width measurement is performed with the TQ0CCRm register used as a capture register, software processing is necessary for reading the capture register each time the INTTQ0CCm signal has been detected and for calculating an interval.


When executing pulse width measurement in the free-running timer mode, four pulse widths can be measured with one channel.

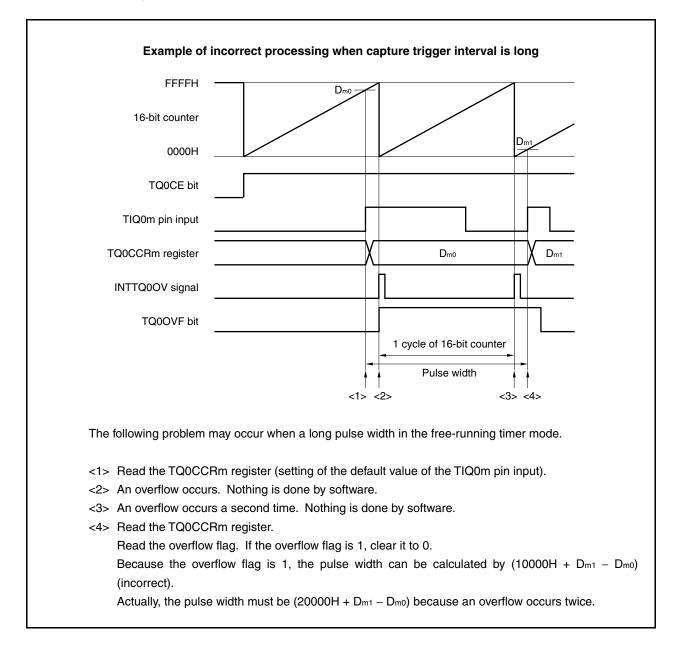
To measure a pulse width, the pulse width can be calculated by reading the value of the TQ0CCRm register in synchronization with the INTTQ0CCm signal, and calculating the difference between the read value and the previously read value.

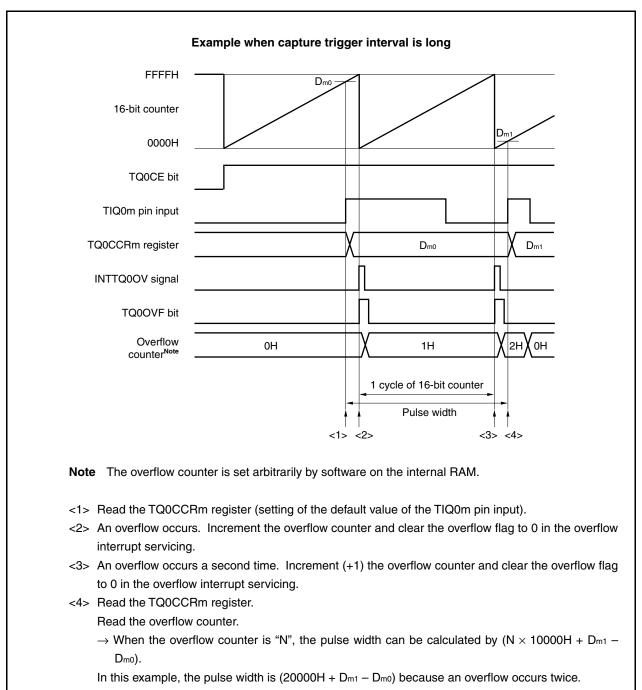
Remark m = 0 to 3


(c) Processing of overflow when two or more capture registers are used


Care must be exercised in processing the overflow flag when two capture registers are used. First, an example of incorrect processing is shown below.

When two capture registers are used, and if the overflow flag is cleared to 0 by one capture register, the other capture register may not obtain the correct pulse width.


Use software when using two capture registers. An example of how to use software is shown below.


(d) Processing of overflow if capture trigger interval is long

If the pulse width is greater than one cycle of the 16-bit counter, care must be exercised because an overflow may occur more than once from the first capture trigger to the next. First, an example of incorrect processing is shown below.

If an overflow occurs twice or more when the capture trigger interval is long, the correct pulse width may not be obtained.

If the capture trigger interval is long, slow the count clock to lengthen one cycle of the 16-bit counter, or use software. An example of how to use software is shown next.

Clear the overflow counter (0H).

(e) Clearing overflow flag

The overflow flag can be cleared to 0 by clearing the TQ0OVF bit to 0 with the CLR instruction and by writing 8-bit data (bit 0 is 0) to the TQ0OPT0 register. To accurately detect an overflow, read the TQ0OVF bit when it is 1, and then clear the overflow flag by using a bit manipulation instruction.

(i) Operation to write 0 (without conflict with setting)	(iii) Operation to clear to 0 (without conflict with setting)
Overflow set signal 0 write signal Overflow flag (TQ0OVF bit)	Overflow set signal L 0 write signal Register access signal Read Write Overflow flag (TQ0OVF bit)
(ii) Operation to write 0 (conflict with setting)	(iv) Operation to clear to 0 (conflict with setting)
Overflow set signal	Overflow set signal
0 write signal	0 write signal
Overflow flag (TQ00VF bit)	Register Read Write
	Overflow flag (TQ0OVF bit)

To clear the overflow flag to 0, read the overflow flag to check if it is set to 1, and clear it with the CLR instruction. If 0 is written to the overflow flag without checking if the flag is 1, the set information of overflow may be erased by writing 0 ((ii) in the above chart). Therefore, software may judge that no overflow has occurred even when an overflow actually has occurred.

If execution of the CLR instruction conflicts with occurrence of an overflow when the overflow flag is cleared to 0 with the CLR instruction, the overflow flag remains set even after execution of the clear instruction.

8.5.7 Pulse width measurement mode (TQ0MD2 to TQ0MD0 bits = 110)

In the pulse width measurement mode, 16-bit timer/event counter Q starts counting when the TQ0CTL0.TQ0CE bit is set to 1. Each time the valid edge input to the TIQ0m pin has been detected, the count value of the 16-bit counter is stored in the TQ0CCRm register, and the 16-bit counter is cleared to 0000H.

The interval of the valid edge can be measured by reading the TQ0CCRm register after a capture interrupt request signal (INTTQ0CCm) occurs.

Select either of the TIQ00 to TIQ03 pins as the capture trigger input pin. Specify "No edge detected" by using the TQ0IOC1 register for the unused pins.

When an external clock is used as the count clock, measure the pulse width of the TIQ0k pin because the external clock is fixed to the TIQ00 pin. At this time, clear the TQ0IOC1.TQ0IS1 and TQ0IOC1.TQ0IS0 bits to 00 (capture trigger input (TIQ00 pin): No edge detected).

Remark m = 0 to 3 k = 1 to 3

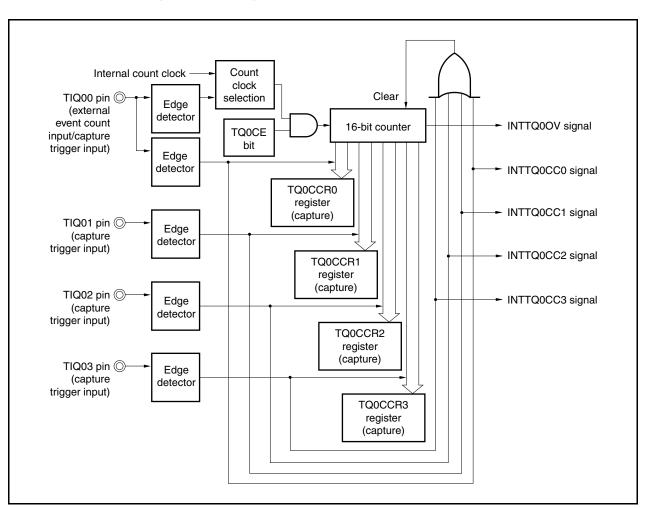


Figure 8-34. Configuration in Pulse Width Measurement Mode

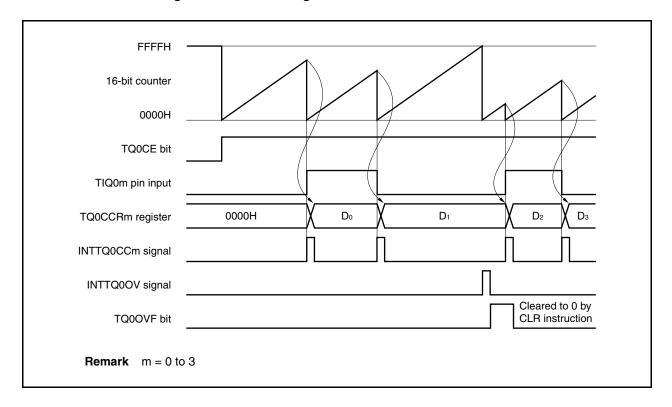
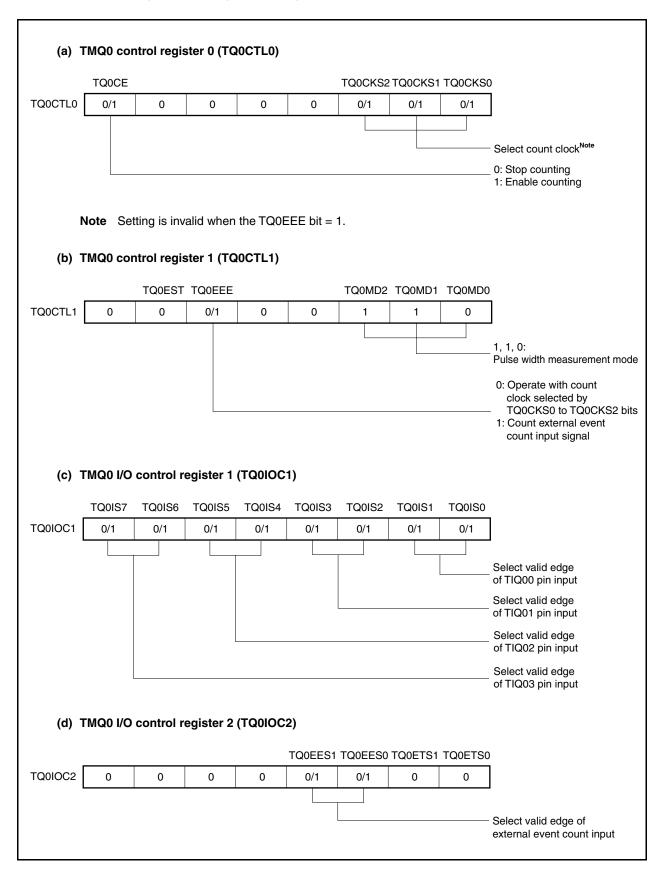


Figure 8-35. Basic Timing in Pulse Width Measurement Mode

When the TQ0CE bit is set to 1, the 16-bit counter starts counting. When the valid edge input to the TIQ0m pin is later detected, the count value of the 16-bit counter is stored in the TQ0CCRm register, the 16-bit counter is cleared to 0000H, and a capture interrupt request signal (INTTQ0CCm) is generated.

The pulse width is calculated as follows.


Pulse width = Captured value × Count clock cycle

If the valid edge is not input to the TIQ0m pin even when the 16-bit counter counted up to FFFFH, an overflow interrupt request signal (INTTQ0OV) is generated at the next count clock, and the counter is cleared to 0000H and continues counting. At this time, the overflow flag (TQ0OPT0.TQ0OVF bit) is also set to 1. Clear the overflow flag to 0 by executing the CLR instruction via software.

If the overflow flag is set to 1, the pulse width can be calculated as follows.

Pulse width = (10000H × TQ0OVF bit set (1) count + Captured value) × Count clock cycle

Remark m = 0 to 3

Figure 8-36. Register Setting in Pulse Width Measurement Mode (1/2)

(e) TMQ0 option register 0 (TQ0OPT0)									
	TQ0CCS3 TQ0CCS2 TQ0CCS1 TQ0CCS0						TQ0OVF		
TQ0OPT0	0	0	0	0	0	0	0	0/1	
									Overflow flag
	(f) TMQ0 counter read buffer register (TQ0CNT) The value of the 16-bit counter can be read by reading the TQ0CNT register.								
(g) 1	ГMQ0 сар	ture/com	oare regi	sters 0 to	3 (TQ0C	CR0 to T	QOCCR3))	
	These registers store the count value of the 16-bit counter when the valid edge input to the TIQ0m pin is detected.								
Remarks 1. TMQ0 I/O control register 0 (TQ0IOC0) is not used in the pulse width measurement mode.2. m = 0 to 3									

Figure 8-36. Register Setting in Pulse Width Measurement Mode (2/2)

(1) Operation flow in pulse width measurement mode

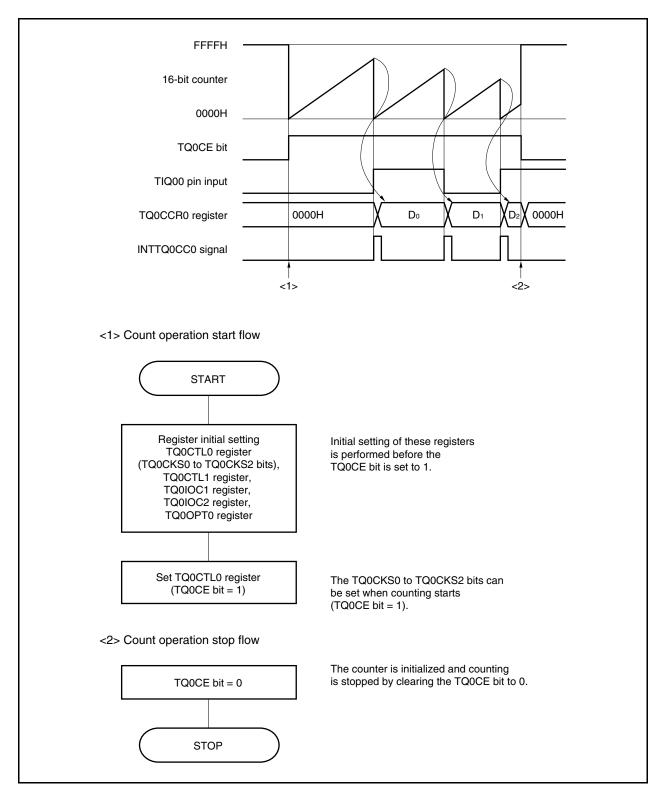


Figure 8-37. Software Processing Flow in Pulse Width Measurement Mode

(2) Operation timing in pulse width measurement mode

(a) Clearing overflow flag

Г

The overflow flag can be cleared to 0 by clearing the TQ0OVF bit to 0 with the CLR instruction and by writing 8-bit data (bit 0 is 0) to the TQ0OPT0 register. To accurately detect an overflow, read the TQ0OVF bit when it is 1, and then clear the overflow flag by using a bit manipulation instruction.

(i) Operation to write 0 (without conflict with setting)	(iii) Operation to clear to 0 (without conflict with setting)
Overflow set signal 0 write signal Overflow flag (TQ0OVF bit)	Overflow set signal 0 write signal Register access signal Read Write Overflow flag (TQ0OVF bit)
(ii) Operation to write 0 (conflict with setting)	(iv) Operation to clear to 0 (conflict with setting)
Overflow set signal 0 write signal Overflow flag (TQ0OVF bit)	Overflow set signal 0 write signal Register access signal Overflow flag (TQOOVF bit)

To clear the overflow flag to 0, read the overflow flag to check if it is set to 1, and clear it with the CLR instruction. If 0 is written to the overflow flag without checking if the flag is 1, the set information of overflow may be erased by writing 0 ((ii) in the above chart). Therefore, software may judge that no overflow has occurred even when an overflow actually has occurred.

If execution of the CLR instruction conflicts with occurrence of an overflow when the overflow flag is cleared to 0 with the CLR instruction, the overflow flag remains set even after execution of the clear instruction.

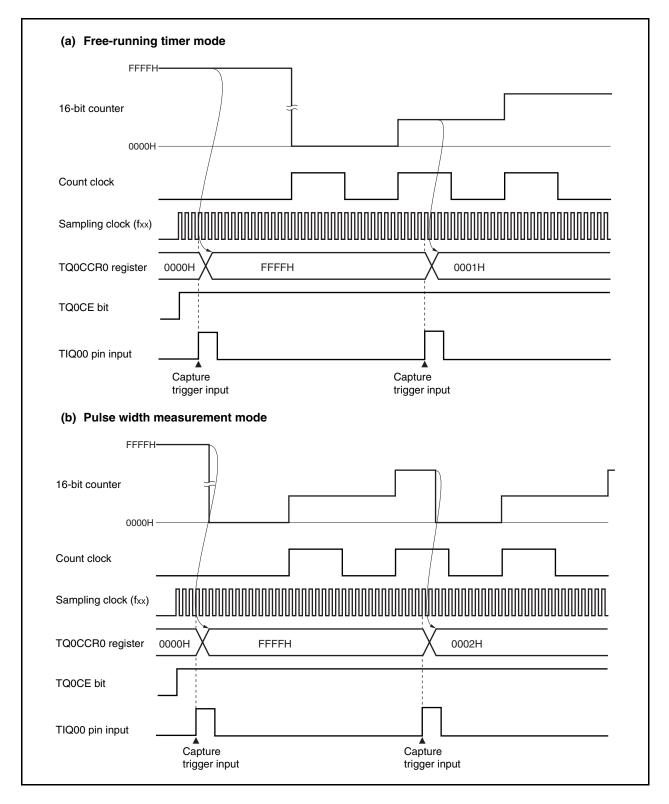
8.5.8 Timer output operations

The following table shows the operations and output levels of the TOQ00 and TOQ01 pins.

Operation Mode	TOQn0 Pin	TOQn1 Pin	TOQn2 Pin	TOQn3 Pin		
Interval timer mode	Square wave output					
External event count mode	Square wave output	-				
External trigger pulse output mode	Square wave output	External trigger pulse output	External trigger pulse output	External trigger pulse output		
One-shot pulse output mode		One-shot pulse output	One-shot pulse output	One-shot pulse output		
PWM output mode		PWM output	PWM output	PWM output		
Free-running timer mode	Square wave output (only when compare function is used)					
Pulse width measurement mode		-	_			

Table 8-6. Timer Output Control in Each Mode

Table 8-7. Truth Table of TOQ00 to TOQ03 Pins Under Control of Timer Output Control Bits


TQ0IOC0.TQ0OLm Bit	TQ0IOC0.TQ0OEm Bit	TQ0CTL0.TQ0CE Bit	Level of TOQ0m Pin
0	0	×	Low-level output
	1	0	Low-level output
		1	Low level immediately before counting, high level after counting is started
1	0	×	High-level output
	1	0	High-level output
		1	High level immediately before counting, low level after counting is started

Remark m = 0 to 3

8.6 Cautions

(1) Capture operation

When the capture operation is used and a slow clock is selected as the count clock, FFFFH, not 0000H, may be captured in the TQ0CCR0, TQ0CCR1, TQ0CCR2, and TQ0CCR3 registers if the capture trigger is input immediately after the TQ0CE bit is set to 1.

CHAPTER 9 16-BIT INTERVAL TIMER M (TMM)

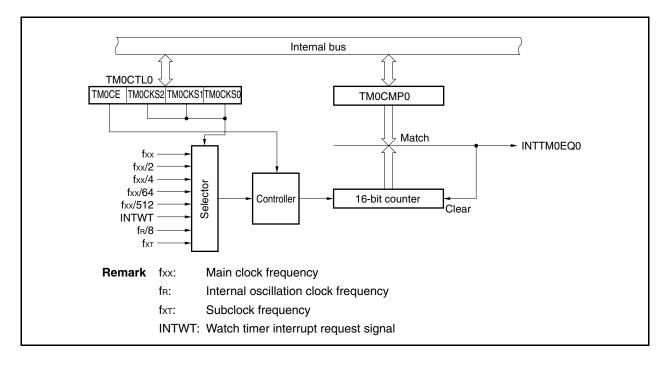
9.1 Overview

- Interval function
- 8 clocks selectable
- 16-bit counter × 1 (The 16-bit counter cannot be read during timer count operation.)
- Compare register × 1

(The compare register cannot be written during timer counter operation.)

• Compare match interrupt $\times 1$

Timer M supports only the clear & start mode. The free-running timer mode is not supported.


9.2 Configuration

TMM0 includes the following hardware.

Table 9-1. Configuration of TMM0

Item	Configuration				
Timer register 16-bit counter					
Register TMM0 compare register 0 (TM0CMP0)					
Control register TMM0 control register 0 (TM0CTL0)					

Figure 9-1. Block Diagram of TMM0

(1) 16-bit counter

This is a 16-bit counter that counts the internal clock. The 16-bit counter cannot be read or written.

(2) TMM0 compare register 0 (TM0CMP0)

The TM0CMP0 register is a 16-bit compare register.

This register can be read or written in 16-bit units.

Reset sets this register to 0000H.

The same value can always be written to the $\ensuremath{\mathsf{TM0CMP0}}$ register by software.

TM0CMP0 register rewrite is prohibited when the TM0CTL0.TM0CE bit = 1.

After re	set: 0	000H	F	R/W	Ad	dress	: FFF	FF69	4H							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM0CMP0																

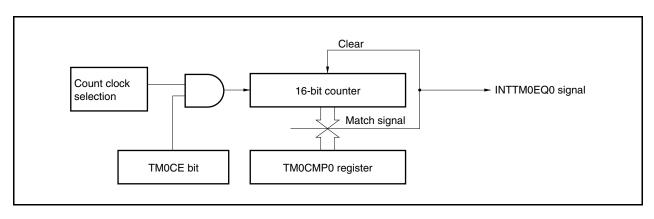
9.3 Register

(1) TMM0 control register (TM0CTL0)

The TM0CTL0 register is an 8-bit register that controls the TMM0 operation. This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

The same value can always be written to the TM0CTL0 register by software.


TMOCTLO TMOCE 0 0 0 TMOCKS2 TMOCKS1 TMOCE Internal clock operation enable/disable specification 0 TMMO operation disabled (16-bit counter reset asynchronously) Operation clock application stopped. 1 TMM0 operation enabled. Operation clock application started. operation started. The internal clock control and internal circuit reset for TMM0 are performed asynchronously with the TMOCE bit. When the TMOCE bit is cleared to 0, internal clock of TMM0 is disabled (fixed to low level) and 16-bit counter is asynchronously. TMOCKS2 TMOCKS1 TMOCKS0 Count clock selection 0 0 1 fxx/2 0 0 1 0 fxx/4 0 0 1 1 fxx/64 0	TMM0
0 TMM0 operation disabled (16-bit counter reset asynchronously) Operation clock application stopped. 1 TMM0 operation enabled. Operation clock application started. operation started. The internal clock control and internal circuit reset for TMM0 are performed asynchronously with the TM0CE bit. When the TM0CE bit is cleared to 0, internal clock of TMM0 is disabled (fixed to low level) and 16-bit counter is asynchronously. TM0CKS2 TM0CKS1 0 0 1 fixx/2 0 1 0 1 0 1 0 1	TMM0 d the
0 TMM0 operation disabled (16-bit counter reset asynchronously) Operation clock application stopped. 1 TMM0 operation enabled. Operation clock application started. operation started. The internal clock control and internal circuit reset for TMM0 are performed asynchronously with the TM0CE bit. When the TM0CE bit is cleared to 0, internal clock of TMM0 is disabled (fixed to low level) and 16-bit counter is asynchronously. TM0CKS2 TM0CKS1 0 0 1 fxx/2 0 1 0 1 0 1 0 1	TMM0 d the
Operation clock application stopped. 1 TMM0 operation enabled. Operation clock application started. operation started. The internal clock control and internal circuit reset for TMM0 are performer asynchronously with the TM0CE bit. When the TM0CE bit is cleared to 0, internal clock of TMM0 is disabled (fixed to low level) and 16-bit counter is asynchronously. TMOCKS2 TM0CKS1 TM0CKS0 Count clock selection 0 0 fxx 0 0 fxx/2 0 1 fxx/4	TMM0 d the
operation started. The internal clock control and internal circuit reset for TMM0 are performed asynchronously with the TM0CE bit. When the TM0CE bit is cleared to 0, internal clock of TMM0 is disabled (fixed to low level) and 16-bit counter is asynchronously. TM0CKS2 TM0CKS1 TM0CKS0 Count clock selection 0 0 1 fxx/2 0 1 0 fxx/4	d the
asynchronously with the TM0CE bit. When the TM0CE bit is cleared to 0, internal clock of TMM0 is disabled (fixed to low level) and 16-bit counter is asynchronously. TM0CKS2 TM0CKS1 TM0CKS0 Count clock selection 0 0 1 fxx 0 1 fxx/2 0 1 fxx/4	the
0 0 0 fxx 0 0 1 fxx/2 0 1 0 fxx/4	
0 0 1 fxx/2 0 1 0 fxx/4	
0 1 0 fxx/4	
0 1 1 fxx/64	
1 0 0 fxx/512	
1 0 1 INTWT	
1 1 0 f _R /8	
1 1 1 fxт	
Cautions 1. Set the TM0CKS2 to TM0CKS0 bits when TM0CE bit When changing the value of TM0CE from 0 to 1, it the value of the TM0CKS2 to TM0CKS0 bits simulta	is not po
 Be sure to clear bits 3 to 6 to "0". Remark fxx: Main clock frequency 	
fre: Internal oscillation clock frequency	

9.4 Operation

Caution Do not set the TM0CMP0 register to FFFFH.

9.4.1 Interval timer mode

In the interval timer mode, an interrupt request signal (INTTM0EQ0) is generated at the specified interval if the TM0CTL0.TM0CE bit is set to 1.

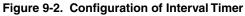
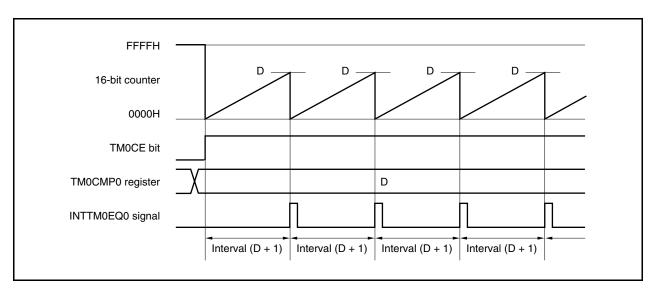
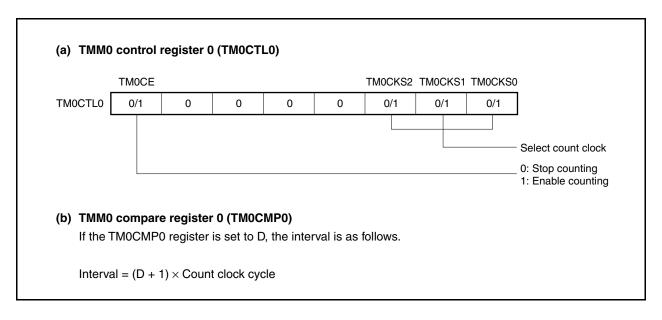



Figure 9-3. Basic Timing of Operation in Interval Timer Mode



When the TM0CE bit is set to 1, the value of the 16-bit counter is cleared from FFFFH to 0000H in synchronization with the count clock, and the counter starts counting.

When the count value of the 16-bit counter matches the value of the TM0CMP0 register, the 16-bit counter is cleared to 0000H and a compare match interrupt request signal (INTTM0EQ0) is generated.

The interval can be calculated by the following expression.

Interval = (Set value of TM0CMP0 register + 1) × Count clock cycle

Figure 9-4. Register Setting for Interval Timer Mode Operation

(1) Interval timer mode operation flow

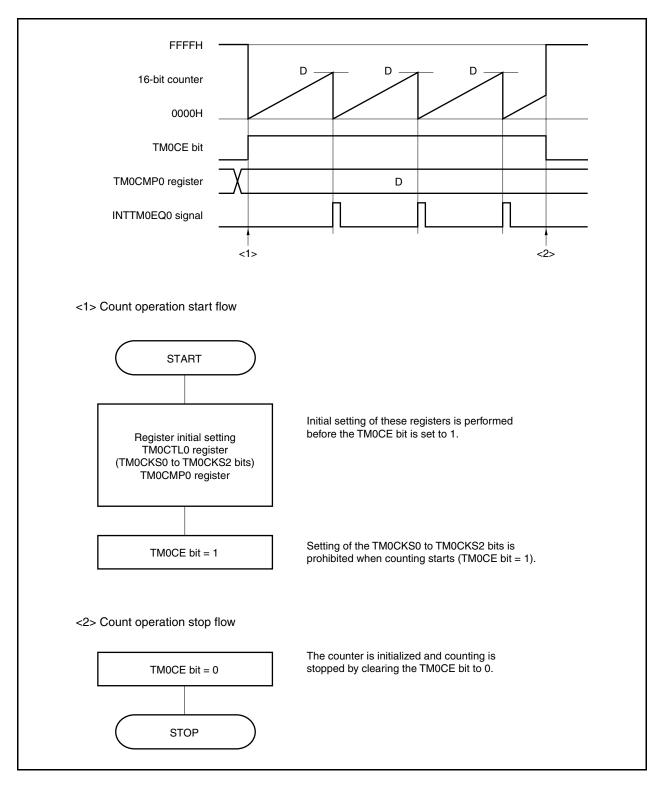
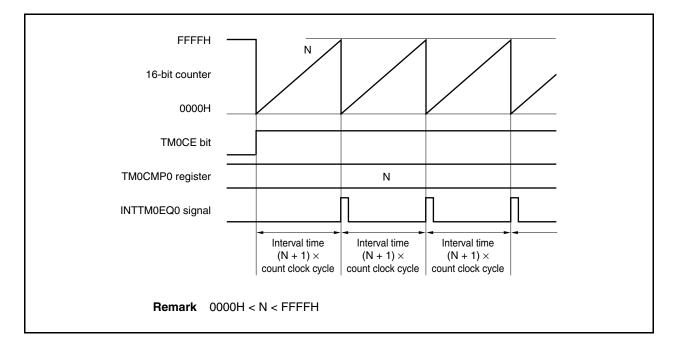


Figure 9-5. Software Processing Flow in Interval Timer Mode

(2) Interval timer mode operation timing

Caution Do not set the TM0CMP0 register to FFFFH.


(a) Operation if TM0CMP0 register is set to 0000H

If the TM0CMP0 register is set to 0000H, the INTTM0EQ0 signal is generated at each count clock. The value of the 16-bit counter is always 0000H.

Count clock		
16-bit counter	FFFH X 0000H X 0000H X 0000H	оооон
TM0CE bit		
TM0CMP0 register	0000H	
INTTM0EQ0 signal		
	Interval time Count clock cyc	Interval time Count clock cycle

(b) Operation if TM0CMP0 register is set to N

If the TM0CMP0 register is set to N, the 16-bit counter counts up to N. The counter is cleared to 0000H in synchronization with the next count-up timing and the INTTM0EQ0 signal is generated.

9.4.2 Cautions

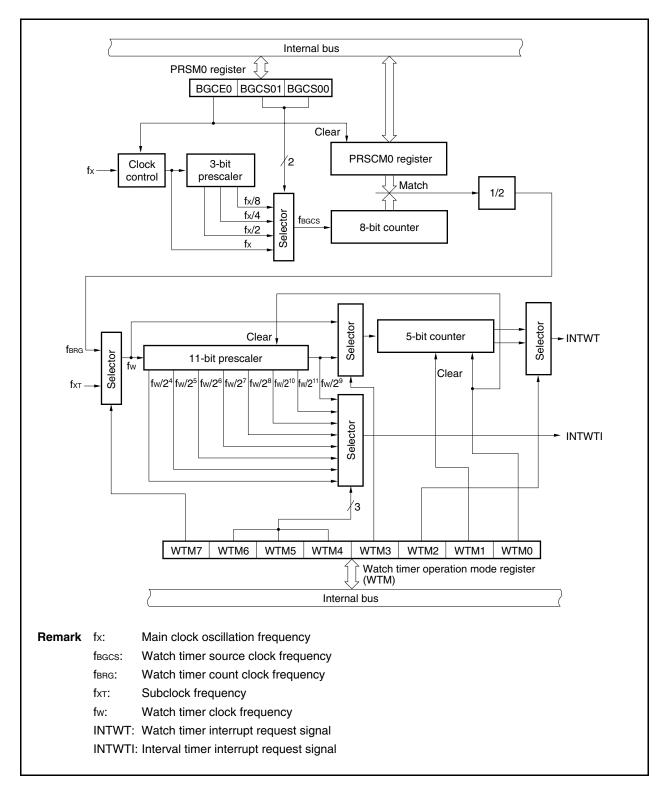
(1) It takes the 16-bit counter up to the following time to start counting after the TM0CTL0.TM0CE bit is set to 1, depending on the count clock selected.

Selected Count Clock	Maximum Time Before Counting Start
fxx	2/fxx
fxx/2	6/fxx
fxx/4	24/fxx
fxx/64	128/fxx
fxx/512	1024/fxx
INTWT	Second rising edge of INTWT signal
fR/8	16/f _R
fхт	2/fxt

(2) Rewriting the TM0CMP0 and TM0CTL0 registers is prohibited while TMM0 is operating. If these registers are rewritten while the TM0CE bit is 1, the operation cannot be guaranteed. If they are rewritten by mistake, clear the TM0CTL0.TM0CE bit to 0, and re-set the registers.

CHAPTER 10 WATCH TIMER FUNCTIONS

10.1 Functions


The watch timer has the following functions.

- Watch timer: An interrupt request signal (INTWT) is generated at intervals of 0.5 or 0.25 seconds by using the main clock or subclock.
- Interval timer: An interrupt request signal (INTWTI) is generated at set intervals.

The watch timer and interval timer functions can be used at the same time.

10.2 Configuration

The block diagram of the watch timer is shown below.

(1) Clock control

This block controls supplying and stopping the operating clock (fx) when the watch timer operates on the main clock.

(2) 3-bit prescaler

This prescaler divides fx to generate fx/2, fx/4, or fx/8.

(3) 8-bit counter

This 8-bit counter counts the source clock (fBGCS).

(4) 11-bit prescaler

This prescaler divides fw to generate a clock of fw/2⁴ to fw/2¹¹.

(5) 5-bit counter

This counter counts fw or fw/2⁹, and generates a watch timer interrupt request signal at intervals of 2^4 /fw, 2^5 /fw, 2^{12} /fw, or 2^{14} /fw.

(6) Selector

The watch timer has the following five selectors.

- Selector that selects one of fx, fx/2, fx/4, or fx/8 as the source clock of the watch timer
- Selector that selects the main clock (fx) or subclock (fxr) as the clock of the watch timer
- Selector that selects fw or fw/2⁹ as the count clock frequency of the 5-bit counter
- Selector that selects 2⁴/fw, 2¹³/fw, 2⁵/fw, or 2¹⁴/fw as the INTWT signal generation time interval
- Selector that selects 2⁴/fw to 2¹¹/fw as the interval timer interrupt request signal (INTWTI) generation time interval

(7) PRSCM register

This is an 8-bit compare register that sets the interval time.

(8) PRSM register

This register controls clock supply to the watch timer.

(9) WTM register

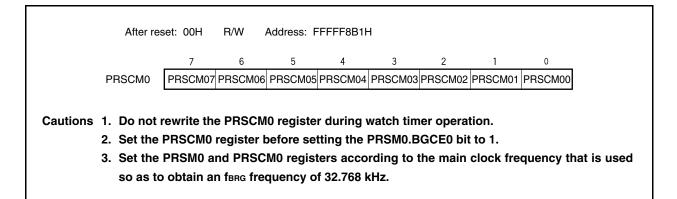
This is an 8-bit register that controls the operation of the watch timer/interval timer, and sets the interrupt request signal generation interval.

10.3 Control Registers

The following registers are provided for the watch timer.

- Prescaler mode register 0 (PRSM0)
- Prescaler compare register 0 (PRSCM0)
- Watch timer operation mode register (WTM)

(1) Prescaler mode register 0 (PRSM0)


The PRSM0 register controls the generation of the watch timer count clock. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

	7	6	5	<4>	3	2	1	0
PRSM0	0	0	0	BGCE0	0	0	BGCS01	BGCS00
	BGCE0			Main cloc	k operation	enable		
	0	Disabled						
	1	Enabled						
	BGCS01	BGCS00	Sel	lection of wate	ch timer so	urce clock	(fbgcs)	
					5 MHz		4 M	Hz
	0	0	fx		200 ns		250	ns
	0	1	fx/2		400 ns		500	ns
	1	0	fx/4		800 ns		1 <i>µ</i> s	;
	1	1	fx/8		1.6 <i>µ</i> s		2 <i>µ</i> s	;

3. Set the PRSM0 and PRSCM0 registers according to the main clock frequency that is used so as to obtain an fBRG frequency of 32.768 kHz.

(2) Prescaler compare register 0 (PRSCM0)

The PRSCM0 register is an 8-bit compare register. This register can be read or written in 8-bit units. Reset sets this register to 00H.

The calculation for fBRG is shown below.

 $f_{BRG} = f_{BGCS}/2N$

Remark fBGCS: Watch timer source clock set by the PRSM0 register

N: Set value of the PRSCM0 register = 1 to 256 However, N = 256 when the PRSCM0 register is set to 00H.

(3) Watch timer operation mode register (WTM)

The WTM register enables or disables the count clock and operation of the watch timer, sets the interval time of the prescaler, controls the operation of the 5-bit counter, and sets the set time of the watch flag. Set the PRSM0 register before setting the WTM register.

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

After re	set: 00H	R/W	Address:	FFFFF680	ЭН			
	7	6	5	4	3	2	<1>	<0>
WTM	WTM7	WTM6	WTM5	WTM4	WTM3	WTM2	WTM1	WTM0
	WTM7	WTM6	WTM5	WTM4	Selection	of interval t	ime of pres	scaler
	0	0	0	0	24/fw (488	μ s: fw = fx	r)	
	0	0	0	1	2 ⁵ /fw (977	μ s: fw = fx	г)	
	0	0	1	0	2 ⁶ /fw (1.95	ms: fw = f	хт)	
	0	0	1	1	2 ⁷ /fw (3.91	ms: fw = f	хт)	
	0	1	0	0	2 ⁸ /fw (7.81	ms: fw = f	хт)	
	0	1	0	1	2 ⁹ /fw (15.6	ms: fw = f	хт)	
	0	1	1	0	2 ¹⁰ /fw (31.3	3 ms: fw =	fxт)	
	0	1	1	1	2 ¹¹ /fw (62.	5 ms: fw =	fxт)	
	1	0	0	0	24/fw (488	μ s: fw = fBF	я G)	
	1	0	0	1	2⁵/fw (977	μ s: fw = fBF	rg)	
	1	0	1	0	2 ⁶ /fw (1.95	ms: fw = f	BRG)	
	1	0	1	1	2 ⁷ /fw (3.90	ms: fw = f	BRG)	
	1	1	0	0	2 ⁸ /fw (7.81	ms: fw = f	BRG)	
	1	1	0	1	2 ⁹ /fw (15.6	ms: fw = f	BRG)	
	1	1	1	0	2 ¹⁰ /fw (31.2	2 ms: fw =	fвяg)	
	1	1	1	1	2 ¹¹ /fw (62.	5 ms: fw =	fвяg)	

(2/2)

WTM7	WTM3	WTM2	Selection of set time of watch flag
0	0	0	2 ¹⁴ /fw (0.5 s: fw = fxt)
0	0	1	2 ¹³ /fw (0.25 s: fw = fxt)
0	1	0	2 ⁵ /fw (977 μs: fw = fxτ)
0	1	1	2 ⁴ /fw (488 μs: fw = fxτ)
1	0	0	2 ¹⁴ /fw (0.5 s: fw = f _{BRG})
1	0	1	2 ¹³ /fw (0.25 s: fw = f _{BRG})
1	1	0	2 ⁵ /fw (977 μs: fw = f _{BRG})
1	1	1	2 ⁴ /fw (488 μs: fw = fввg)

WTM1	Control of 5-bit counter operation						
0	Clears after operation stops						
1	Starts						

WTM0	Watch timer operation enable
0	Stops operation (clears both prescaler and 5-bit counter)
1	Enables operation

Caution Rewrite the WTM2 to WTM7 bits while both the WTM0 and WTM1 bits are 0.

Remarks 1. fw: Watch timer clock frequency

2. Values in parentheses apply to operation with fw = 32.768 kHz

10.4 Operation

10.4.1 Operation as watch timer

The watch timer generates an interrupt request signal (INTWT) at fixed time intervals. The watch timer operates using time intervals of 0.25 or 0.5 seconds with the subclock (32.768 kHz) or main clock.

The count operation starts when the WTM.WTM1 and WTM.WTM0 bits are set to 11. When the WTM0 bit is cleared to 0, the 11-bit prescaler and 5-bit counter are cleared and the count operation stops.

The time of the watch timer can be adjusted by clearing the WTM1 bit to 0 and then the 5-bit counter when operating at the same time as the interval timer. At this time, an error of up to 15.6 ms may occur for the watch timer, but the interval timer is not affected.

If the main clock is used as the count clock of the watch timer, set the count clock using the PRSM0.BGCS01 and BGCS00 bits, the 8-bit comparison value using the PRSCM0 register, and the count clock frequency (fBRG) of the watch timer to 32.768 kHz.

When the PRSM0.BGCE0 bit is set (1), fBRG is supplied to the watch timer.

fBRG can be calculated by the following expression.

 $f_{BRG} = f_X/(2^{m+1} \times N)$

To set fBRG to 32.768 kHz, perform the following calculation and set the BGCS01 and BGCS00 bits and the PRSCM0 register.

<1> Set N = fx/65,536. Set m = 0.

- <2> When the value resulting from rounding up the first decimal place of N is even, set N before the roundup as N/2 and m as m + 1.
- <3> Repeat <2> until N is odd or m = 3.
- <4> Set the value resulting from rounding up the first decimal place of N to the PRSCM0 register and m to the BGCS01 and BGCS00 bits.

Example: When fx = 4.00 MHz

At this time, the actual fBRG frequency is as follows. $f_{BRG} = f_X/(2^{m+1} \times N) = 4,000,000/(2 \times 61)$ = 32.787 kHz

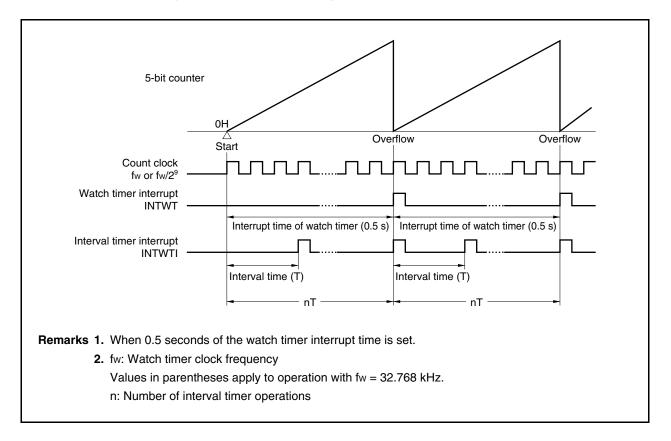
Remark m: Division value (set value of BGCS01 and BGCS00 bits) = 0 to 3

N: Set value of PRSCM0 register = 1 to 256

However, N = 256 when PRSCM0 register is set to 00H.

fx: Main clock oscillation frequency

10.4.2 Operation as interval timer


The watch timer can also be used as an interval timer that repeatedly generates an interrupt request signal (INTWTI) at intervals specified by a preset count value.

The interval time can be selected by the WTM4 to WTM7 bits of the WTM register.

WTM7	WTM6	WTM5	WTM4		Interval Time
0	0	0	0	$2^4 \times 1/fw$	488 μ s (operating at fw = fxt = 32.768 kHz)
0	0	0	1	$2^{5} \times 1/fw$	977 μ s (operating at fw = fxT = 32.768 kHz)
0	0	1	0	$2^6 \times 1/fw$	1.95 ms (operating at fw = fxT = 32.768 kHz)
0	0	1	1	$2^7 \times 1/fw$	3.91 ms (operating at fw = fxT = 32.768 kHz)
0	1	0	0	$2^8 \times 1/fw$	7.81 ms (operating at fw = fxt = 32.768 kHz)
0	1	0	1	$2^{9} \times 1/fw$	15.6 ms (operating at fw = fxt = 32.768 kHz)
0	1	1	0	$2^{10} \times 1/fw$	31.3 ms (operating at fw = fxt = 32.768 kHz)
0	1	1	1	$2^{11} \times 1/fw$	62.5 ms (operating at fw = fxt = 32.768 kHz)
1	0	0	0	$2^4 \times 1/fw$	488 μ s (operating at fw = f _{BRG} = 32.768 kHz)
1	0	0	1	$2^5 \times 1/fw$	977 μ s (operating at fw = f _{BRG} = 32.768 kHz)
1	0	1	0	$2^6 \times 1/fw$	1.95 ms (operating at fw = fBRG = 32.768 kHz)
1	0	1	1	$2^7 \times 1/fw$	3.91 ms (operating at fw = fBRG = 32.768 kHz)
1	1	0	0	$2^8 \times 1/fw$	7.81 ms (operating at fw = fBRG = 32.768 kHz)
1	1	0	1	$2^9 \times 1/\text{fw}$	15.6 ms (operating at fw = fBRG = 32.768 kHz)
1	1	1	0	$2^{10} \times 1/fw$	31.3 ms (operating at fw = fBRG = 32.768 kHz)
1	1	1	1	$2^{11} \times 1/fw$	62.5 ms (operating at fw = fBRG = 32.768 kHz)

Table 10-1. Interval Time of Interval Timer

Remark fw: Watch timer clock frequency

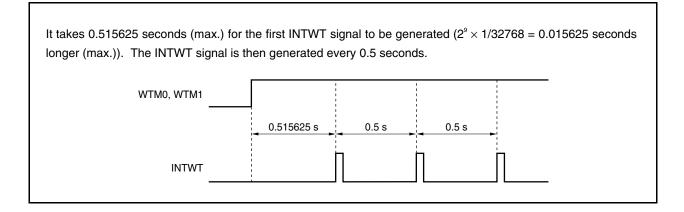
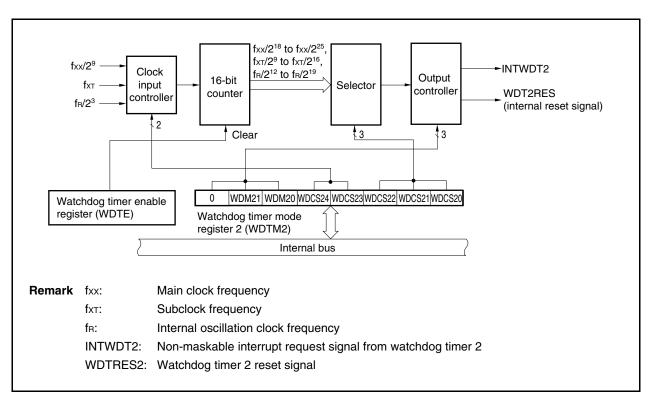


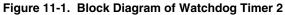
Figure 10-2. Operation Timing of Watch Timer/Interval Timer

10.4.3 Cautions

Some time is required before the first watch timer interrupt request signal (INTWT) is generated after operation is enabled (WTM.WTM1 and WTM.WTM0 bits = 1).

CHAPTER 11 FUNCTIONS OF WATCHDOG TIMER 2


11.1 Functions


Watchdog timer 2 has the following functions.

- Default-start watchdog timer^{Note 1}
 - → Reset mode: Reset operation upon overflow of watchdog timer 2 (generation of WDT2RES signal)
 - → Non-maskable interrupt request mode: NMI operation upon overflow of watchdog timer 2 (generation of INTWDT2 signal)^{Note 2}
- Input selectable from main clock, internal oscillation clock, and subclock as the source clock
 - Notes 1. Watchdog timer 2 automatically starts in the reset mode following reset release. When watchdog timer 2 is not used, either stop its operation before reset is executed via this function, or clear watchdog timer 2 once and stop it within the next interval time. Also, write to the WDTM2 register for verification purposes only once, even if the default settings (reset mode, interval time: fr/2¹⁹) do not need to be changed.
 - 2. For the non-maskable interrupt servicing due to a non-maskable interrupt request signal (INTWDT2), see 19.2.2 (2) From INTWDT2 signal.

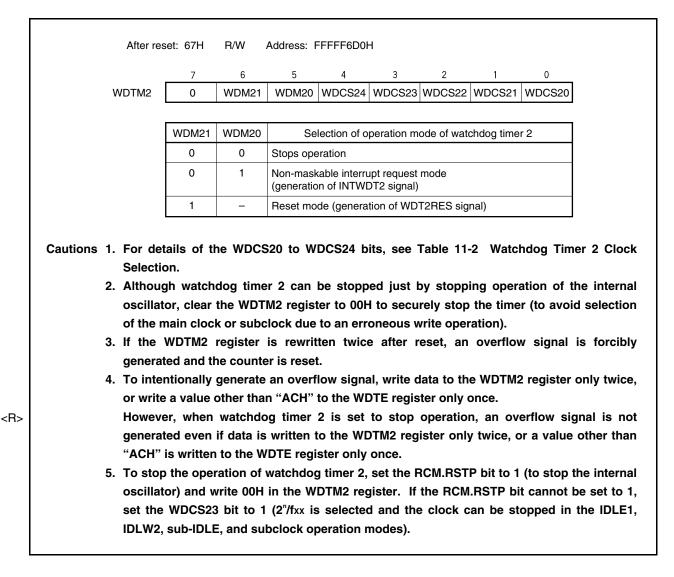
11.2 Configuration

The following shows the block diagram of watchdog timer 2.

Watchdog timer 2 includes the following hardware.

Item	Configuration
Control registers	Watchdog timer mode register 2 (WDTM2)
	Watchdog timer enable register (WDTE)

11.3 Registers


(1) Watchdog timer mode register 2 (WDTM2)

The WDTM2 register sets the overflow time and operation clock of watchdog timer 2.

This register can be read or written in 8-bit units. This register can be read any number of times, but it can be written only once following reset release.

Reset sets this register to 67H.

- When the CPU operates with the subclock and the main clock oscillation is stopped
- When the CPU operates with the internal oscillation clock

Caution Accessing the WDTM2 register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers.

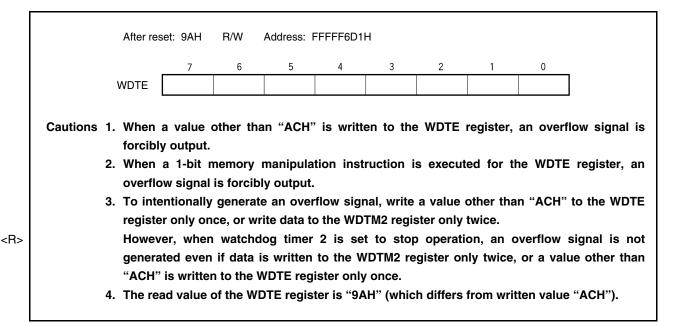

WDCS24	WDCS23	WDCS22	WDCS21	WDCS20	Selected Clock	100 kHz (MIN.)	200 kHz (TYP.)	400 kHz (MAX.)
0	0	0	0	0	2 ¹² /f _R	41.0 ms	20.5 ms	10.2 ms
0	0	0	0	1	2 ¹³ /f _R	81.9 ms	41.0 ms	20.5 ms
0	0	0	1	0	2 ¹⁴ /f _R	163.8 ms	81.9 ms	41.0 ms
0	0	0	1	1	2 ¹⁵ /f _R	327.7 ms	163.8 ms	81.9 ms
0	0	1	0	0	2 ¹⁶ /f _R	655.4 ms	327.7 ms	163.8 ms
0	0	1	0	1	217/fR	1,310.7 ms	655.4 ms	327.7 ms
0	0	1	1	0	2 ¹⁸ /f _R	2,621.4 ms	1,310.7 ms	655.4 ms
0	0	1	1	1	2 ¹⁹ /f _R	5,242.9 ms	2,621.47 ms	1,310.7 ms
						fxx = 20 MHz	fxx = 16 MHz	fxx = 10 MHz
0	1	0	0	0	2 ¹⁸ /fxx	13.1 ms	16.4 ms	26.2 ms
0	1	0	0	1	2 ¹⁹ /fxx	26.2 ms	32.8 ms	52.4 ms
0	1	0	1	0	2 ²⁰ /fxx	52.4 ms	65.5 ms	104.9 ms
0	1	0	1	1	2 ²¹ /fxx	104.9 ms	131.1 ms	209.7 ms
0	1	1	0	0	2 ²² /fxx	209.7 ms	262.1 ms	419.4 ms
0	1	1	0	1	2 ²³ /fxx	419.4 ms	524.3 ms	838.9 ms
0	1	1	1	0	2 ²⁴ /fxx	838.9 ms	1,048.6 ms	1,677.7 ms
0	1	1	1	1	2 ²⁵ /fxx	1,677.7 ms	2,097.2 ms	3,355.4 ms
						fxt = 32.768 kHz		
1	×	0	0	0	2 ⁹ /fхт	15.625 ms		
1	×	0	0	1	2 ¹⁰ /fxT	31.25 ms		
1	×	0	1	0	2 ¹¹ /fxT	62.5 ms		
1	×	0	1	1	2 ¹² /fxT	125 ms		
1	×	1	0	0	2 ¹³ /fxT	250 ms		
1	×	1	0	1	2 ¹⁴ /fxT	500 ms		
1	×	1	1	0	2 ¹⁵ /fxT	1,000 ms		
1	×	1	1	1	2 ¹⁶ /fxT	2,000 ms		

Table 11-2. W	Vatchdog Timer :	2 Clock	Selection
---------------	------------------	---------	-----------

(2) Watchdog timer enable register (WDTE)

The counter of watchdog timer 2 is cleared and counting restarted by writing "ACH" to the WDTE register. The WDTE register can be read or written in 8-bit units.

Reset sets this register to 9AH.

11.4 Operation

Watchdog timer 2 automatically starts in the reset mode following reset release.

The WDTM2 register can be written to only once following reset using byte access. To use watchdog timer 2, write the operation mode and the interval time to the WDTM2 register using an 8-bit memory manipulation instruction. After this, the operation of watchdog timer 2 cannot be stopped.

The WDCS24 to WDCS20 bits of the WDTM2 register are used to select the watchdog timer 2 loop detection time interval.

Writing ACH to the WDTE register clears the counter of watchdog timer 2 and starts the count operation again. After the count operation has started, write ACH to WDTE within the loop detection time interval.

If the time interval expires without ACH being written to the WDTE register, a reset signal (WDT2RES) or a nonmaskable interrupt request signal (INTWDT2) is generated, depending on the set values of the WDM21 and WDTM2.WDM20 bits.

When the WDTM2.WDM21 bit is set to 1 (reset mode), if a WDT overflow occurs during oscillation stabilization after a reset or standby is released, no internal reset will occur and the CPU clock will switch to the internal oscillation clock.

To not use watchdog timer 2, write 00H to the WDTM2 register.

For the non-maskable interrupt servicing while the non-maskable interrupt request mode is set, see **19.2.2 (2)** From INTWDT2 signal.

CHAPTER 12 REAL-TIME OUTPUT FUNCTION (RTO)

12.1 Function

The real-time output function transfers preset data to the RTBL0 and RTBH0 registers, and then transfers this data by hardware to an external device via the output latches, upon occurrence of a timer interrupt. The pins through which the data is output to an external device constitute a port called the real-time output function (RTO).

Because RTO can output signals without jitter, it is suitable for controlling a stepper motor.

In the V850ES/JG2, one 6-bit real-time output port channel is provided.

The real-time output port can be set to the port mode or real-time output port mode in 1-bit units.

12.2 Configuration

The block diagram of RTO is shown below.

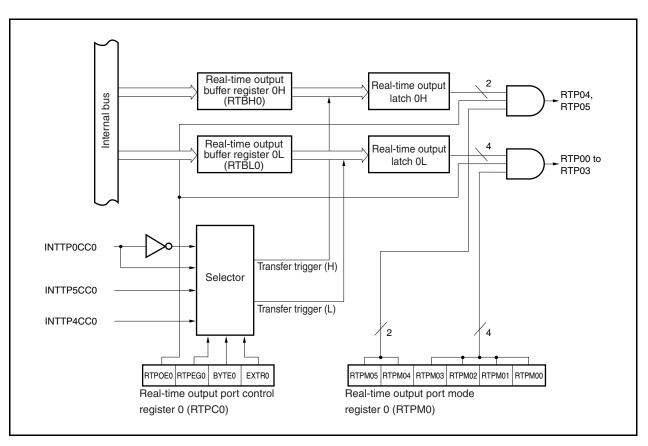


Figure 12-1. Block Diagram of RTO

RTO includes the following hardware.

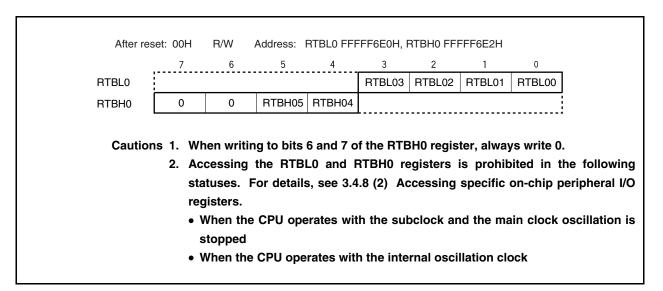
 Table 12-1.
 Configuration of RTO

Item	Configuration
Registers	Real-time output buffer registers 0L, 0H (RTBL0, RTBH0)
Control registers	Real-time output port mode register 0 (RTPM0) Real-time output port control register 0 (RTPC0)

(1) Real-time output buffer registers 0L, 0H (RTBL0, RTBH0)

The RTBL0 and RTBH0 registers are 4-bit registers that hold preset output data.

These registers are mapped to independent addresses in the peripheral I/O register area.


These registers can be read or written in 8-bit or 1-bit units.

Reset sets these registers to 00H.

If an operation mode of 4 bits \times 1 channel or 2 bits \times 1 channel is specified (RTPC0.BYTE0 bit = 0), data can be individually set to the RTBL0 and RTBH0 registers. The data of both these registers can be read at once by specifying the address of either of these registers.

If an operation mode of 6 bits \times 1 channel is specified (BYTE0 bit = 1), 8-bit data can be set to both the RTBL0 and RTBH0 registers by writing the data to either of these registers. Moreover, the data of both these registers can be read at once by specifying the address of either of these registers.

Table 12-2 shows the operation when the RTBL0 and RTBH0 registers are manipulated.

Operation Mode	Register to Be	Re	ad	Wri	te ^{Note}
	Manipulated	Higher 4 Bits	Lower 4 Bits	Higher 4 Bits	Lower 4 Bits
4 bits \times 1 channel,	RTBL0	RTBH0	RTBL0	Invalid	RTBL0
2 bits \times 1 channel	RTBH0	RTBH0	RTBL0	RTBH0	Invalid
6 bits \times 1 channel	RTBL0	RTBH0	RTBL0	RTBH0	RTBL0
	RTBH0	RTBH0	RTBL0	RTBH0	RTBL0

Note After setting the real-time output port, set output data to the RTBL0 and RTBH0 registers by the time a real-time output trigger is generated.

12.3 Registers

RTO is controlled using the following two registers.

- Real-time output port mode register 0 (RTPM0)
- Real-time output port control register 0 (RTPC0)

(1) Real-time output port mode register 0 (RTPM0)

The RTPM0 register selects the real-time output port mode or port mode in 1-bit units. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

After res	et: 00H	R/W	Address: F	FFFF6E4H	1				
	7	6	5	4	3	2	1	0	_
RTPM0	0	0	RTPM05	RTPM04	RTPM03	RTPM02	RTPM01	RTPM00	
	RTPM0m		Contr	ol of real-tir	ne output p	oort (m = 0	to 5)		
	0	Real-time output disabled							
	1	Real-time	e output en	abled					
Caution	ena tim 2. If r (R1 3. In d	abled to e output real-time FP00 to F order to	real-time , and the output i RTP05) all	output a bits set te s disable output 0 egister as	mong the o port mo ed (RTPC , regardle s the real	RTP00 f ode outpu E0 bit = ess of the -time out	to RTP05 It 0. 0), the RTPM0 I put pins	signals real-time register s (RTP00 to	o RTP05), set

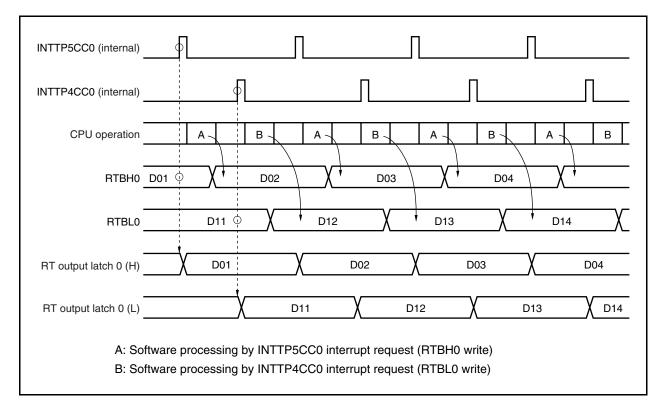
(2) Real-time output port control register 0 (RTPC0)

The RTPC0 register is a register that sets the operation mode and output trigger of the real-time output port. The relationship between the operation mode and output trigger of the real-time output port is as shown in Table 12-3.

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

After res	set: 00H	R/W	Address: F	FFFF6E5H	I				
	<7>	6	5	4	3	2	1	0	
RTPC0	RTPOE0	RTPEG0	BYTE0	EXTR0	0	0	0	0	
							•		
	RTPOE0		С	ontrol of rea	al-time out	put operati	on		
	0	Disables operation ^{Note 1}							
	1	Enables operation							
									,
	RTPEG0			Valid edge	of INTTP0	CC0 signa	1		
	0	Falling ed	Falling edge ^{Note 2}						
	1	Rising ede	ge						
									,
	BYTE0	S	pecificatio	n of channe	l configura	tion for rea	al-time outp	out	
	0	4 bits \times 2	channels, 2	2 bits $ imes$ 2 ch	annels				
	1	6 bits \times 2	channels						
	real-ti	ime outpu	t signals (ut operatio RTP00 to s output fo	RTP05) c	output "0".			he bits of the y TMP0.
Caution	n Set th	e RTPEG	0, BYTE0	, and EXT	R0 bits c	only whe	n RTPOE	0 bit = 0.	


Table 12-3. Operation Modes and Output Triggers of Real-Time Output Port

BYTE0	EXTR0	Operation Mode	RTBH0 (RTP04, RTP05)	RTBL0 (RTP00 to RTP03)
0	0	4 bits \times 1 channel,	INTTP5CC0	INTTP4CC0
	1	2 bits \times 1 channel	INTTP4CC0	INTTP0CC0
1	0	6 bits \times 1 channel	INTTP4CC0	
	1		INTTP0CC0	

12.4 Operation

If the real-time output operation is enabled by setting the RTPC0.RTPOE0 bit to 1, the data of the RTBH0 and RTBL0 registers is transferred to the real-time output latch in synchronization with the generation of the selected transfer trigger (set by the RTPC0.EXTR0 and RTPC0.BYTE0 bits). Of the transferred data, only the data of the bits for which real-time output is enabled by the RTPM0 register is output from the RTP00 to RTP05 bits. The bits for which real-time output is disabled by the RTPM0 register output 0.

If the real-time output operation is disabled by clearing the RTPOE0 bit to 0, the RTP00 to RTP05 signals output 0 regardless of the setting of the RTPM0 register.

Remark For the operation during standby, see CHAPTER 21 STANDBY FUNCTION.

12.5 Usage

- (1) Disable real-time output. Clear the RTPC0.RTPOE0 bit to 0.
- (2) Perform initialization as follows.
 - Set the alternate-function pins of port 5 Set the PFC5.PFC5m bit and PFCE5.PFCE5m bit to 1, and then set the PMC5.PMC5m bit to 1 (m = 0 to 5).
 - Specify the real-time output port mode or port mode in 1-bit units. Set the RTPM0 register.
 - Channel configuration: Select the trigger and valid edge.
 Set the RTPC0.EXTR0, RTPC0.BYTE0, and RTPC0.RTPEG0 bits.
 - Set the initial values to the RTBH0 and RTBL0 registers^{Note 1}.
- (3) Enable real-time output. Set the RTPOE0 bit = 1.
- (4) Set the next output value to the RTBH0 and RTBL0 registers by the time the selected transfer trigger is generated^{Note 2}.
- (5) Set the next real-time output value to the RTBH0 and RTBL0 registers via interrupt servicing corresponding to the selected trigger.
 - **Notes 1.** If the RTBH0 and RTBL0 registers are written when the RTPOE0 bit = 0, that value is transferred to real-time output latches 0H and 0L, respectively.
 - 2. Even if the RTBH0 and RTBL0 registers are written when the RTPOE0 bit = 1, data is not transferred to real-time output latches 0H and 0L.

12.6 Cautions

- (1) Prevent the following conflicts by software.
 - Conflict between real-time output disable/enable switching (RTPOE0 bit) and selected real-time output trigger.
 - Conflict between writing to the RTBH0 and RTBL0 registers in the real-time output enabled status and the selected real-time output trigger.
- (2) Before performing initialization, disable real-time output (RTPOE0 bit = 0).
- (3) Once real-time output has been disabled (RTPOE0 bit = 0), be sure to initialize the RTBH0 and RTBL0 registers before enabling real-time output again (RTPOE0 bit = $0 \rightarrow 1$).

CHAPTER 13 A/D CONVERTER

13.1 Overview

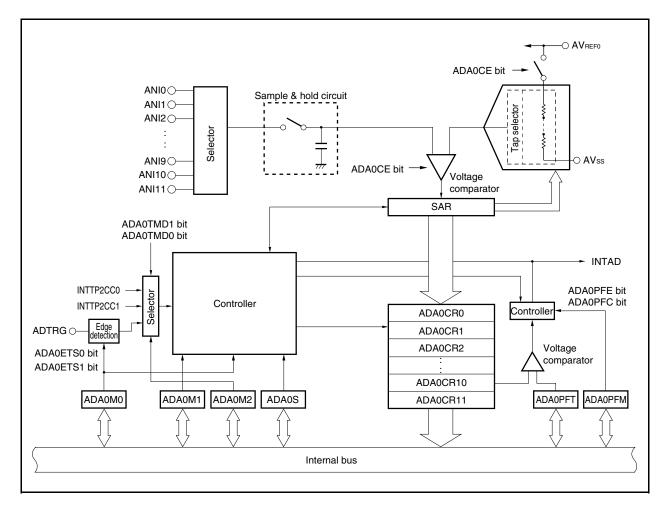
The A/D converter converts analog input signals into digital values, has a resolution of 10 bits, and can handle 12 analog input signal channels (ANI0 to ANI11).

The A/D converter has the following features.

- O 10-bit resolution
- O 12 channels
- O Successive approximation method
- O Operating voltage: AVREF0 = 3.0 to 3.6 V
- O Analog input voltage: 0 V to AVREF0
- O The following functions are provided as operation modes.
 - Continuous select mode
 - Continuous scan mode
 - One-shot select mode
 - One-shot scan mode
- O The following functions are provided as trigger modes.
 - Software trigger mode
 - External trigger mode (external, 1)
 - Timer trigger mode
- O Power-fail monitor function (conversion result compare function)

13.2 Functions

(1) 10-bit resolution A/D conversion


An analog input channel is selected from ANI0 to ANI11, and an A/D conversion operation is repeated at a resolution of 10 bits. Each time A/D conversion has been completed, an interrupt request signal (INTAD) is generated.

(2) Power-fail detection function

This function is used to detect a drop in the battery voltage. The result of A/D conversion (the value of the ADA0CRnH register) is compared with the value of the ADA0PFT register, and the INTAD signal is generated only when a specified comparison condition is satisfied (n = 0 to 11).

13.3 Configuration

The block diagram of the A/D converter is shown below.

The A/D converter includes the following hardware.

Table 13-1.	Configuration of A/D Converter
-------------	--------------------------------

Item	Configuration
Analog inputs	12 channels (ANI0 to ANI11 pins)
Registers	Successive approximation register (SAR) A/D conversion result registers 0 to 11 (ADA0CR0 to ADA0CR11) A/D conversion result registers 0H to 11H (ADCR0H to ADCR11H): Only higher 8 bits can be read
Control registers	A/D converter mode registers 0 to 2 (ADA0M0 to ADA0M2) A/D converter channel specification register 0 (ADA0S) Power fail compare mode register (ADA0PFM) Power fail compare threshold value register (ADA0PFT)

(1) Successive approximation register (SAR)

The SAR register compares the voltage value of the analog input signal with the voltage tap (compare voltage) value from the series resistor string, and holds the comparison result starting from the most significant bit (MSB).

When the comparison result has been held down to the least significant bit (LSB) (i.e., when A/D conversion is complete), the contents of the SAR register are transferred to the ADA0CRn register.

Remark n = 0 to 11

(2) A/D conversion result register n (ADA0CRn), A/D conversion result register nH (ADA0CRnH)

The ADA0CRn register is a 16-bit register that stores the A/D conversion result. ADA0ARn consist of 12 registers and the A/D conversion result is stored in the 10 higher bits of the AD0CRn register corresponding to analog input. (The lower 6 bits are fixed to 0.)

(3) A/D converter mode register 0 (ADA0M0)

This register specifies the operation mode and controls the conversion operation by the A/D converter.

(4) A/D converter mode register 1 (ADA0M1)

This register sets the conversion time of the analog input signal to be converted.

(5) A/D converter mode register 2 (ADA0M2)

This register sets the hardware trigger mode.

(6) A/D converter channel specification register (ADA0S)

This register sets the input port that inputs the analog voltage to be converted.

(7) Power-fail compare mode register (ADA0PFM)

This register sets the power-fail monitor mode.

(8) Power-fail compare threshold value register (ADA0PFT)

The ADA0PFT register sets a threshold value that is compared with the value of A/D conversion result register nH (ADA0CRnH). The 8-bit data set to the ADA0PFT register is compared with the higher 8 bits of the A/D conversion result register (ADA0CRnH).

(9) Controller

The controller compares the result of the A/D conversion (the value of the ADA0CRnH register) with the value of the ADA0PFT register when A/D conversion is completed or when the power-fail detection function is used, and generates the INTAD signal only when a specified comparison condition is satisfied.

(10) Sample & hold circuit

The sample & hold circuit samples each of the analog input signals selected by the input circuit and sends the sampled data to the voltage comparator. This circuit also holds the sampled analog input signal voltage during A/D conversion.

(11) Voltage comparator

The voltage comparator compares a voltage value that has been sampled and held with the voltage value of the series resistor string.

(12) Series resistor string

This series resistor string is connected between AVREF0 and AVss and generates a voltage for comparison with the analog input signal.

(13) ANI0 to ANI11 pins

These are analog input pins for the 12 A/D converter channels and are used to input analog signals to be converted into digital signals. Pins other than the one selected as the analog input by the ADA0S register can be used as input port pins.

(14) AVREFO pin

This is the pin used to input the reference voltage of the A/D converter. Always make the potential at this pin the same as that at the V_{DD} pin even when the A/D converter is not used. The signals input to the ANI0 to ANI11 pins are converted to digital signals based on the voltage applied between the AV_{REF0} and AV_{SS} pins.

(15) AVss pin

This is the ground pin of the A/D converter. Always make the potential at this pin the same as that at the Vss pin even when the A/D converter is not used.

Caution Make sure that the voltages input to the ANI0 to ANI11 pins do not exceed the rated values. In particular if a voltage of AVREFO or higher is input to a channel, the conversion value of that channel becomes undefined, and the conversion values of the other channels may also be affected.

13.4 Registers

The A/D converter is controlled by the following registers.

- A/D converter mode registers 0, 1, 2 (ADA0M0, ADA0M1, ADA0M2)
- A/D converter channel specification register 0 (ADA0S)
- Power-fail compare mode register (ADA0PFM)

The following registers are also used.

- A/D conversion result register n (ADA0CRn)
- A/D conversion result register nH (ADA0CRnH)
- Power-fail compare threshold value register (ADA0PFT)

(1) A/D converter mode register 0 (ADA0M0)

The ADA0M0 register is an 8-bit register that specifies the operation mode and controls conversion operations. This register can be read or written in 8-bit or 1-bit units. However, ADA0EF bit is read-only. Reset sets this register to 00H.

- Caution Accessing the ADA0M0 register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers.
 - When the CPU operates with the subclock and the main clock oscillation is stopped
 - When the CPU operates with the internal oscillation clock

After re	set: 00H	R/W	Address: F	FFFF200H	ł				
	<7>	6	5	4	3	2	1	<0>	
ADA0M0	ADA0CE	0	ADA0MD1	ADA0MD0	ADA0ETS1	ADA0ETS0	ADA0TMD	ADA0EF	
	ADA0CE		A/D conversion control						
	0	Stops A/E	O conversio	n					
	1	Enables /	A/D conver	sion					
	ADA0MD1	ADA0MD0	SI	pecification	of A/D cor	nverter ope	ration mod	e	
	0	0	Continuo	us select n	node				
	0	1	1 Continuous scan mode						
	1	0	0 One-shot select mode						
	1	1	1 One-shot scan mode						

(2/2)

ADA0ETS1	ADA0ETS0	Specification of external trigger (ADTRG pin) input valid edge
0	0	No edge detection
0	1	Falling edge detection
1	0	Rising edge detection
1	1	Detection of both rising and falling edges

ADA0TMD	Trigger mode specification
0	Software trigger mode
1	External trigger mode/timer trigger mode

ADA0EF	A/D converter status display
0	A/D conversion stopped
1	A/D conversion in progress

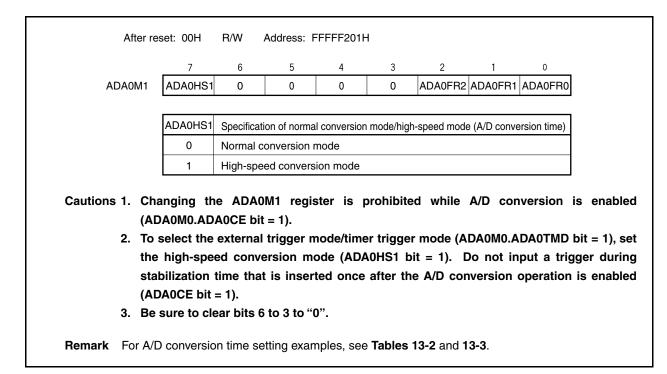
Cautions 1. A write operation to bit 0 is ignored.

- 2. Changing the ADA0M1.ADA0FR2 to ADA0M1.ADA0FR0 bits is prohibited while A/D conversion is enabled (ADA0CE bit = 1).
- 3. In the following modes, write data to the ADA0M0, ADA0M2, ADA0S, ADA0PFM, or ADA0PFT registers while A/D conversion is stopped (ADA0CE bit = 0), and then enable the A/D conversion operation (ADA0CE bit = 1).
 - Normal conversion mode
 - One-shot select mode/one-shot scan mode in high-speed conversion mode

If the ADA0M0, ADA0M2, ADA0S, ADA0PFM, and ADA0PFT registers are written in the other modes during A/D conversion (ADA0EF bit = 1), the following will be performed according to the mode.

• In software trigger mode

A/D conversion is stopped and started again from the beginning.


• In hardware trigger mode

A/D conversion is stopped, and the trigger standby status is set.

- 4. To select the external trigger mode/timer trigger mode (ADA0TMD bit = 1), set the high-speed conversion mode (ADA0M1.ADA0HS1 bit = 1). Do not input a trigger during stabilization time that is inserted once after the A/D conversion operation is enabled (ADA0CE bit = 1).
- 5. When not using the A/D converter, stop the operation by setting the ADA0CE bit to 0 to reduce the power consumption.

(2) A/D converter mode register 1 (ADA0M1)

The ADA0M1 register is an 8-bit register that specifies the conversion time. This register can be read or written in 8-bit or 1-bit units. Reset sets this bit to 00H.

ADA0FR2 to		A/D Co	nversion Time		
ADA0FR0 Bits	Stabilization Time + Conversion Time + Wait Time	fxx = 20 MHz	fxx = 16 MHz	fxx = 4 MHz	Trigger Response Time
000	13/fxx + 26/fxx + 26/fxx	Setting prohibited	Setting prohibited	16.25 <i>μ</i> s	4/fxx
001	26/fxx + 52/fxx + 52/fxx	6.5 <i>μ</i> s	8.125 <i>μ</i> s	Setting prohibited	5/fxx
010	39/fxx + 78/fxx + 78/fxx	9.75 <i>μ</i> s	12.1875 <i>μ</i> s	Setting prohibited	6/fxx
011	50/fxx + 104/fxx + 104/fxx	12.9 <i>µ</i> s	16.125 <i>μ</i> s	Setting prohibited	7/fxx
100	50/fxx + 130/fxx + 130/fxx	15.5 <i>μ</i> s	19.375 <i>μ</i> s	Setting prohibited	8/fxx
101	50/fxx + 156/fxx + 156/fxx	18.1 <i>μ</i> s	22.625 <i>µ</i> s	Setting prohibited	9/fxx
110	50/fxx + 182/fxx + 182/fxx	20.7 <i>μ</i> s	Setting prohibited	Setting prohibited	10/fxx
111	50/fxx + 208/fxx + 208/fxx	23.3 <i>µ</i> s	Setting prohibited	Setting prohibited	11/fxx

Table 13-2. Conversion Time Selection in Normal Conversion Mode (A	ADA0HS1 Bit = 0)
--	-------------------------

Remark	Stabilization time:	A/D converter setup time (1 μ s or longer)
	Conversion time:	Actual A/D conversion time (2.6 to 10.4 μ s)
	Wait time:	Wait time inserted before the next conversion
	Trigger response time:	: If a software trigger, external trigger, or timer trigger is generated after the
		stabilization time, it is inserted before the conversion time.

In the normal conversion mode, the conversion is started after the stabilization time elapsed from the ADA0M0.ADA0CE bit is set to 1, and A/D conversion is performed only during the conversion time (2.6 to 10.4 μ s). Operation is stopped after the conversion ends and the A/D conversion end interrupt request signal (INTAD) is generated after the wait time is elapsed.

Because the conversion operation is stopped during the wait time, operation current can be reduced.

Cau

Cautions 1. Set as 2.6 μ s \leq conversion time \leq 10.4 μ s.

2. During A/D conversion, if the ADA0M0, ADA0M2, ADA0S, ADA0PFM, and ADA0PFT registers are written or trigger is input, reconversion is carried out. However, if the stabilization time end timing conflicts with the writing to these registers, or if the stabilization time end timing conflicts with the trigger input, the stabilization time of 64 clocks is reinserted.

If a conflict occurs again with the reinserted stabilization time end timing, the stabilization time is reinserted. Therefore do not set the trigger input interval and control register write interval to 64 clocks or below.

ADA0FR2 to		A/D C	onversion Time		
ADA0FR0 Bits	Conversion Time (+ Stabilization Time)	fxx = 20 MHz	fxx = 16 MHz	fxx = 4 MHz	Trigger Response Time
000	26/fxx (+ 13/fxx)	Setting prohibited	Setting prohibited	6.5 μs (+ 3.25 μs)	4/fxx
001	52/fxx (+ 26/fxx)	2.6 μs (+ 1.3 μs)	3.25 μs (+ 1.625 μs)	Setting prohibited	5/fxx
010	78/fxx (+ 39/fxx)	3.9 μs (+ 1.95 μs)	4.875 μs (+ 2.4375 μs)	Setting prohibited	6/fxx
011	104/fxx (+ 50/fxx)	5.2 μs (+ 2.5 μs)	6.5 μs (+ 3.125 μs)	Setting prohibited	7/fxx
100	130/fxx (+ 50/fxx)	6.5 μs (+ 2.5 μs)	8.125 μs (+ 3.125 μs)	Setting prohibited	8/fxx
101	156/fxx (+ 50/fxx)	7.8 μs (+ 2.5 μs)	9.75 μs (+ 3.125 μs)	Setting prohibited	9/fxx
110	182/fxx (+ 50/fxx)	9.1 μs (+ 2.5 μs)	Setting prohibited	Setting prohibited	10/fxx
111	208/fxx (+ 50/fxx)	10.4 μs (+ 2.5 μs)	Setting prohibited	Setting prohibited	11/fxx

Table 13-3. Conversion Time Selection in High-Speed Conversion Mode (ADA0HS1 Bit = 1)

Remark Conversion time: Actual A/D conversion time (2.6 to 10.4 μ s)

Stabilization time: A/D converter setup time (1 μ s or longer)

Trigger response time: If a software trigger, external trigger, or timer trigger is generated after the stabilization time, it is inserted before the conversion time.

In the high-speed conversion mode, the conversion is started after the stabilization time elapsed from the ADA0M0.ADA0CE bit is set to 1, and A/D conversion is performed only during the conversion time (2.6 to 10.4 μ s). The A/D conversion end interrupt request signal (INTAD) is generated immediately after the conversion ends.

In continuous conversion mode, the stabilization time is inserted only before the first conversion, and not inserted after the second conversion (the A/D converter remains running).

Cautions 1. Set as 2.6 μ s \leq conversion time \leq 10.4 μ s.

<R>

2. In the high-speed conversion mode, rewriting of the ADA0M0, ADA0M2, ADA0S, ADA0PFM, and ADA0PFT registers and trigger input are prohibited during the stabilization time.

(3) A/D converter mode register 2 (ADA0M2)

The ADA0M2 register specifies the hardware trigger mode. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

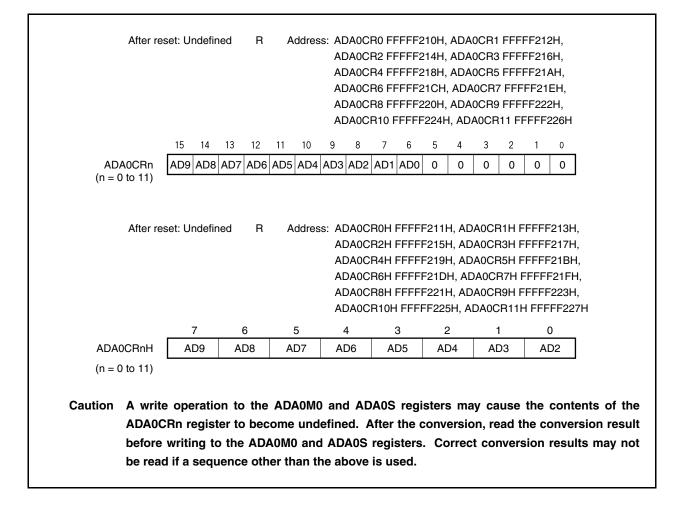
7 0 ADA0TMD1 0 0 1	6 0 ADA0TMD0 0 1 0	External t Timer trig	trigger mod gger mode 0 TTP2CC0 i	0	OTRG pir	gger mode n valid edge c	0 ADA0TMD0 detected)
ADA0TMD1 0 0	ADA0TMD0 0 1	External t Timer trig (when IN	Specifica trigger mod gger mode (TTP2CC0 i	tion of harc le (when AI	dware trig	gger mode n valid edge c	
0	0	External t Timer trig (when IN	trigger mod gger mode 0 TTP2CC0 i	le (when Al	OTRG pir	n valid edge d	detected)
0	0	External t Timer trig (when IN	trigger mod gger mode 0 TTP2CC0 i	le (when Al	OTRG pir	n valid edge d	detected)
0	1	Timer trig (when IN	ger mode (TTP2CC0 i	0			letected)
		(when IN	TTP2CC0 i		quest ger	nerated)	
1	0	Timer trig	ider mode 1				
		(when IN	TTP2CC1 i		quest ger	nerated)	
1	1	Setting pr	rohibited				
ped (AD 0CE bit	AOMO.AC = 1).	DAOCE bi				-	
pe \0 rr	ed (AD CE bit nal coi	ed (ADA0M0.AE CE bit = 1). mal conversion	ed(ADA0M0.ADA0CE bi CE bit = 1). nal conversion mode	ed(ADA0M0.ADA0CE bit = 0), a CE bit = 1). nal conversion mode	ed (ADA0M0.ADA0CE bit = 0), and then CE bit = 1). mal conversion mode	ed (ADA0M0.ADA0CE bit = 0), and then enable CE bit = 1). mal conversion mode	-

(4) Analog input channel specification register 0 (ADA0S)

The ADAOS register specifies the pin that inputs the analog voltage to be converted into a digital signal. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

ADA0S 0 0 0 ADA0S3 ADA0S2 ADA0S3 ADA0S2 ADA0S1 ADA0S0 Select mode 0 0 0 ANIO	ADA0S1 AD	DA0S0
	Soon mor	
	Coon mor	
0 0 0 0 ANIO	Scanmo	de
	ANI0	
0 0 0 1 ANI1	ANI0, ANI1	
0 0 1 0 ANI2	ANI0 to ANI2	2
0 0 1 1 ANI3	ANI0 to ANI3	3
0 1 0 0 ANI4	ANI0 to ANI4	Ļ
0 1 0 1 ANI5	ANI0 to ANI5	5
0 1 1 0 ANI6	ANI0 to ANI6	6
0 1 1 1 ANI7	ANI0 to ANI7	,
1 0 0 0 ANI8	ANI0 to ANI8	3
1 0 0 1 ANI9	ANI0 to ANI9)
1 0 1 0 ANI10	ANI0 to ANI1	0
1 0 1 1 ANI11	ANI0 to ANI1	1
1 1 0 0 Setting prohibited	Setting prohil	bited
1 1 0 1 Setting prohibited	Setting prohil	bited
1 1 1 0 Setting prohibited	Setting prohil	bited
1 1 1 1 Setting prohibited	Setting prohil	bited

- (ADA0CE bit = 1).
- Normal conversion mode
- One-shot select mode/one-shot scan mode in high-speed conversion mode
- 2. Be sure to clear bits 7 to 4 to "0".


(5) A/D conversion result registers n, nH (ADA0CRn, ADA0CRnH)

The ADA0CRn and ADA0CRnH registers store the A/D conversion results.

These registers are read-only, in 16-bit or 8-bit units. However, specify the ADA0CRn register for 16-bit access and the ADA0CRnH register for 8-bit access. The 10 bits of the conversion result are read from the higher 10 bits of the ADA0CRn register, and 0 is read from the lower 6 bits. The higher 8 bits of the conversion result are read from the ADA0CRnH register.

Caution Accessing the ADA0CRn and ADA0CRnH registers is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers.

- When the CPU operates with the subclock and the main clock oscillation is stopped
- When the CPU operates with the internal oscillation clock

The relationship between the analog voltage input to the analog input pins (ANI0 to ANI11) and the A/D conversion result (ADA0CRn register) is as follows.

$$SAR = INT \left(\frac{V_{IN}}{AV_{REF0}} \times 1,024 + 0.5\right)$$

 $\mathsf{ADA0CR}^{\mathsf{Note}} = \mathsf{SAR} \times 64$

Or,

$$(\mathsf{SAR} - 0.5) \times \frac{\mathsf{AV}_{\mathsf{REF0}}}{1,024} \le \mathsf{VIN} < (\mathsf{SAR} + 0.5) \times \frac{\mathsf{AV}_{\mathsf{REF0}}}{1,024}$$

INT():Function that returns the integer of the value in ()VIN:Analog input voltageAVREF0:AVREF0 pin voltageADA0CR:Value of ADA0CRn register

Note The lower 6 bits of the ADA0CRn register are fixed to 0.

The following shows the relationship between the analog input voltage and the A/D conversion results.

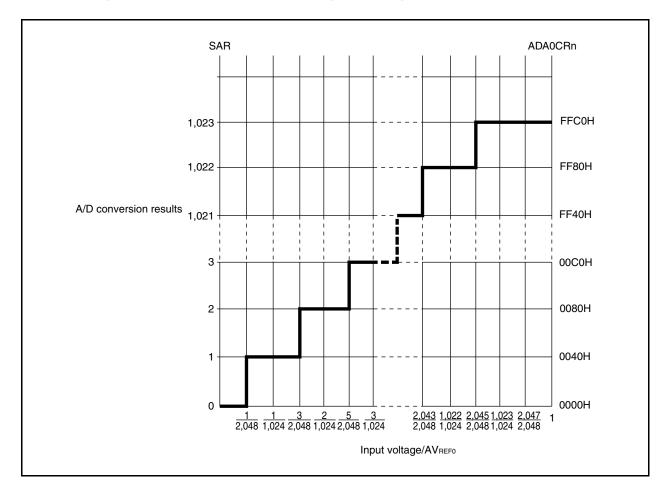


Figure 13-2. Relationship Between Analog Input Voltage and A/D Conversion Results

(6) Power-fail compare mode register (ADA0PFM)

The ADAOPFM register is an 8-bit register that sets the power-fail compare mode. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

	<7>	6	5	4	3	2	1	0
ADA0PFM	ADA0PFE	ADA0PFC	0	0	0	0	0	0
		·						
	ADA0PFE		Selecti	ion of powe	r-fail comp	are enable	/disable	
	0	Power-fail c	compare	disabled				
	1	Power-fail of	compare	enabled				
	ADA0PFC			election of p		•		
	0	Generates a	ın interrup	ot request si	gnal (INTA	D) when AD	A0CRnH≥	ADA0PFT
	1	Generates a	ın interrup	ot request si	gnal (INTA	D) when AD	A0CRnH <	ADA0PFT
valu the AD/ the 2. In t	te of the A condition A0CRn reg interrupt s he scan n tents of th	DA0CRnH specified ister and signal is no node, the	registe by the the INT ot gener 8-bit da	er specifie ADA0PF AD signa rated. ata set to	ed by the FC bit, th I is gene the AD	ADA0S r le conve rated. If A0PFT re	egister. I rsion res it does r egister is	ult is sto not match compare
valu the AD/ the 2. In t con the INT/ gen the con	ue of the A condition A0CRn reg interrupt s he scan n	DA0CRnH specified signal is no node, the ne ADA0C bit, the is genera egardless in result is lowever, th	registe by the the INT of gener 8-bit da ROH reg convers ited. If of the o s stored	er specifie ADA0PF AD signa rated. ata set to gister. If ion resul t t does compariso d in the A	ed by the FC bit, the I is gene the ADA the resu t is stor- not mate ADA0CRI	ADA0S r le conve rated. If AOPFT re t matche ed in the ch, howe , the sca n registe	egister. I rsion res it does egister is es the co e ADA0C ver, the I n operation r until th	f the resu sult is sto not match compare ndition sp R0 registe INTAD sig on is con e scan op

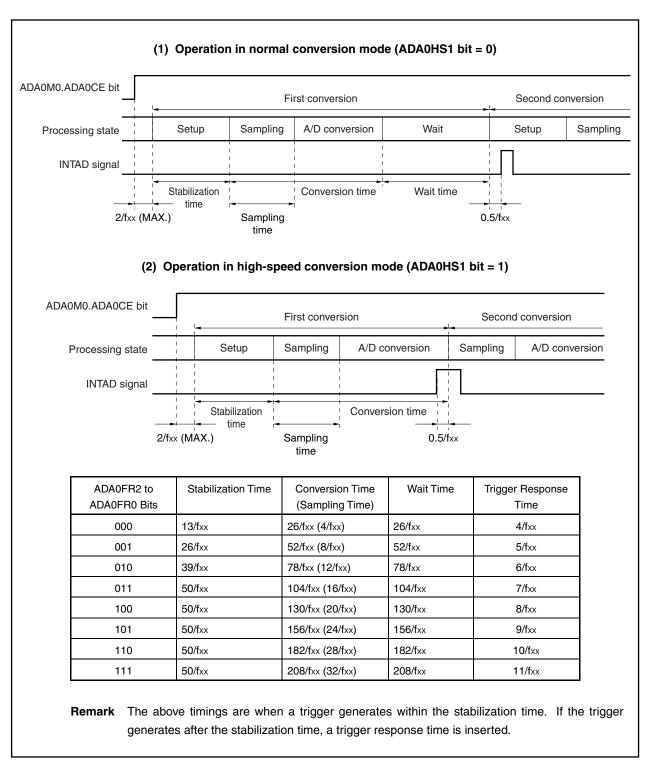
(7) Power-fail compare threshold value register (ADA0PFT)

The ADAOPFT register sets the compare value in the power-fail compare mode. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

After rese	et: 00H	R/W	Address: F	FFFF205H				
	7	6	5	4	3	2	1	0
ADA0PFT								
stopped (ADA0C	d (ADA) E bit =	0M0.ADA	OCE bit =			0		A/D conver onversion op

13.5 Operation

13.5.1 Basic operation


- <1> Set the operation mode, trigger mode, and conversion time for executing A/D conversion by using the ADA0M0, ADA0M1, ADA0M2, and ADA0S registers. When the ADA0CE bit of the ADA0M0 register is set, conversion is started in the software trigger mode and the A/D converter waits for a trigger in the external or timer trigger mode.
- <2> When A/D conversion is started, the voltage input to the selected analog input channel is sampled by the sample & hold circuit.
- <3> When the sample & hold circuit samples the input channel for a specific time, it enters the hold status, and holds the input analog voltage until A/D conversion is complete.
- <4> Set bit 9 of the successive approximation register (SAR). The tap selector selects (1/2) AV_{REF0} as the voltage tap of the series resistor string.
- <5> The voltage difference between the voltage of the series resistor string and the analog input voltage is compared by the voltage comparator. If the analog input voltage is higher than (1/2) AVREF0, the MSB of the SAR register remains set. If it is lower than (1/2) AVREF0, the MSB is reset.
- <6> Next, bit 8 of the SAR register is automatically set and the next comparison is started. Depending on the value of bit 9, to which a result has been already set, the voltage tap of the series resistor string is selected as follows.
 - Bit 9 = 1: (3/4) AVREF0
 - Bit 9 = 0: (1/4) AVREFO

This voltage tap and the analog input voltage are compared and, depending on the result, bit 8 is manipulated as follows.

Analog input voltage \geq Voltage tap: Bit 8 = 1 Analog input voltage \leq Voltage tap: Bit 8 = 0

- <7> This comparison is continued to bit 0 of the SAR register.
- <8> When comparison of the 10 bits is complete, the valid digital result is stored in the SAR register, which is then transferred to and stored in the ADA0CRn register. After that, an A/D conversion end interrupt request signal (INTAD) is generated.
- <9> In one-shot select mode, conversion is stopped^{Note}. In one-shot scan mode, conversion is stopped after scanning once^{Note}. In continuous select mode, repeat steps <2> to <8> until the ADA0M0.ADA0CE bit is cleared to 0. In continuous scan mode, repeat steps <2> to <8> for each channel.
 - **Note** In the external trigger mode, timer trigger mode 0, or timer trigger mode 1, the trigger standby status is entered.
 - **Remark** The trigger standby status means the status after the stabilization time has passed.

13.5.2 Conversion operation timing

13.5.3 Trigger mode

The timing of starting the conversion operation is specified by setting a trigger mode. The trigger mode includes a software trigger mode and hardware trigger modes. The hardware trigger modes include timer trigger modes 0 and 1, and external trigger mode. The ADA0M0.ADA0TMD bit is used to set the trigger mode. The hardware trigger modes are set by the ADA0M2.ADA0TMD1 and ADA0M2.ADA0TMD0 bits.

(1) Software trigger mode

When the ADA0M0.ADA0CE bit is set to 1, the signal of the analog input pin (ANI0 to ANI11 pin) specified by the ADA0S register is converted. When conversion is complete, the result is stored in the ADA0CRn register. At the same time, the A/D conversion end interrupt request signal (INTAD) is generated.

If the operation mode specified by the ADA0M0.ADA0MD1 and ADA0M0.ADA0MD0 bits is the continuous select/scan mode, the next conversion is started, unless the ADA0CE bit is cleared to 0 after completion of the first conversion. Conversion is performed once and ends if the operation mode is the one-shot select/scan mode.

When conversion is started, the ADA0M0.ADA0EF bit is set to 1 (indicating that conversion is in progress).

If the ADA0M0, ADA0M2, ADA0S, ADA0PFM, or ADA0PFT register is written during conversion, the conversion is aborted and started again from the beginning. However, writing to these registers is prohibited in the normal conversion mode and one-shot select mode/one-shot scan mode in the high-speed conversion mode.

(2) External trigger mode

In this mode, converting the signal of the analog input pin (ANI0 to ANI11) specified by the ADA0S register is started when an external trigger is input (to the ADTRG pin). Which edge of the external trigger is to be detected (i.e., the rising edge, falling edge, or both rising and falling edges) can be specified by using the ADA0M0.ADA0ETS1 and ADA0M0.ATA0ETS0 bits. When the ADA0CE bit is set to 1, the A/D converter waits for the trigger, and starts conversion after the external trigger has been input.

When conversion is completed, the result of conversion is stored in the ADA0CRn register, regardless of whether the continuous select, continuous scan, one-shot select, or one-shot scan mode is set as the operation mode by the ADA0MD1 and ADA0MD0 bits. At the same time, the INTAD signal is generated, and the A/D converter waits for the trigger again.

When conversion is started, the ADA0EF bit is set to 1 (indicating that conversion is in progress). While the A/D converter is waiting for the trigger, however, the ADA0EF bit is cleared to 0 (indicating that conversion is stopped). If the valid trigger is input during the conversion operation, the conversion is aborted and started again from the beginning.

If the ADA0M0, ADA0M2, ADA0S, ADA0PFM, or ADA0PFT register is written during the conversion operation, the conversion is aborted, and the A/D converter waits for the trigger again. However, writing to these registers is prohibited in the one-shot select mode/one-shot scan mode.

Caution To select the external trigger mode, set the high-speed conversion mode. Do not input a trigger during stabilization time that is inserted once after the A/D conversion operation is enabled (ADA0M0.ADA0CE bit = 1).

Remark The trigger standby status means the status after the stabilization time has passed.

(3) Timer trigger mode

In this mode, converting the signal of the analog input pin (ANI0 to ANI11) specified by the ADA0S register is started by the compare match interrupt request signal (INTTP2CC0 or INTTP2CC1) of the capture/compare register connected to the timer. The INTTP2CC0 or INTTP2CC1 signal is selected by the ADA0TMD1 and ADA0TMD0 bits, and conversion is started at the rising edge of the specified compare match interrupt request signal. When the ADA0CE bit is set to 1, the A/D converter waits for a trigger, and starts conversion when the compare match interrupt request signal of the timer is input.

When conversion is completed, regardless of whether the continuous select, continuous scan, one-shot select, or one-shot scan mode is set as the operation mode by the ADA0MD1 and ADA0MD0 bits, the result of the conversion is stored in the ADA0CRn register. At the same time, the INTAD signal is generated, and the A/D converter waits for the trigger again.

When conversion is started, the ADA0EF bit is set to 1 (indicating that conversion is in progress). While the A/D converter is waiting for the trigger, however, the ADA0EF bit is cleared to 0 (indicating that conversion is stopped). If the valid trigger is input during the conversion operation, the conversion is aborted and started again from the beginning.

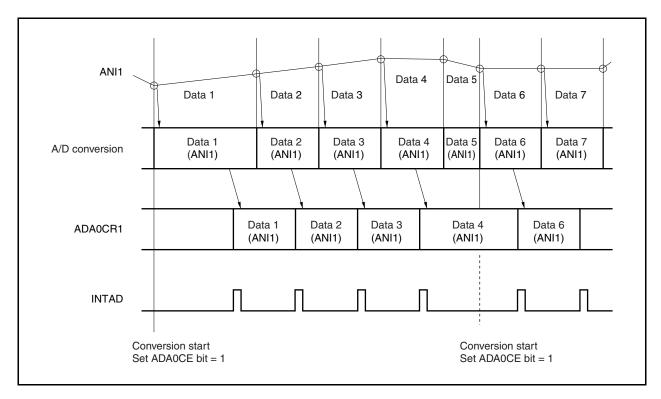
If the ADA0M0, ADA0M2, ADA0S, ADA0PFM, or ADA0PFT register is written during conversion, the conversion is stopped and the A/D converter waits for the trigger again. However, writing to these registers is prohibited in the one-shot select mode/one-shot scan mode.

Caution To select the timer trigger mode, set the high-speed conversion mode. Do not input a trigger during stabilization time that is inserted once after the A/D conversion operation is enabled (ADA0M0.ADA0CE bit = 1).

Remark The trigger standby status means the status after the stabilization time has passed.

13.5.4 Operation mode

Four operation modes are available as the modes in which to set the ANI0 to ANI11 pins: continuous select mode, continuous scan mode, one-shot select mode, and one-shot scan mode.


The operation mode is selected by the ADA0M0.ADA0MD1 and ADA0M0.ADA0MD0 bits.

(1) Continuous select mode

In this mode, the voltage of one analog input pin selected by the ADA0S register is continuously converted into a digital value.

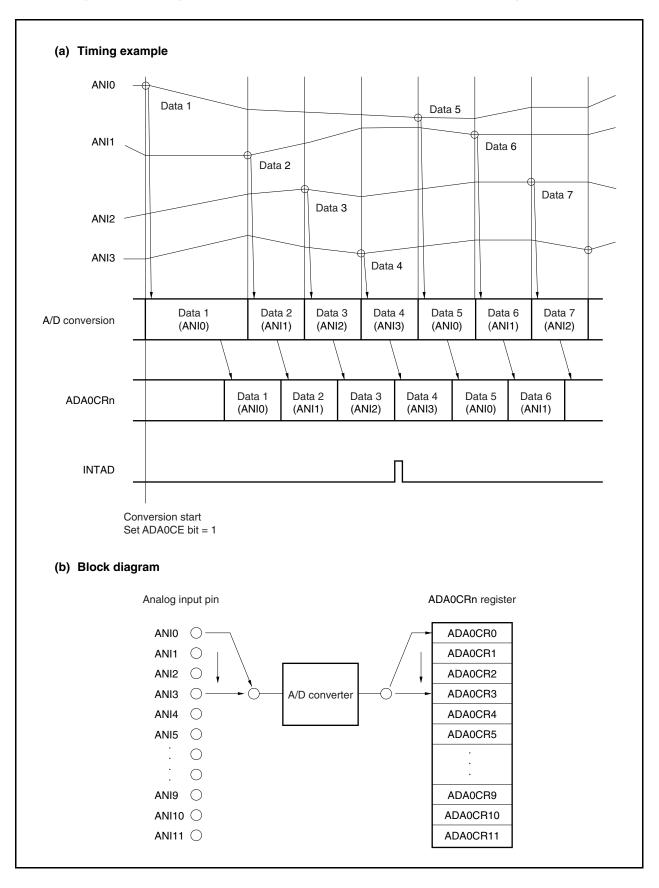
The conversion result is stored in the ADA0CRn register corresponding to the analog input pin. In this mode, an analog input pin corresponds to an ADA0CRn register on a one-to-one basis. Each time A/D conversion is completed, the A/D conversion end interrupt request signal (INTAD) is generated. After completion of conversion, the next conversion is started, unless the ADA0M0.ADA0CE bit is cleared to 0 (n = 0 to 11).

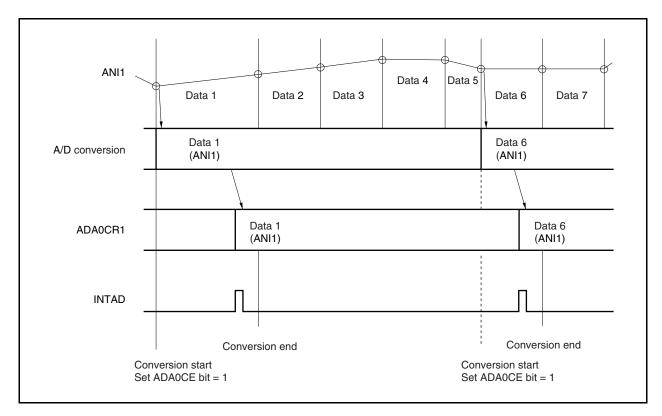
Figure 13-4. Timing Example of Continuous Select Mode Operation (ADA0S Register = 01H)

(2) Continuous scan mode

In this mode, analog input pins are sequentially selected, from the ANIO pin to the pin specified by the ADAOS register, and their values are converted into digital values.

The result of each conversion is stored in the ADA0CRn register corresponding to the analog input pin. When conversion of the analog input pin specified by the ADA0S register is complete, the INTAD signal is generated, and A/D conversion is started again from the ANI0 pin, unless the ADA0CE bit is cleared to 0 (n = 0 to 11).




Figure 13-5. Timing Example of Continuous Scan Mode Operation (ADA0S Register = 03H)

(3) One-shot select mode

In this mode, the voltage on the analog input pin specified by the ADA0S register is converted into a digital value only once.

The conversion result is stored in the ADA0CRn register corresponding to the analog input pin. In this mode, an analog input pin and an ADA0CRn register correspond on a one-to-one basis. When A/D conversion has been completed once, the INTAD signal is generated. The A/D conversion operation is stopped after it has been completed (n = 0 to 11).

(4) One-shot scan mode

In this mode, analog input pins are sequentially selected, from the ANI0 pin to the pin specified by the ADA0S register, and their values are converted into digital values .

Each conversion result is stored in the ADA0CRn register corresponding to the analog input pin. When conversion of the analog input pin specified by the ADA0S register is complete, the INTAD signal is generated. A/D conversion is stopped after it has been completed (n = 0 to 11).

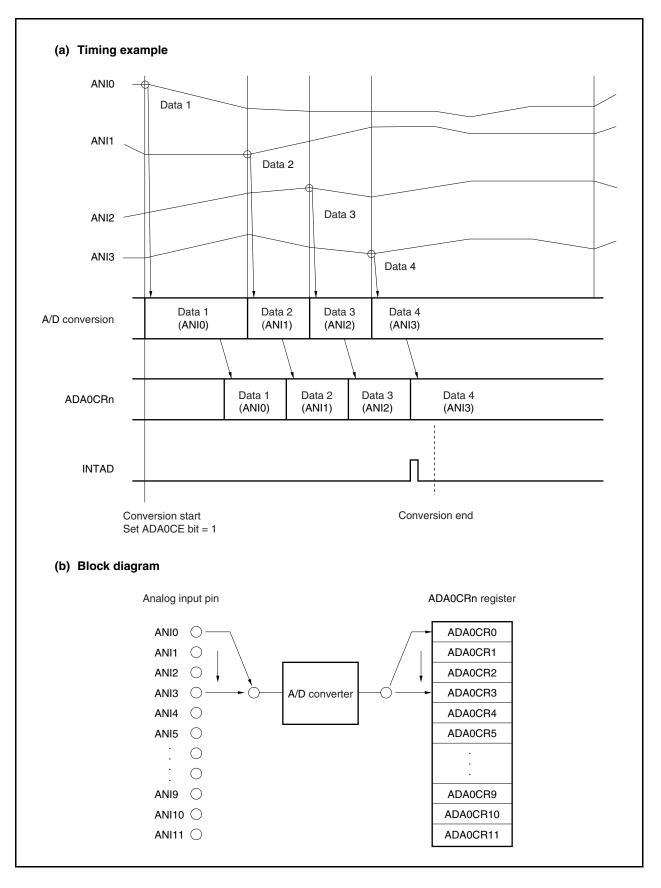
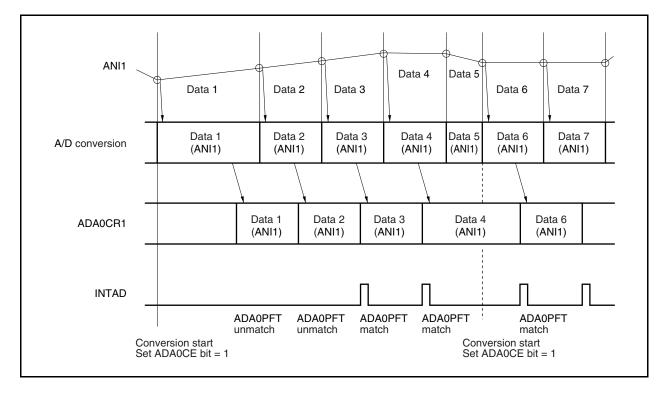


Figure 13-7. Timing Example of One-Shot Scan Mode Operation (ADA0S Register = 03H)

13.5.5 Power-fail compare mode

The A/D conversion end interrupt request signal (INTAD) can be controlled as follows by the ADA0PFM and ADA0PFT registers.


- When the ADA0PFM.ADA0PFE bit = 0, the INTAD signal is generated each time conversion is completed (normal use of the A/D converter).
- When the ADA0PFE bit = 1 and when the ADA0PFM.ADA0PFC bit = 0, the value of the ADA0CRnH register is compared with the value of the ADA0PFT register when conversion is completed, and the INTAD signal is generated only if ADA0CRnH ≥ ADA0PFT.
- When the ADA0PFE bit = 1 and when the ADA0PFC bit = 1, the value of the ADA0CRnH register is compared with the value of the ADA0PFT register when conversion is completed, and the INTAD signal is generated only if ADA0CRnH < ADA0PFT.


Remark n = 0 to 11

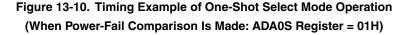
In the power-fail compare mode, four modes are available as modes in which to set the ANI0 to ANI11 pins: continuous select mode, continuous scan mode, one-shot select mode, and one-shot scan mode.

(1) Continuous select mode

In this mode, the result of converting the voltage of the analog input pin specified by the ADA0S register is compared with the set value of the ADA0PFT register. If the result of power-fail comparison matches the condition set by the ADA0PFC bit, the conversion result is stored in the ADA0CRn register, and the INTAD signal is generated. If it does not match, the conversion result is stored in the ADA0CRn register, and the INTAD signal is not generated. After completion of the first conversion, the next conversion is started, unless the ADA0M0.ADA0CE bit is cleared to 0 (n = 0 to 11).

(2) Continuous scan mode

In this mode, the results of converting the voltages of the analog input pins sequentially selected from the ANI0 pin to the pin specified by the ADA0S register are stored, and the set value of the ADA0CR0H register of channel 0 is compared with the value of the ADA0PFT register. If the result of power-fail comparison matches the condition set by the ADA0PFC bit, the conversion result is stored in the ADA0CR0 register, and the INTAD signal is generated. If it does not match, the conversion result is stored in the ADA0CR0 register, and the INTAD signal is not generated.


After the result of the first conversion has been stored in the ADA0CR0 register, the results of sequentially converting the voltages on the analog input pins up to the pin specified by the ADA0S register are continuously stored. After completion of conversion, the next conversion is started from the ANI0 pin again, unless the ADA0CE bit is cleared to 0.

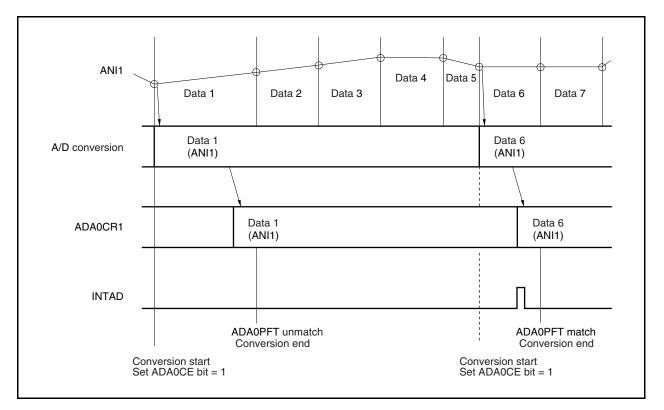


Figure 13-9. Timing Example of Continuous Scan Mode Operation (When Power-Fail Comparison Is Made: ADA0S Register = 03H)

(3) One-shot select mode

In this mode, the result of converting the voltage of the analog input pin specified by the ADA0S register is compared with the set value of the ADA0PFT register. If the result of power-fail comparison matches the condition set by the ADA0PFC bit, the conversion result is stored in the ADA0CRn register, and the INTAD signal is generated. If it does not match, the conversion result is stored in the ADA0CRn register, and the INTAD signal is not generated. Conversion is stopped after it has been completed.

(4) One-shot scan mode

In this mode, the results of converting the voltages of the analog input pins sequentially selected from the ANI0 pin to the pin specified by the ADA0S register are stored, and the set value of the ADA0CR0H register of channel 0 is compared with the set value of the ADA0PFT register. If the result of power-fail comparison matches the condition set by the ADA0PFC bit, the conversion result is stored in the ADA0CR0 register and the INTAD signal is generated. If it does not match, the conversion result is stored in the ADA0CR0 register, and the INTAD0 signal is not generated. After the result of the first conversion has been stored in the ADA0CR0 register are sequentially stored. The conversion is stopped after it has been completed.

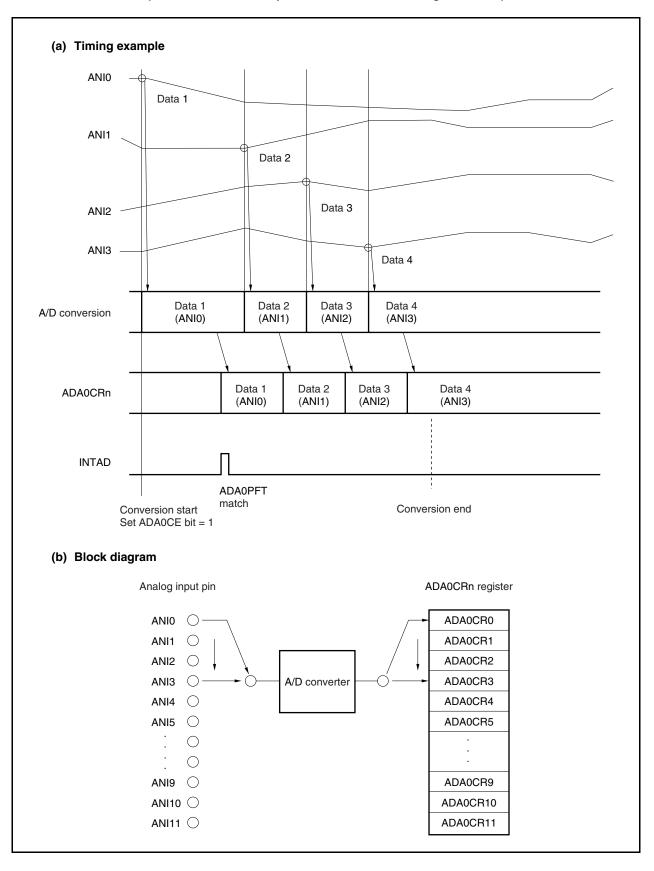
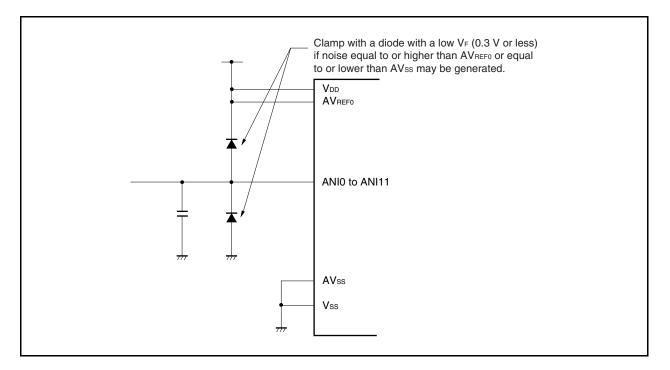


Figure 13-11. Timing Example of One-Shot Scan Mode Operation (When Power-Fail Comparison Is Made: ADA0S Register = 03H)

13.6 Cautions

(1) When A/D converter is not used


When the A/D converter is not used, the power consumption can be reduced by clearing the ADA0M0.ADA0CE bit to 0.

(2) Input range of ANI0 to ANI11 pins

Input the voltage within the specified range to the ANI0 to ANI11 pins. If a voltage equal to or higher than AV_{REF0} or equal to or lower than AV_{ss} (even within the range of the absolute maximum ratings) is input to any of these pins, the conversion value of that channel is undefined, and the conversion value of the other channels may also be affected.

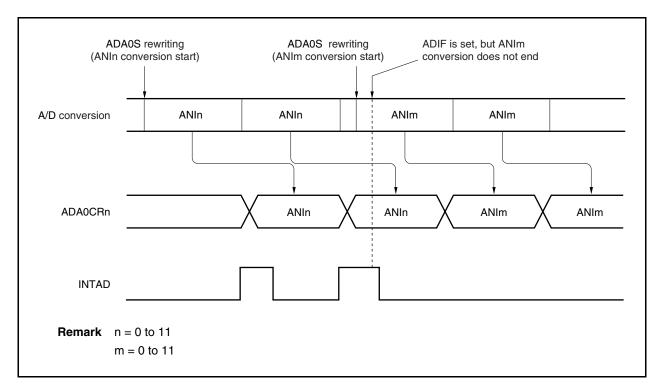
(3) Countermeasures against noise

To maintain the 10-bit resolution, the ANI0 to ANI11 pins must be effectively protected from noise. The influence of noise increases as the output impedance of the analog input source becomes higher. To lower the noise, connecting an external capacitor as shown in Figure 13-12 is recommended.

Figure 13-12. Processing of Analog Input Pin

(4) Alternate I/O

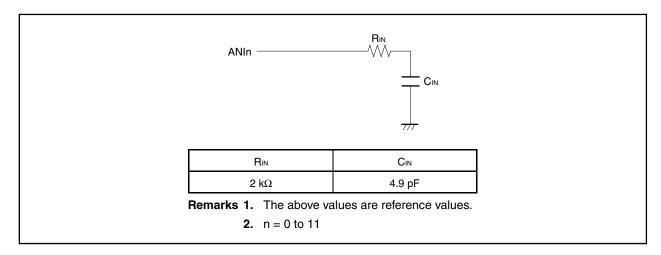
The analog input pins (ANI0 to ANI11) function alternately as port pins. When selecting one of the ANI0 to ANI11 pins to execute A/D conversion, do not execute an instruction to read an input port or write to an output port during conversion as the conversion resolution may drop.


Also the conversion resolution may drop at the pins set as output port pins during A/D conversion if the output current fluctuates due to the effect of the external circuit connected to the port pins.

If a digital pulse is applied to a pin adjacent to the pin whose input signal is being converted, the A/D conversion value may not be as expected due to the influence of coupling noise. Therefore, do not apply a pulse to a pin adjacent to the pin undergoing A/D conversion.

(5) Interrupt request flag (ADIF)

The interrupt request flag (ADIF) is not cleared even if the contents of the ADAOS register are changed. If the analog input pin is changed during A/D conversion, therefore, the result of converting the previously selected analog input signal may be stored and the conversion end interrupt request flag may be set immediately before the ADAOS register is rewritten. If the ADIF flag is read immediately after the ADAOS register is rewritten, the ADIF flag may be set even though the A/D conversion of the newly selected analog input pin has not been completed. When A/D conversion is stopped, clear the ADIF flag before resuming conversion.



(6) Internal equivalent circuit

The following shows the equivalent circuit of the analog input block.

(7) AVREFO pin

- (a) The AV_{REF0} pin is used as the power supply pin of the A/D converter and also supplies power to the alternate-function ports. In an application where a backup power supply is used, be sure to supply the same voltage as V_{DD} to the AV_{REF0} pin as shown in Figure 13-15.
- (b) The AVREF0 pin is also used as the reference voltage pin of the A/D converter. If the source supplying power to the AVREF0 pin has a high impedance or if the power supply has a low current supply capability, the reference voltage may fluctuate due to the current that flows during conversion (especially, immediately after the conversion operation enable bit ADA0CE has been set to 1). As a result, the conversion accuracy may drop. To avoid this, it is recommended to connect a capacitor across the AVREF0 and AVss pins to suppress the reference voltage fluctuation as shown in Figure 13-15.
- (c) If the source supplying power to the AVREFO pin has a high DC resistance (for example, because of insertion of a diode), the voltage when conversion is enabled may be lower than the voltage when conversion is stopped, because of a voltage drop caused by the A/D conversion current.

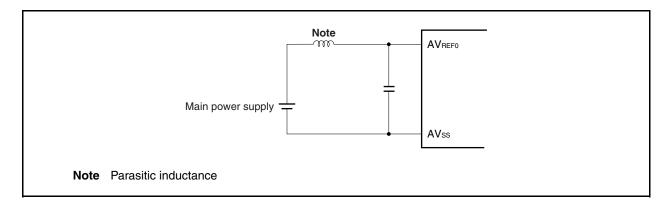


Figure 13-15. AVREFO Pin Processing Example

<R> (8) Reading ADA0CRn register

When the ADA0M0 to ADA0M2, ADA0S, ADA0PFM, or ADA0PFT register is written, the contents of the ADA0CRn register may be undefined. Read the conversion result after completion of conversion and before writing to the ADA0M0 to ADA0M2, ADA0S, ADA0PFM, or ADA0PFT register. Also, when an external/timer trigger is acknowledged, the contents of the ADA0CRn register may be undefined. Read the conversion result after completion of conversion and before the next external/timer trigger is acknowledged. The correct conversion result may not be read at a timing different from the above.

(9) Standby mode

Because the A/D converter stops operating in the STOP mode, conversion results are invalid, so power consumption can be reduced. Operations are resumed after the STOP mode is released, but the A/D conversion results after the STOP mode is released are invalid. When using the A/D converter after the STOP mode is released, before setting the STOP mode or releasing the STOP mode, clear the ADA0M0.ADA0CE bit to 0 then set the ADA0CE bit to 1 after releasing the STOP mode.

In the IDLE1, IDLE2, or subclock operation mode, operation continues. To lower the power consumption, therefore, clear the ADA0M0.ADA0CE bit to 0. In the IDLE1 and IDLE2 modes, since the analog input voltage value cannot be retained, the A/D conversion results after the IDLE1 and IDLE2 modes are released are invalid. The results of conversions before the IDLE1 and IDLE2 modes were set are valid.

(10) High-speed conversion mode

In the high-speed conversion mode, rewriting of the ADA0M0, ADA0M2, ADA0S, ADA0PFM, and ADA0PFT registers and trigger input during the stabilization time are prohibited.

(11) A/D conversion time

A/D conversion time is the total time of stabilization time, conversion time, wait time, and trigger response time (for details of these times, refer to Table 13-2 Conversion Time Selection in Normal Conversion Mode (ADA0HS1 Bit = 0) and Table 13-3 Conversion Time Selection in High-Speed Conversion Mode (ADA0HS1 Bit = 1)).

During A/D conversion in the normal conversion mode, if the ADA0M0, ADA0M2, ADA0S, ADA0PFM, and ADA0PFT registers are written or a trigger is input, reconversion is carried out. However, if the stabilization time end timing conflicts with the writing to these registers, or if the stabilization time end timing conflicts with the trigger input, the stabilization time of 64 clocks is reinserted.

If a conflict occurs again with the reinserted stabilization time end timing, the stabilization time is reinserted. Therefore do not set the trigger input interval and control register write interval to 64 clocks or below.

(12) Variation of A/D conversion results

The results of the A/D conversion may vary depending on the fluctuation of the supply voltage, or may be affected by noise. To reduce the variation, take counteractive measures with the program such as averaging the A/D conversion results.

(13) A/D conversion result hysteresis characteristics

The successive comparison type A/D converter holds the analog input voltage in the internal sample & hold capacitor and then performs A/D conversion. After the A/D conversion has finished, the analog input voltage remains in the internal sample & hold capacitor. As a result, the following phenomena may occur.

- When the same channel is used for A/D conversions, if the voltage is higher or lower than the previous A/D conversion, then hysteresis characteristics may appear where the conversion result is affected by the previous value. Thus, even if the conversion is performed at the same potential, the result may vary.
- When switching the analog input channel, hysteresis characteristics may appear where the conversion result is affected by the previous channel value. This is because one A/D converter is used for the A/D conversions. Thus, even if the conversion is performed at the same potential, the result may vary.

<R>

<R>

13.7 How to Read A/D Converter Characteristics Table

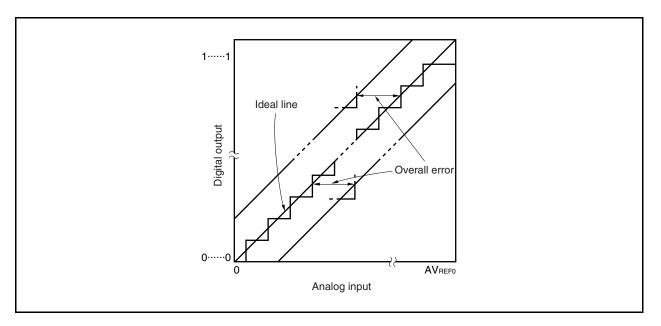
This section describes the terms related to the A/D converter.

(1) Resolution

The minimum analog input voltage that can be recognized, i.e., the ratio of an analog input voltage to 1 bit of digital output is called 1 LSB (least significant bit). The ratio of 1 LSB to the full scale is expressed as %FSR (full-scale range). %FSR is the ratio of a range of convertible analog input voltages expressed as a percentage, and can be expressed as follows, independently of the resolution.

1%FSR = (Maximum value of convertible analog input voltage – Minimum value of convertible analog input voltage)/100

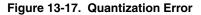

= (AV_{REF0} - 0)/100 = AV_{REF0}/100

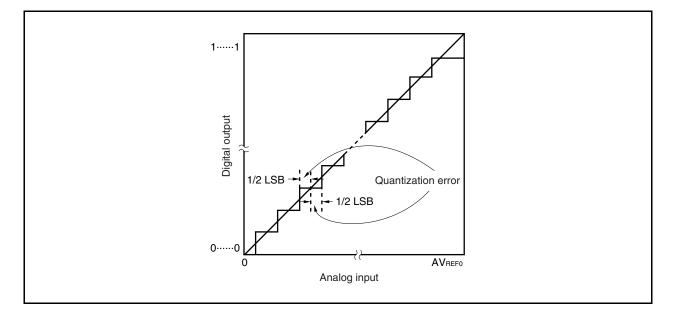

When the resolution is 10 bits, 1 LSB is as follows:

The accuracy is determined by the overall error, independently of the resolution.

(2) Overall error

This is the maximum value of the difference between an actually measured value and a theoretical value. It is a total of zero-scale error, full-scale error, linearity error, and a combination of these errors. The overall error in the characteristics table does not include the quantization error.

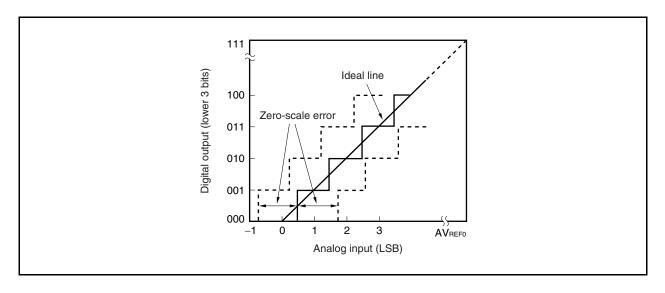




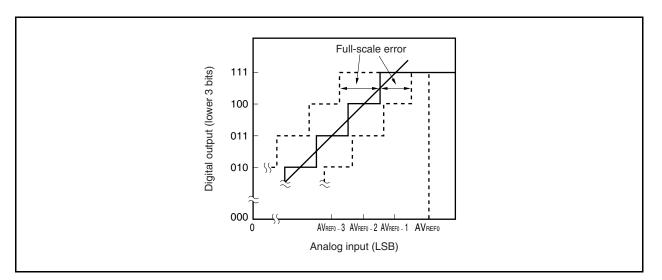
(3) Quantization error

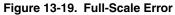
This is an error of $\pm 1/2$ LSB that inevitably occurs when an analog value is converted into a digital value. Because the A/D converter converts analog input voltages in a range of $\pm 1/2$ LSB into the same digital codes, a quantization error is unavoidable.


This error is not included in the overall error, zero-scale error, full-scale error, integral linearity error, or differential linearity error in the characteristics table.



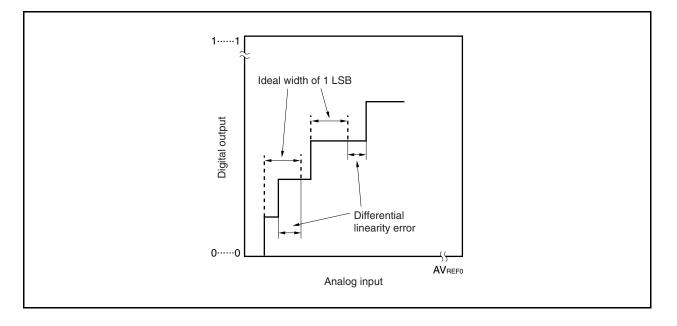
(4) Zero-scale error


This is the difference between the actually measured analog input voltage and its theoretical value when the digital output changes from 0...000 to 0...001 (1/2 LSB).



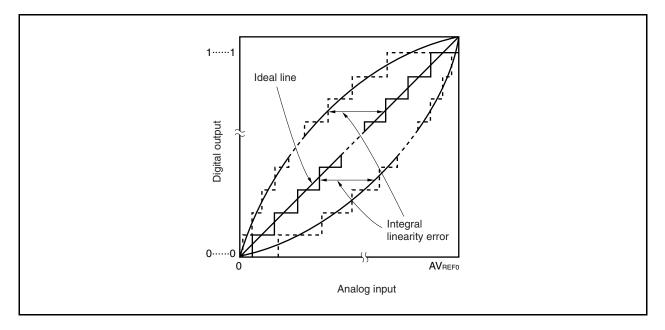
(5) Full-scale error

This is the difference between the actually measured analog input voltage and its theoretical value when the digital output changes from 1...110 to 1...111 (full scale – 3/2 LSB).



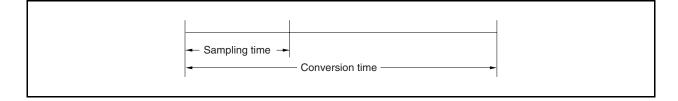
(6) Differential linearity error

Ideally, the width to output a specific code is 1 LSB. This error indicates the difference between the actually measured value and its theoretical value when a specific code is output. This indicates the basic characteristics of the A/D conversion when the voltage applied to the analog input pins of the same channel is consistently increased bit by bit from AVss to AVREFO. When the input voltage is increased or decreased, or when two or more channels are used, see **13.7 (2) Overall error**.



(7) Integral linearity error

This error indicates the extent to which the conversion characteristics differ from the ideal linear relationship. It indicates the maximum value of the difference between the actually measured value and its theoretical value where the zero-scale error and full-scale error are 0.


(8) Conversion time

This is the time required to obtain a digital output after each trigger has been generated. The conversion time in the characteristics table includes the sampling time.

(9) Sampling time

This is the time for which the analog switch is ON to load an analog voltage to the sample & hold circuit.

Figure 13-22. Sampling Time

CHAPTER 14 D/A CONVERTER

14.1 Functions

The D/A converter has the following functions.

- O 8-bit resolution × 2 channels (DA0CS0, DA0CS1)
- O R-2R ladder method
- O Settling time: 3 µs max. (when AVREF1 is 3.0 to 3.6 V and external load is 20 pF)
- O Analog output voltage: AVREF1 × m/256 (m = 0 to 255; value set to DA0CSn register)
- O Operation modes: Normal mode, real-time output mode

Remark n = 0, 1

14.2 Configuration

The D/A converter configuration is shown below.

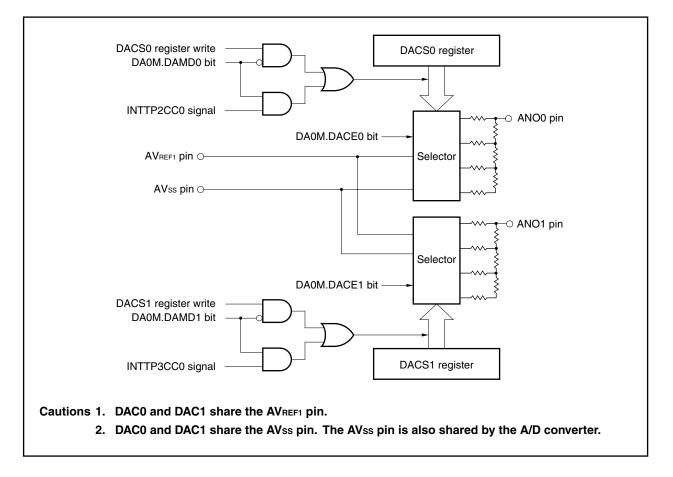


Figure 14-1. Block Diagram of D/A Converter

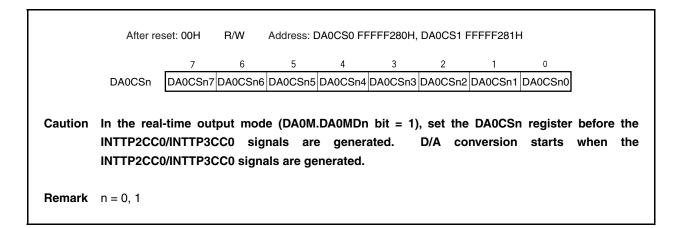
The D/A converter includes the following hardware.

Item	Configuration
Control registers	D/A converter mode register (DA0M) D/A conversion value setting registers 0, 1 (DA0CS0, DA0CS1)

14.3 Registers

The registers that control the D/A converter are as follows.

- D/A converter mode register (DA0M)
- D/A conversion value setting registers 0, 1 (DA0CS0, DA0CS1)


(1) D/A converter mode register (DA0M)

The DA0M register controls the operation of the D/A converter. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

After res	set: 00H	R/W	Address: F	FFFF282H						
	7	6	<5>	<4>	3	2	1	0		
DA0M	0	0	DA0CE1	DA0CE0	0	0	DA0MD1	DA0MD0		
	DA0CEn	En Control of D/A converter operation enable/disable (n = 0, 1)								
	0	Disables operation								
	1	Enables operation								
	DA0MDn									
	0	Normal mode								
	1	Real-time output mode ^{Note}								
Note The output trig	ger in the	real-time	output m	ode (DA0N	1Dn bit =	1) is as fo	ollows.			
 When n = 0: INTTP2CC0 signal (see CHAPTER 7 16-BIT TIMER/EVENT COUNTER P (TMP)) 										
 When n = 1: INTTP3CC0 signal (see CHAPTER 7 16-BIT TIMER/EVENT COUNTER P (TMP)) 										

(2) D/A conversion value setting registers 0, 1 (DA0CS0, DA0CS1)

The DA0CS0 and DA0CS1 registers set the analog voltage value output to the ANO0 and ANO1 pins. These registers can be read or written in 8-bit units. Reset sets these registers to 00H.

14.4 Operation

14.4.1 Operation in normal mode

D/A conversion is performed using a write operation to the DA0CSn register as the trigger. The setting method is described below.

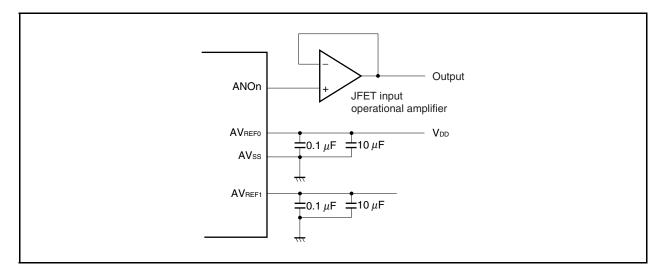
- <1> Set the DA0M.DA0MDn bit to 0 (normal mode).
- <2> Set the analog voltage value to be output to the ANOn pin to the DA0CSn register. Steps <1> and <2> above constitute the initial settings.
- <3> Set the DA0M.DA0CEn bit to 1 (D/A conversion enable). D/A conversion starts when this setting is performed.
- <4> To perform subsequent D/A conversions, write to the DA0CSn register. The previous D/A conversion result is held until the next D/A conversion is performed.
- Remarks 1. For the alternate-function pin settings, see Table 4-15 Settings When Port Pins Are Used for Alternate Functions.
 - **2.** n = 0, 1

14.4.2 Operation in real-time output mode

D/A conversion is performed using the interrupt request signals (INTTP2CC0 and INTTP3CC0) of TMP2 and TMP3 as triggers.

The setting method is described below.

- <1> Set the DA0M.DA0MDn bit to 1 (real-time output mode).
- <2> Set the analog voltage value to be output to the ANOn pin to the DA0CSn register.
- <3> Set the DA0M.DA0CEn bit to 1 (D/A conversion enable). Steps <1> to <3> above constitute the initial settings.
- <4> Operate TMP2 and TMP3.
- <5> D/A conversion starts when the INTTP2CC0 and INTTP3CC0 signals are generated.
- <6> After that, the value set in DA0CSn register is output every time the INTTP2CC0 and INTTP3CC0 signals are generated.


Remarks 1. The output values of the ANO0 and ANO1 pins up to <5> above are undefined.

- 2. For the output values of the ANO0 and ANO1 pins in the HALT, IDLE1, IDLE2, and STOP modes, see CHAPTER 21 STANDBY FUNCTION.
- 3. For the alternate-function pin settings, see Table 4-15 Settings When Port Pins Are Used for Alternate Functions.

14.4.3 Cautions

Observe the following cautions when using the D/A converter of the V850ES/JG2.

- (1) Do not change the set value of the DA0CSn register while the trigger signal is being issued in the real-time output mode.
- (2) Before changing the operation mode, be sure to clear the DA0M.DA0CEn bit to 0.
- (3) When using one of the P10/AN00 and P11/AN01 pins as an I/O port and the other as a D/A output pin, do so in an application where the port I/O level does not change during D/A output.
- (4) Make sure that AVREF0 = VDD = AVREF1 = 3.0 to 3.6 V. If this range is exceeded, the operation is not guaranteed.
- (5) Apply power to AVREF1 at the same timing as AVREF0.
- (6) No current can be output from the ANOn pin (n = 0, 1) because the output impedance of the D/A converter is high. When connecting a resistor of 2 M Ω or less, insert a JFET input operational amplifier between the resistor and the ANOn pin.

Figure 14-2. External Pin Connection Example

(7) Because the D/A converter stops operation in the STOP mode, the ANO0 and ANO1 pins go into a high-impedance state, and the power consumption can be reduced.
In the IDLE1, IDLE2, or subclock operation mode, however, the operation continues. To lower the power consumption, therefore, clear the DA0M.DA0CEn bit to 0.

15.1 Mode Switching of UARTA and Other Serial Interfaces

15.1.1 CSIB4 and UARTA0 mode switching

In the V850ES/JG2, CSIB4 and UARTA0 are alternate functions of the same pin and therefore cannot be used simultaneously. Set UARTA0 in advance, using the PMC3 and PFC3 registers, before use.

Caution The transmit/receive operation of CSIB4 and UARTA0 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.

	set: 0000H	I R/W	Address	: FFFFF44	IGH, FFFFI	-447H		
	15	14	13	12	11	10	9	8
PMC3	0	0	0	0	0	0	PMC39	PMC38
	7	6	5	4	3	2	1	0
	0	0	PMC35	PMC34	PMC33	PMC32	PMC31	PMC30
After res	et: 0000H	R/W	Address:	FFFFF46	6H, FFFF	-467H		
	15	14	13	12	11	10	9	8
PFC3	0	0	0	0	0	0	PFC39	PFC38
	7	6	5	4	3	2	1	0
	0	0	PFC35	PFC34	PFC33	PFC32	PFC31	PFC30
PFCE3L	7	6 0	5 0	4	3 0	2 PFCE32	1 0	0 0
			-				-	_
	PMC32	PFCE32	PFC32			peration mo	ode	
	0	×	×	Port I/O m		peration mo	ode	
	0	× 0	× 0	ASCKA0	node mode	peration mo	ode	
	0	×	×		node mode	peration mo	ode	
	0	× 0	× 0	ASCKA0	node mode		ode	
	0 1 1	× 0 0	× 0	ASCKA0 SCKB4 m	node mode ode		ode	
	0 1 1 PMC3n 0 1	× 0 0 PFC3n	× 0 1	ASCKA0 SCKB4 m	node mode ode		ode	
	0 1 1 PMC3n 0	× 0 0 PFC3n ×	× 0 1 Port I/O m	ASCKA0 i SCKB4 m ode node	node mode ode		bde	

Figure 15-1. CSIB4 and UARTA0 Mode Switch Settings

15.1.2 UARTA2 and I²C00 mode switching

In the V850ES/JG2, UARTA2 and I²C00 are alternate functions of the same pin and therefore cannot be used simultaneously. Set UARTA2 in advance, using the PMC3 and PFC3 registers, before use.

Caution The transmit/receive operation of UARTA2 and I²C00 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.

After re:	set: 0000H	R/W	Address	: FFFFF44	16H, FFFFI	=447H				
	15	14	13	12	11	10	9	8		
PMC3	0	0	0	0	0	0	PMC39	PMC38		
	7	6	5	4	3	2	1	0		
	0	0	PMC35	PMC34	PMC33	PMC32	PMC31	PMC30		
After res	After reset: 0000H R/W Address: FFFFF466H, FFFFF467H									
	15	14	13	12	11	10	9	8		
PFC3	0	0	0	0	0	0	PFC39	PFC38		
	7	6	5	4	3	2	1	0		
	0	0	PFC35	PFC34	PFC33	PFC32	PFC31	PFC30		
										
	PMC3n	PFC3n			Operatio	n mode				
	0	×	Port I/O m							
	1	0	UARTA2 r							
	1	1	I ² C00 mod	le						
	Remarks	s 1. n =	8, 9							
		2. × =	don't care							

Figure 15-2. UARTA2 and I²C00 Mode Switch Settings

15.1.3 UARTA1 and I²C02 mode switching

In the V850ES/JG2, UARTA1 and I²C02 are alternate functions of the same pin and therefore cannot be used simultaneously. Set UARTA1 in advance, using the PMC9, PFC9, and PMCE9 registers, before use.

Caution The transmit/receive operation of UARTA1 and I²C02 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.

After res	set: 0000H	R/W	Address	: FFFFF45	2H, FFFF	=453H		
	15	14	13	12	11	10	9	8
PMC9	PMC915	PMC914	PMC913	PMC912	PMC911	PMC910	PMC99	PMC98
	7	6	5	4	3	2	1	0
	PMC97	PMC96	PMC95	PMC94	PMC93	PMC92	PMC91	PMC90
After reset: 0000H R/W Address: FFFFF472H, FFFFF473H								
	15	14	13	12	11	10	9	8
PFC9	PFC915	PFC914	PFC913	PFC912	PFC911	PFC910	PFC99	PFC98
	7	6	5	4	3	2	1	0
	PFC97	PFC96	PFC95	PFC94	PFC93	PFC92	PFC91	PFC90
After res	et: 0000H	R/W 14	Address: 13	: FFFFF71 12	2H, FFFFF 11	713H 10	9	8
PFCE9	PFCE915	PFCE914	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
	PFCE97	PFCE96	PFCE95	PFCE94	PFCE93	PFCE92	PFCE91	PFCE90
	PMC9n	PFCE9n	PFC9n		Ol	peration mo	ode	
	1	1	0	UARTA1	mode			
	1	1	1	I ² C02 mod	de			
	Remark	n = 0, 1						

Figure 15-3. UARTA1 and I²C02 Mode Switch Settings

15.2 Features

- O Transfer rate: 300 bps to 312.5 kbps (using internal system clock of 20 MHz and dedicated baud rate generator)
- O Full-duplex communication: Internal UARTAn receive data register (UAnRX)

Internal UARTAn transmit data register (UAnTX)

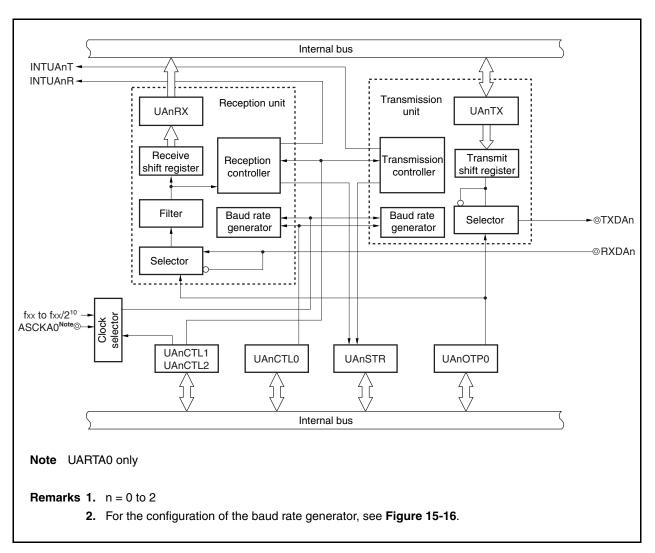
O 2-pin configuration: TXDAn: Transmit data output pin

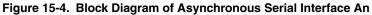
RXDAn: Receive data input pin

- O Reception error output function
 - Parity error
 - Framing error
 - Overrun error
- O Interrupt sources: 2
 - Reception complete interrupt (INTUAnR):

This interrupt occurs upon transfer of receive data from the receive shift register to receive data register after serial transfer completion, in the reception enabled status.

• Transmission enable interrupt (INTUAnT):


This interrupt occurs upon transfer of transmit data from the transmit data register to the transmit shift register in the transmission enabled status.


- O Character length: 7, 8 bits
- O Parity function: Odd, even, 0, none
- O Transmission stop bit: 1, 2 bits
- O On-chip dedicated baud rate generator
- O MSB-/LSB-first transfer selectable
- O Transmit/receive data inverted input/output possible
- O SBF (Sync Break Field) transmission/reception in the LIN (Local Interconnect Network) communication format
 - 13 to 20 bits selectable for the SBF transmission
 - Recognition of 11 bits or more possible for SBF reception
 - SBF reception flag provided

Remark n = 0 to 2

15.3 Configuration

The block diagram of the UARTAn is shown below.

UARTAn includes the following hardware.

Table 15-1. Configuration of UARTA	'n
------------------------------------	----

Item	Configuration
Registers	UARTAn control register 0 (UAnCTL0) UARTAn control register 1 (UAnCTL1) UARTAn control register 2 (UAnCTL2) UARTAn option control register 0 (UAnOPT0) UARTAn status register (UAnSTR) UARTAn receive shift register UARTAn receive data register (UAnRX) UARTAn transmit shift register UARTAn transmit data register (UAnTX)

(1) UARTAn control register 0 (UAnCTL0)

The UAnCTL0 register is an 8-bit register used to specify the UARTAn operation.

(2) UARTAn control register 1 (UAnCTL1)

The UAnCTL1 register is an 8-bit register used to select the input clock for the UARTAn.

(3) UARTAn control register 2 (UAnCTL2)

The UAnCTL2 register is an 8-bit register used to control the baud rate for the UARTAn.

(4) UARTAn option control register 0 (UAnOPT0)

The UAnOPT0 register is an 8-bit register used to control serial transfer for the UARTAn.

(5) UARTAn status register (UAnSTR)

The UAnSTRn register consists of flags indicating the error contents when a reception error occurs. Each one of the reception error flags is set (to 1) upon occurrence of a reception error.

(6) UARTAn receive shift register

This is a shift register used to convert the serial data input to the RXDAn pin into parallel data. Upon reception of 1 byte of data and detection of the stop bit, the receive data is transferred to the UAnRX register. This register cannot be manipulated directly.

(7) UARTAn receive data register (UAnRX)

The UAnRX register is an 8-bit register that holds receive data. When 7 characters are received, 0 is stored in the highest bit (when data is received LSB first).

In the reception enabled status, receive data is transferred from the UARTAn receive shift register to the UAnRX register in synchronization with the completion of shift-in processing of 1 frame.

Transfer to the UAnRX register also causes the reception complete interrupt request signal (INTUAnR) to be output.

(8) UARTAn transmit shift register

The transmit shift register is a shift register used to convert the parallel data transferred from the UAnTX register into serial data.

When 1 byte of data is transferred from the UAnTX register, the shift register data is output from the TXDAn pin. This register cannot be manipulated directly.

(9) UARTAn transmit data register (UAnTX)

The UAnTX register is an 8-bit transmit data buffer. Transmission starts when transmit data is written to the UAnTX register. When data can be written to the UAnTX register (when data of one frame is transferred from the UAnTX register to the UARTAn transmit shift register), the transmission enable interrupt request signal (INTUANT) is generated.

15.4 Registers

(1) UARTAn control register 0 (UAnCTL0)

The UAnCTL0 register is an 8-bit register that controls the UARTAn serial transfer operation. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 10H.

After re	eset: 10H	R/W	Address: U	A0CTL0 F	FFFA00H	, UA1CTL0	FFFFFA1	IOH,	
			U,	A2CTL0 F	FFFA20H				
	<7>	<6>	<5>	<4>	3	2	1	0	
UAnCTL0	UAnPWR	UAnTXE UAnRXE UAnDIR UAnPS1 UAnPS0 UAnCL UAnSL							
(n = 0 to 2)									
	UAnPWR	VR UARTAn operation control							
	0	Disable U	Disable UARTAn operation (UARTAn reset asynchronously)						
	1	Enable U	ARTAn ope	ration					
	is fixed to		tion is contr by clearing bit = 1).				•	output	
	UAnTXE			Transmis	sion operat	ion enable			
	0	Disable tr	ansmission	operation					
	1	Enable tra	ansmission	operation					
	To stop, • To initia the base	transmiss lize the tra clock, and	ion, set the ion clear the nsmission u d then set th ted (for the b	e UAnTXE unit, clear t he UAnTX	bit to 0 an he UAnTXI E bit to 1 ag	d then UAn E bit to 0, w gain. Othei	PWR bit to ait for two wise, initia	o 0. cycles of	
	UAnRXE			Recepti	on operatio	on enable			
	0	Disable re	eception ope	eration					
	1	Enable re	ception ope	eration					
	To stop • To initia the base	reception, lize the rec clock, an	set the UAr clear the U ception unit, d then set the ted (for the b	AnRXE bit clear the he UAnRX	to 0 and th JAnRXE bi E bit to 1 a	nen UAnPW it to 0, wait gain. Othe	/R bit to 0. for two pe rwise, initi	riods of	

UAnDIR		Transfer direction	IR Transfer direction selection					
0	MSB-first	transfer						
1	LSB-first t	transfer						
the UAn	RXE bit = (e rewritten only when the UAnPV). a and reception are performed in						
UAnPS1	UAnPS0	Parity selection during transmission	Parity selection during reception					
0	0	No parity output	Reception with no parity					
0	1	0 parity output	Reception with 0 parity					
1	0	Odd parity output	Odd parity check					
1	1	Even parity output	Even parity check					
Therefor • When tra	otion with 0 re, the UAn ansmission	parity" is selected during reception STR.UAnPE bit is not set. and reception are performed in 20 bits to 20						
 If "Recept Therefor When training 	otion with 0 re, the UAn ansmission and UAnF	STR.UAnPE bit is not set.	the LIN format, clear the					
 If "Recept Therefor When tra UAnPS1 	otion with 0 re, the UAn ansmission and UAnF	STR.UAnPE bit is not set. and reception are performed in 2S0 bits to 00.	the LIN format, clear the					
If "Recept Therefore When the UAnPS1 UAnPS1 UAnCL 0 1	otion with 0 re, the UAn ansmission and UAnF Specifica 7 bits 8 bits	STR.UAnPE bit is not set. and reception are performed in 2S0 bits to 00. tion of data character length of 1	the LIN format, clear the frame of transmit/receive data					
 If "Recept Therefor When traditional UAnPS1 UAnCL 0 1 This reg the UAn 	otion with 0 re, the UAn ansmission and UAnF Specifica 7 bits 8 bits ister can be RXE bit = 0	STR.UAnPE bit is not set. and reception are performed in 2S0 bits to 00. tion of data character length of 1 e rewritten only when the UAnPV	the LIN format, clear the frame of transmit/receive data VR bit = 0 or the UAnTXE bit =					
 If "Recept Therefor When traditional UAnPS1 UAnCL 0 1 This registry the UAn When traditional UAN 	otion with 0 re, the UAn ansmission and UAnF Specifica 7 bits 8 bits ister can be RXE bit = 0	STR.UAnPE bit is not set. and reception are performed in 2S0 bits to 00. tion of data character length of 1 e rewritten only when the UAnPV	the LIN format, clear the frame of transmit/receive data VR bit = 0 or the UAnTXE bit = the LIN format, set the UAnCL					
 If "Recept Therefor When traudation UAnPS1 UAnCL 0 1 This registry the UAn When traubit to 1. 	otion with 0 re, the UAn ansmission and UAnF Specifica 7 bits 8 bits ister can be RXE bit = 0	STR.UAnPE bit is not set. and reception are performed in 250 bits to 00. tion of data character length of 1 e rewritten only when the UAnPV and reception are performed in	the LIN format, clear the frame of transmit/receive data VR bit = 0 or the UAnTXE bit = the LIN format, set the UAnCL					
 If "Recept Therefor When traditional UAnPS1 UAnCL 0 1 This registry the UAn When traditional UAnSL 	otion with 0 re, the UAn ansmission and UAnF Specifica 7 bits 8 bits ister can be RXE bit = 0 ansmission	STR.UAnPE bit is not set. and reception are performed in 250 bits to 00. tion of data character length of 1 e rewritten only when the UAnPV and reception are performed in	the LIN format, clear the frame of transmit/receive data VR bit = 0 or the UAnTXE bit = the LIN format, set the UAnCL					

(2) UARTAn control register 1 (UAnCTL1)

For details, see 15.7 (2) UARTAn control register 1 (UAnCTL1).

(3) UARTAn control register 2 (UAnCTL2)

For details, see 15.7 (3) UARTAn control register 2 (UAnCTL2).

(2/2)

(4) UARTAn option control register 0 (UAnOPT0)

The UAnOPT0 register is an 8-bit register that controls the serial transfer operation of the UARTAn register. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 14H.

		UA2OPT0 FFFFFA23H								
	<7>	6	5	4	3	2	1	0		
UAnOPT0	UAnSRF	UAnSRF UAnSRT UAnSTT UAnSLS2 UAnSLS1 UAnSLS0 UAnTDL UAnRD								
(n = 0 to 2)										
	UAnSRF	SBF reception flag								
	0			UAnPWR		TL0.UAnF	RXE bit = 0	are set.		
	1	During SE	3F receptio	n						
	The UAn reception		held at 1 w again.	tion is judge hen an SB / bit.				en SBF		
	UAnSRT			SBF	reception	trigger				
	0				-					
	1	SBF rece	ption trigge	r						
		ays read. I.	For SBF re	er bit durin ception, se ng the UAn	t the UAnS	SRT bit (to	1) to enable			
	 Set the l 			UAnSTT SBF transmission trigger						
				SBF tr	ansmissio	n trigger				
				SBF tr	ansmissio -	n trigger				
	UAnSTT	SBF trans	mission tri		ansmissio –	n trigger				

<R>

UAnSLS2	UAnSLS1	UAnSLS0	SBF transmit length selection				
1	0	1	13-bit output (reset value)				
1	1	0	14-bit output				
1	1	1	15-bit output				
0	0	0	16-bit output				
0	0	1	17-bit output				
0	1	0	18-bit output				
0	1	1	19-bit output				
1	0	0	20-bit output				
This regis	ster can be	set when tr	e UAnPWR bit = 0 or when the UAnTXE bit = 0				
UAnTDL			Transmit data level bit				
0	Normal ou	utput of tran	sfer data				
1	Inverted o	output of tra	nsfer data				
The out			pin can be inverted using the UAnTDL bit. the UAnPWR bit = 0 or when the UAnTXE bit =				
 This reg 			Receive data level bit				
		lormal input of transfer data					
	Normal in	put of trans					
UAnRDL		put of trans	fer data				

(5) UARTAn status register (UAnSTR)

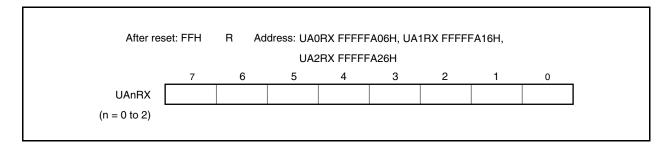
The UAnSTR register is an 8-bit register that displays the UARTAn transfer status and reception error contents. This register can be read or written in 8-bit or 1-bit units, but the UAnTSF bit is a read-only bit, while the UAnPE, UAnFE, and UAnOVE bits can both be read and written. However, these bits can only be cleared by writing 0; they cannot be set by writing 1 (even if 1 is written to them, the value is retained). The initialization conditions are shown below.

Register/Bit	Initialization Conditions
UAnSTR register	ResetUAnCTL0.UAnPWR = 0
UAnTSF bit	• UAnCTL0.UAnTXE = 0
UAnPE, UAnFE, UAnOVE bits	0 writeUAnCTL0.UAnRXE = 0

(2/2)

			ι	JA2STR FF	FFFA24H					
	<7>	6	5	4	3	<2>	<1>	<0>		
UAnSTR	UAnTSF	0	0	0	0	UAnPE	UAnFE	UAnOVE		
(n = 0 to 2)										
	UAnTSF	Transfer status flag								
	0	 When the UAnPWR bit = 0 or the UAnTXE bit = 0 has been set. When, following transfer completion, there was no next data transfer from UAnTX register 								
	1	Write to U	AnTX reg	ister						
	initializing initialization	the transn	nission uni	it, check tha	t the UAn	nuous transr TSF bit = 0 hen initializa	before per	forming		
	UAnPE			P	arity error	flag				
	0	When th When 0		R bit = 0 or		XE bit = 0 h	as been se	et.		
	1	When par	ity of data	and parity I	oit do not i	match during	g reception	۱.		
	The UAr	PE bit can	be read an	CTL0.UAnP Id written, bu	S0 bits. It it can on	e settings of ly be cleare	d by writing			
	The UAr	PE bit can	be read an	CTL0.UAnP Id written, bu it. When 1 i	S0 bits. It it can on	ly be cleare this bit, the	d by writing			
	The UAr it cannot	PE bit can be set by w	be read an rriting 1 to e UAnPW	CTLO.UAnP Id written, bu it. When 1 i Fra R bit = 0 or	S0 bits. It it can on s written to uming erro	ly be cleare this bit, the	d by writing value is ret	ained.		
	The UAr it cannot UAnFE	 PE bit can be set by w When th When 0 	be read an rriting 1 to e UAnPW has been	CTLO.UAnP Id written, bu it. When 1 i Fra R bit = 0 or	S0 bits. It it can on s written to uming erro the UAnR	ly be cleare o this bit, the r flag XE bit = 0 h	d by writing value is ret	ained.		
	The UAr it cannot UAnFE 0 1 Only the of the UA writing 0	• When th • When th • When 0 When no • first bit of AnCTL0.U/ nFE bit can	e UAnPW has been stop bit is the receiv AnSL bit. be both r t cannot b	CTL0.UAnP Id written, bu it. When 1 ii Fra R bit = 0 or written detected du e data stop ead and wri	S0 bits. It it can on s written to uming erro the UAnR uring reception bits is che tten, but it	ly be cleare o this bit, the r flag XE bit = 0 h	d by writing value is ret as been so dless of the e cleared b	e value		
	The UAr it cannot UAnFE 0 1 Only the of the UA writing 0	PE bit can be set by w • When th • When 0 When no • first bit of AnCTL0.U/ nFE bit can to it, and it • is retained	e UAnPW has been stop bit is the receiv AnSL bit. be both r t cannot b	CTL0.UAnP Id written, bu it. When 1 ii Fra R bit = 0 or written detected du e data stop ead and wri e set by writ	S0 bits. It it can on s written to uming erro the UAnR uring reception bits is che tten, but it	ly be cleare o this bit, the r flag IXE bit = 0 h otion ecked, regar can only be . When 1 is	d by writing value is ret as been so dless of the e cleared b	e value		
	The UAr it cannot UAnFE 0 1 Only the of the UA writing 0 the value	• When th • When th • When 0 When no • first bit of AnCTL0.U/ nFE bit can to it, and it • is retained	e UAnPW has been stop bit is the receive AnSL bit. be both r t cannot be	CTL0.UAnP Id written, bu it. When 1 ii Fra R bit = 0 or written detected du e data stop ead and wri e set by writ Ove R bit = 0 or	S0 bits. It it can on s written to uming erro the UAnR uring recept bits is che tten, but it ting 1 to it.	ly be cleare o this bit, the r flag IXE bit = 0 h otion ecked, regar can only be . When 1 is	d by writing value is ret as been se dless of the e cleared b written to t	e value y this bit,		
	The UAr it cannot UAnFE 0 1 Only the of the UA writing 0 the value UAnOVE	• When th • When th • When 0 When no • first bit of AnCTL0.U/ nFE bit can to it, and i • is retained • When th • When 0 When rec	e UAnPW has been stop bit is the receive AnSL bit. be both r t cannot b e UAnPW has been eive data	CTL0.UAnP Id written, bu it. When 1 ii Fra R bit = 0 or written detected du e data stop ead and wri e set by writ Ova R bit = 0 or written has been se	S0 bits. It it can on s written to uming erro the UAnR uring recept bits is che tten, but it ting 1 to it errun erro the UAnR et to the U	ly be cleare o this bit, the r flag IXE bit = 0 h otion ecked, regar can only be c When 1 is r flag	d by writing value is ret has been se dless of the e cleared b written to the has been se ter and the	e value y this bit, et.		

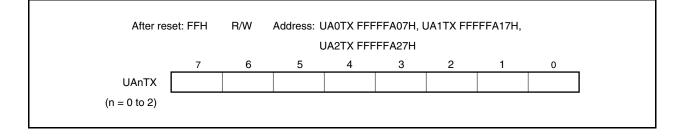
(6) UARTAn receive data register (UAnRX)


The UAnRX register is an 8-bit buffer register that stores parallel data converted by the receive shift register. The data stored in the receive shift register is transferred to the UAnRX register upon completion of reception of 1 byte of data.

During LSB-first reception when the data length has been specified as 7 bits, the receive data is transferred to bits 6 to 0 of the UAnRX register and the MSB always becomes 0. During MSB-first reception, the receive data is transferred to bits 7 to 1 of the UAnRX register and the LSB always becomes 0.

When an overrun error (UAnOVE) occurs, the receive data at this time is not transferred to the UAnRX register and is discarded.

This register is read-only, in 8-bit units.


In addition to reset input, the UAnRX register can be set to FFH by clearing the UAnCTL0.UAnPWR bit to 0.

(7) UARTAn transmit data register (UAnTX)

The UAnTX register is an 8-bit register used to set transmit data. This register can be read or written in 8-bit units.

Reset sets this register to FFH.

15.5 Interrupt Request Signals

The following two interrupt request signals are generated from UARTAn.

- Reception complete interrupt request signal (INTUAnR)
- Transmission enable interrupt request signal (INTUAnT)

The default priority for these two interrupt request signals is reception complete interrupt request signal then transmission enable interrupt request signal.

Interrupt	Priority
Reception complete	High
Transmission enable	Low

Table 15-2. Interrupts and Their Default Priorities

(1) Reception complete interrupt request signal (INTUAnR)

A reception complete interrupt request signal is output when data is shifted into the receive shift register and transferred to the UAnRX register in the reception enabled status.

A reception complete interrupt request signal is also output when a reception error occurs. Therefore, when a reception complete interrupt request signal is acknowledged and the data is read, read the UAnSTR register and check that the reception result is not an error.

No reception complete interrupt request signal is generated in the reception disabled status.

(2) Transmission enable interrupt request signal (INTUAnT)

If transmit data is transferred from the UAnTX register to the UARTAn transmit shift register with transmission enabled, the transmission enable interrupt request signal is generated.

15.6 Operation

15.6.1 Data format

Full-duplex serial data reception and transmission is performed.

As shown in Figure 15-5, one data frame of transmit/receive data consists of a start bit, character bits, parity bit, and stop bit(s).

Specification of the character bit length within 1 data frame, parity selection, specification of the stop bit length, and specification of MSB/LSB-first transfer are performed using the UAnCTL0 register.

Moreover, control of UART output/inverted output for the TXDAn bit is performed using the UAnOPT0.UAnTDL bit.

- Start bit.....1 bit
- Character bits7 bits/8 bits
- Parity bit Even parity/odd parity/0 parity/no parity
- Stop bit1 bit/2 bits

	- 4 data frame - →											
	Start bit	D0	D1	D2	D3	D4	D5	D6	D7	Parity bit	Stop bit	
8-bit data lei	ngth, M	ISB fii	rst, ev	en pa	rity, 1	stop l	bit, tra	nsfer	data:	55H		
					— 1 c	lata fra	me —					
	Start bit	D7	D6	D5	D4	D3	D2	D1	D0	Parity bit	Stop bit	,
8-bit data lei	ngth, M	ISB fii	rst, ev	en pa	rity, 1	stop l	bit, tra	nsfer	data:	55H, T	XDAn inv	ersion
					— 1 d	ata fra	me —					
	Start	D7	D6	D5	D4	D3	D2	D1	D0	Parity	Stop	
	bit	2.								bit	bit	
7-bit data lei				d pari	ty, 2 s	top bi	ts, tra	nsfer			bit	
7-bit data lei				d pari		top bi lata fra	-	nsfer			bit	
7-bit data lei				d pari		-	-	nsfer D6			Stop bit	
	ngth, L	SB fir	st, od D1	D2	1 c	D4	me — D5	D6	data: Parity bit	36H Stop bit	Stop	
7-bit data lei	ngth, L	SB fir	D1	D2	— 1 c D3	D4	me — D5 trans	D6	data: Parity bit	36H Stop bit	Stop	
	ngth, L	SB fir	D1	D2	— 1 c D3	D4	me — D5 trans	D6	data: Parity bit	36H Stop bit	Stop	•

15.6.2 SBF transmission/reception format

The V850ES/JG2 has an SBF (Sync Break Field) transmission/reception control function to enable use of the LIN function.

Remark LIN stands for Local Interconnect Network and is a low-speed (1 to 20 kbps) serial communication protocol intended to aid the cost reduction of an automotive network.

LIN communication is single-master communication, and up to 15 slaves can be connected to one master.

The LIN slaves are used to control the switches, actuators, and sensors, and these are connected to the LIN master via the LIN network.

Normally, the LIN master is connected to a network such as CAN (Controller Area Network).

In addition, the LIN bus uses a single-wire method and is connected to the nodes via a transceiver that complies with ISO9141.

In the LIN protocol, the master transmits a frame with baud rate information and the slave receives it and corrects the baud rate error. Therefore, communication is possible when the baud rate error in the slave is $\pm 15\%$ or less.

Figures 15-6 and 15-7 outline the transmission and reception manipulations of LIN.

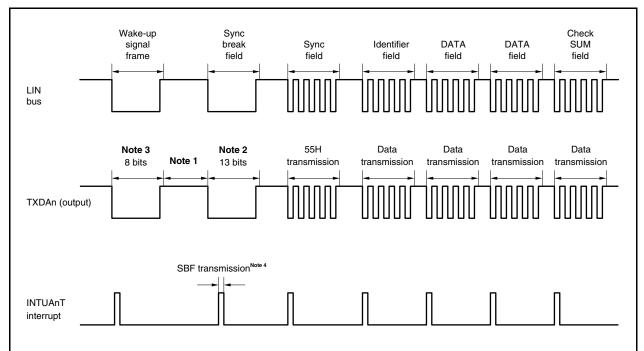
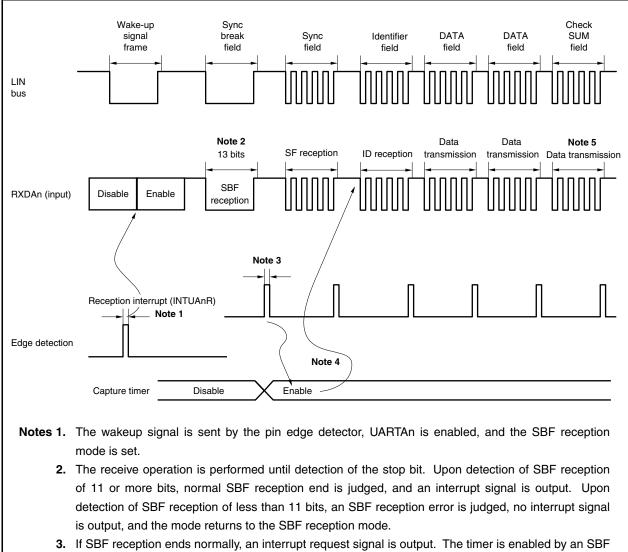



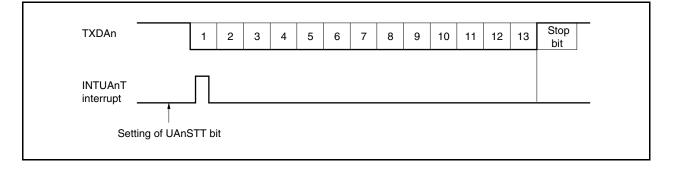
Figure 15-6. LIN Transmission Manipulation Outline

Notes 1. The interval between each field is controlled by software.

- 2. SBF output is performed by hardware. The output width is the bit length set by the UAnOPT0.UAnSBL2 to UAnOPT0.UAnSBL0 bits. If even finer output width adjustments are required, such adjustments can be performed using the UAnCTLn.UAnBRS7 to UAnCTLn.UAnBRS0 bits.
- **3.** 80H transfer in the 8-bit mode is substituted for the wakeup signal frame.
- **4.** A transmission enable interrupt request signal (INTUAnT) is output at the start of each transmission. The INTUAnT signal is also output at the start of each SBF transmission.

Figure 15-7. LIN Reception Manipulation Outline

- **3.** If SBF reception ends normally, an interrupt request signal is output. The timer is enabled by an SBF reception complete interrupt. Moreover, error detection for the UAnSTR.UAnOVE, UAnSTR.UAnPE, and UAnSTR.UAnFE bits is suppressed and UART communication error detection processing and UARTAn receive shift register and data transfer of the UAnRX register are not performed. The UARTAn receive shift register holds the initial value, FFH.
- 4. The RXDAn pin is connected to TI (capture input) of the timer, the transfer rate is calculated, and the baud rate error is calculated. The value of the UAnCTL2 register obtained by correcting the baud rate error after dropping UARTA enable is set again, causing the status to become the reception status.
- 5. Check-sum field distinctions are made by software. UARTAn is initialized following CSF reception, and the processing for setting the SBF reception mode again is performed by software.


15.6.3 SBF transmission

When the UAnCTL0.UAnPWR bit = UAnCTL0.UAnTXE bit = 1, the transmission enabled status is entered, and SBF transmission is started by setting (to 1) the SBF transmission trigger (UAnOPT0.UAnSTT bit).

Thereafter, a low level the width of bits 13 to 20 specified by the UAnOPT0.UAnSLS2 to UAnOPT0.UAnSLS0 bits is output. A transmission enable interrupt request signal (INTUAnT) is generated upon SBF transmission start. Following the end of SBF transmission, the UAnSTT bit is automatically cleared. Thereafter, the UART transmission mode is restored.

Transmission is suspended until the data to be transmitted next is written to the UAnTX register, or until the SBF transmission trigger (UAnSTT bit) is set.

15.6.4 SBF reception

The reception enabled status is achieved by setting the UAnCTL0.UAnPWR bit to 1 and then setting the UAnCTL0.UAnRXE bit to 1.

The SBF reception wait status is set by setting the SBF reception trigger (UAnOPT0.UAnSTR bit) to 1.

In the SBF reception wait status, similarly to the UART reception wait status, the RXDAn pin is monitored and start bit detection is performed.

Following detection of the start bit, reception is started and the internal counter counts up according to the set baud rate.

When a stop bit is received, if the SBF width is 11 or more bits, normal processing is judged and a reception complete interrupt request signal (INTUANR) is output. The UAnOPT0.UAnSRF bit is automatically cleared and SBF reception ends. Error detection for the UAnSTR.UAnOVE, UAnSTR.UAnPE, and UAnSTR.UAnFE bits is suppressed and UART communication error detection processing is not performed. Moreover, data transfer of the UARTAn reception shift register and UAnRX register is not performed and FFH, the initial value, is held. If the SBF width is 10 or fewer bits, reception is terminated as error processing without outputting an interrupt, and the SBF reception mode is returned to. The UAnSRF bit is not cleared at this time.

Cautions 1. If SBF is transmitted during a data reception, a framing error occurs.

<R> <R>

2. Do not set the SBF reception trigger bit (UAnSRT) and SBF transmission trigger bit (UAnSTT) to 1 during an SBF reception (UAnSRF = 1).

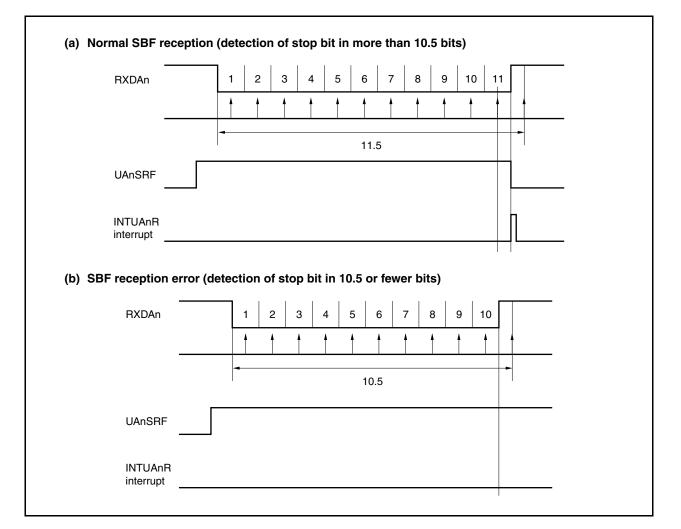
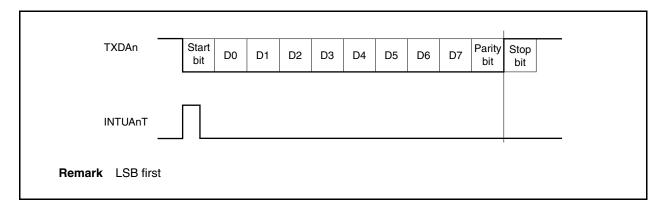


Figure 15-9. SBF Reception

15.6.5 UART transmission

A high level is output to the TXDAn pin by setting the UAnCTL0.UAnPWR bit to 1.


Next, the transmission enabled status is set by setting the UAnCTL0.UAnTXE bit to 1, and transmission is started by writing transmit data to the UAnTX register. The start bit, parity bit, and stop bit are automatically added.

Since the CTS (transmit enable signal) input pin is not provided in UARTAn, use a port to check that reception is enabled at the transmit destination.

The data in the UAnTX register is transferred to the UARTAn transmit shift register upon the start of the transmit operation.

A transmission enable interrupt request signal (INTUAnT) is generated upon completion of transmission of the data of the UAnTX register to the UARTAn transmit shift register, and thereafter the contents of the UARTAn transmit shift register are output to the TXDAn pin.

Write of the next transmit data to the UAnTX register is enabled after the INTUAnT signal is generated.

Figure 15-10. UART Transmission

15.6.6 Continuous transmission procedure

UARTAn can write the next transmit data to the UAnTX register when the UARTAn transmit shift register starts the shift operation. The transmit timing of the UARTAn transmit shift register can be judged from the transmission enable interrupt request signal (INTUAnT).

An efficient communication rate is realized by writing the data to be transmitted next to the UAnTX register during transfer.

Caution When initializing transmissions during the execution of continuous transmissions, make sure that the UAnSTR.UAnTSF bit is 0, then perform the initialization. Transmit data that is initialized when the UAnTSF bit is 1 cannot be guaranteed.

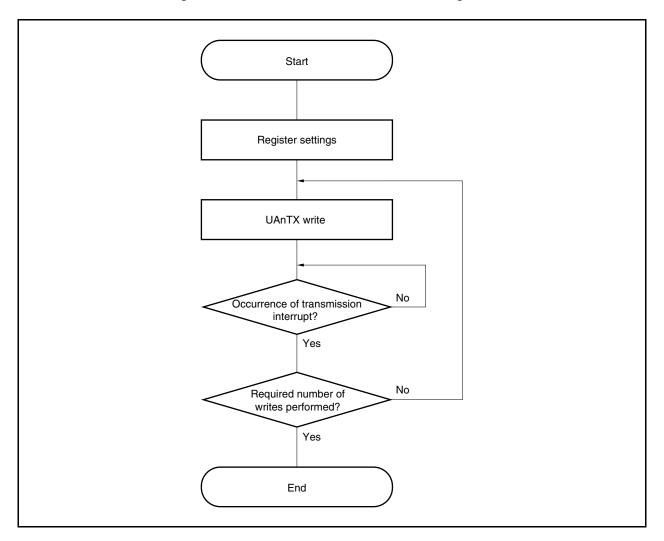


Figure 15-11. Continuous Transmission Processing Flow

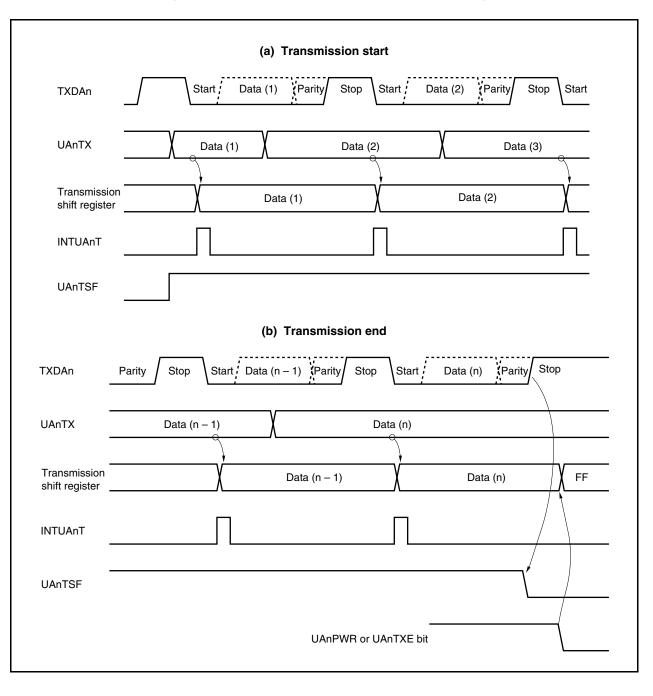


Figure 15-12. Continuous Transmission Operation Timing

15.6.7 UART reception

The reception wait status is set by setting the UAnCTL0.UAnPWR bit to 1 and then setting the UAnCTL0.UAnRXE bit to 1. In the reception wait status, the RXDAn pin is monitored and start bit detection is performed.

Start bit detection is performed using a two-step detection routine.

First the rising edge of the RXDAn pin is detected and sampling is started at the falling edge. The start bit is recognized if the RXDAn pin is low level at the start bit sampling point. After a start bit has been recognized, the receive operation starts, and serial data is saved to the UARTAn receive shift register according to the set baud rate.

When the reception complete interrupt request signal (INTUAnR) is output upon reception of the stop bit, the data of the UARTAn receive shift register is written to the UAnRX register. However, if an overrun error (UAnSTR.UAnOVE bit) occurs, the receive data at this time is not written to the UAnRX register and is discarded.

Even if a parity error (UAnSTR.UAnPE bit) or a framing error (UAnSTR.UAnFE bit) occurs during reception, reception continues until the reception position of the first stop bit, and INTUAnR is output following reception completion.

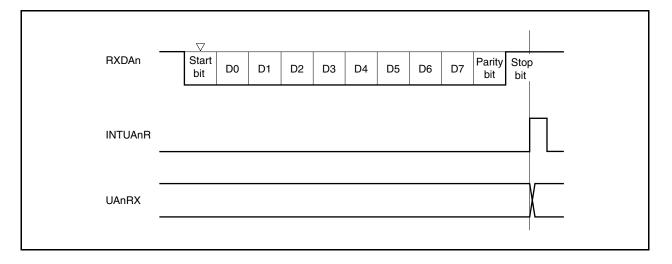
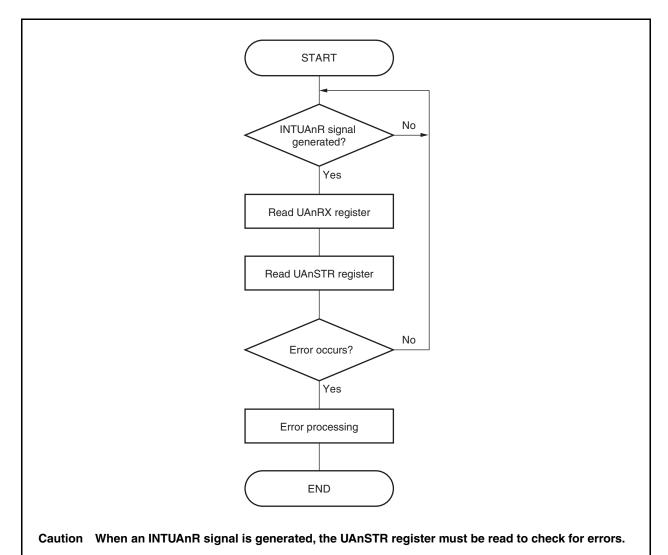


Figure 15-13. UART Reception

- Cautions 1. Be sure to read the UAnRX register even when a reception error occurs. If the UAnRX register is not read, an overrun error occurs during reception of the next data, and reception errors continue occurring indefinitely.
 - 2. The operation during reception is performed assuming that there is only one stop bit. A second stop bit is ignored.
 - 3. When reception is completed, read the UAnRX register after the reception complete interrupt request signal (INTUAnR) has been generated, and clear the UAnPWR or UAnRXE bit to 0. If the UAnPWR or UAnRXE bit is cleared to 0 before the INTUAnR signal is generated, the read value of the UAnRX register cannot be guaranteed.
 - 4. If receive completion processing (INTUAR signal generation) of UARTAn and the UAnPWR bit = 0 or UAnRXE bit = 0 conflict, the INTUAR signal may be generated in spite of these being no data stored in the UAnRX register.


To complete reception without waiting INTUARR signal generation, be sure to clear (0) the interrupt request flag (UAnRIF) of the UAnRIC register, after setting (1) the interrupt mask flag (UAnRMK) of the interrupt control register (UAnRIC) and then set (1) the UAnPWR bit = 0 or UAnRXE bit = 0.

15.6.8 Reception errors

Errors during a receive operation are of three types: parity errors, framing errors, and overrun errors. Data reception result error flags are set in the UAnSTR register and a reception complete interrupt request signal (INTUAnR) is output when an error occurs.

It is possible to ascertain which error occurred during reception by reading the contents of the UAnSTR register. Clear the reception error flag by writing 0 to it after reading it.

• Receive data read flow

Reception error causes

Error Flag	Reception Error	Cause
UAnPE	Parity error	Received parity bit does not match the setting
UAnFE	Framing error	Stop bit not detected
UAnOVE	Overrun error	Reception of next data completed before data was read from receive buffer

When reception errors occur, perform the following procedures depending upon the kind of error.

• Parity error

If false data is received due to problems such as noise in the reception line, discard the received data and retransmit.

• Framing error

A baud rate error may have occurred between the reception side and transmission side or the start bit may have been erroneously detected. Since this is a fatal error for the communication format, check the operation stop in the transmission side, perform initialization processing each other, and then start the communication again.

• Overrun error

Since the next reception is completed before reading receive data, 1 frame of data is discarded. If this data was needed, do a retransmission.

Caution If a receive error interrupt occurs during continuous reception, read the contents of the UAnSTR register must be read before the next reception is completed, then perform error processing.

15.6.9 Parity types and operations

Caution When using the LIN function, fix the UAnPS1 and UAnPS0 bits of the UAnCTL0 register to 00.

The parity bit is used to detect bit errors in the communication data. Normally the same parity is used on the transmission side and the reception side.

In the case of even parity and odd parity, it is possible to detect odd-count bit errors. In the case of 0 parity and no parity, errors cannot be detected.

(a) Even parity

(i) During transmission

The number of bits whose value is "1" among the transmit data, including the parity bit, is controlled so as to be an even number. The parity bit values are as follows.

- Odd number of bits whose value is "1" among transmit data: 1
- Even number of bits whose value is "1" among transmit data: 0

(ii) During reception

The number of bits whose value is "1" among the reception data, including the parity bit, is counted, and if it is an odd number, a parity error is output.

(b) Odd parity

(i) During transmission

Opposite to even parity, the number of bits whose value is "1" among the transmit data, including the parity bit, is controlled so that it is an odd number. The parity bit values are as follows.

- Odd number of bits whose value is "1" among transmit data: 0
- Even number of bits whose value is "1" among transmit data: 1

(ii) During reception

The number of bits whose value is "1" among the receive data, including the parity bit, is counted, and if it is an even number, a parity error is output.

(c) 0 parity

During transmission, the parity bit is always made 0, regardless of the transmit data. During reception, parity bit check is not performed. Therefore, no parity error occurs, regardless of whether the parity bit is 0 or 1.

(d) No parity

No parity bit is added to the transmit data.

Reception is performed assuming that there is no parity bit. No parity error occurs since there is no parity bit.

15.6.10 Receive data noise filter

This filter samples the RXDAn pin using the base clock of the prescaler output.

When the same sampling value is read twice, the match detector output changes and the RXDAn signal is sampled as the input data. Therefore, data not exceeding 2 clock width is judged to be noise and is not delivered to the internal circuit (see **Figure 15-15**). See **15.7 (1) (a) Base clock** regarding the base clock.

Moreover, since the circuit is as shown in Figure 15-14, the processing that goes on within the receive operation is delayed by 3 clocks in relation to the external signal status.

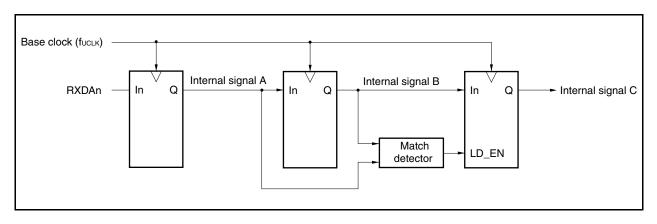
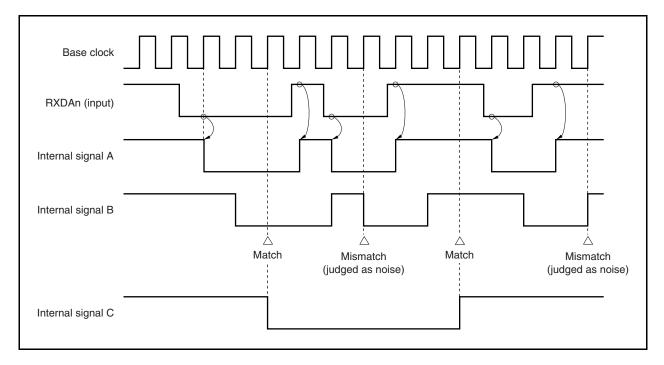



Figure 15-15. Timing of RXDAn Signal Judged as Noise

15.7 Dedicated Baud Rate Generator

The dedicated baud rate generator consists of a source clock selector block and an 8-bit programmable counter, and generates a serial clock during transmission and reception with UARTAn. Regarding the serial clock, a dedicated baud rate generator output can be selected for each channel.

There is an 8-bit counter for transmission and another one for reception.

(1) Baud rate generator configuration

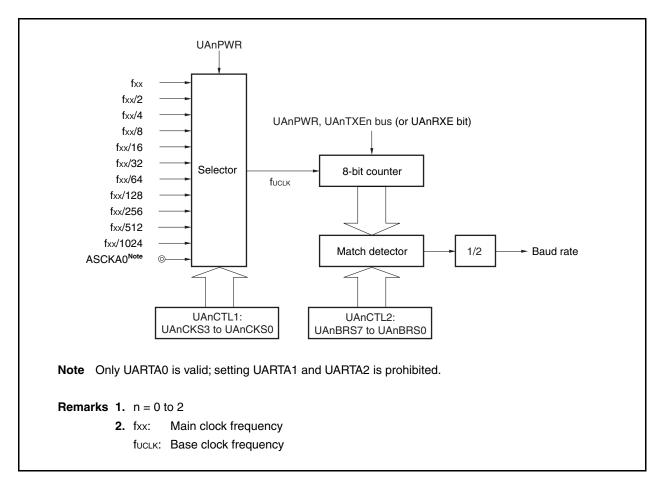


Figure 15-16. Configuration of Baud Rate Generator

(a) Base clock

When the UAnCTL0.UAnPWR bit is 1, the clock selected by the UAnCTL1.UAnCKS3 to UAnCTL1.UAnCKS0 bits is supplied to the 8-bit counter. This clock is called the base clock (fuclk).

(b) Serial clock generation

A serial clock can be generated by setting the UAnCTL1 register and the UAnCTL2 register (n = 0 to 2). The base clock is selected by UAnCTL1.UAnCKS3 to UAnCTL1.UAnCKS0 bits. The frequency division value for the 8-bit counter can be set using the UAnCTL2.UAnBRS7 to UAnCTL2.UAnBRS0 bits.

(2) UARTAn control register 1 (UAnCTL1)

The UAnCTL1 register is an 8-bit register that selects the UARTAn base clock. This register can be read or written in 8-bit units. Reset sets this register to 00H.

	7	6	5	4	3 2 1 0
UAnCTL1	0	0	0	0	UAnCKS3UAnCKS2UAnCKS1UAnCKS
(n = 0 to 2)					
	UAnCKS3	UAnCKS2	UAnCKS1	UAnCKS0	Base clock (fuclk) selection
	0	0	0	0	fxx
	0	0	0	1	fxx/2
	0	0	1	0	fxx/4
	0	0	1	1	fxx/8
	0	1	0	0	fxx/16
	0	1	0	1	fxx/32
	0	1	1	0	fxx/64
	0	1	1	1	fxx/128
	1	0	0	0	fxx/256
	1	0	0	1	fxx/512
	1	0	1	0	fxx/1,024
	1	0	1	1	External clock ^{Note} (ASCKA0 pin)
		Other the	an above		Setting prohibited

Caution Clear the UAnCTL0.UAnPWR bit to 0 before rewriting the UAnCTL1 register.

(3) UARTAn control register 2 (UAnCTL2)

The UAnCTL2 register is an 8-bit register that selects the baud rate (serial transfer speed) clock of UARTAn. This register can be read or written in 8-bit units. Reset sets this register to FFH.

Caution Clear the UAnCTL0.UAnPWR bit to 0 or clear the UAnTXE and UAnRXE bits to 00 before rewriting the UAnCTL2 register.

				UA	2CTL2 F	FFFFA2	22H			
	7	e	6	5	4	3		2	1	0
UAnCTL2	UAnBR	S7 UAnE	BRS6 UA	nBRS5	JAnBRS	4 UAnBl	RS3UAr	BRS2 U	AnBRS1	UAnBRS0
(n = 0 to 2)										
	UAn	UAn	UAn	UAn	UAn	UAn	UAn	UAn	Default	Serial
	BRS7	BRS6	BRS5	BRS4	BRS3	BRS2	BRS1	BRS0	(k)	clock
	0	0	0	0	0	0	×	×	×	Setting prohibited
	0	0	0	0	0	1	0	0	4	fuclк/4
	0	0	0	0	0	1	0	1	5	fuclk/5
	0	0	0	0	0	1	1	0	6	fuclк/6
	:	:	:	:	:	:	:	:	:	:
	1	1	1	1	1	1	0	0	252	fuclк/252
	1	1	1	1	1	1	0	1	253	fuclк/253
	1	1	1	1	1	1	1	0	254	fuclк/254
	1	1	1	1	1	1	1	1	255	fuclк/255
	Remark	K fuclk		-	ency se AnCKS		by the	UAnC ⁻	TL1.UAr	nCKS3 to

(4) Baud rate

The baud rate is obtained by the following equation.

Baud rate =
$$\frac{f_{UCLK}}{2 \times k}$$
 [bps]

When using the internal clock, the equation will be as follows (when using the ASCKA0 pin as clock at UARTA0, calculate using the above equation).

Baud rate =
$$\frac{fxx}{2^{m+1} \times k}$$
 [bps]

Remark fucLK = Frequency of base clock selected by the UAnCTL1.UAnCKS3 to UAnCTL1.UAnCKS0 bits fxx: Main clock frequency

m = Value set using the UAnCTL1.UAnCKS3 to UAnCTL1.UAnCKS0 bits (m = 0 to 10)

k = Value set using the UAnCTL2.UAnBRS7 to UAnCTL2.UAnBRS0 bits (k = 4 to 255)

The baud rate error is obtained by the following equation.

Error (%) =
$$\left(\frac{\text{Actual baud rate (baud rate with error)}}{\text{Target baud rate (correct baud rate)}} - 1\right) \times 100 [\%]$$

= $\left(\frac{\text{fuclk}}{2 \times \text{k} \times \text{Target baud rate}} - 1\right) \times 100 [\%]$

When using the internal clock, the equation will be as follows (when using the ASCKA0 pin as clock at UARTA0, calculate the baud rate error using the above equation).

Error (%) =
$$\left(\frac{f_{XX}}{2^{m+1} \times k \times \text{Target baud rate}} - 1\right) \times 100 [\%]$$

Cautions 1. The baud rate error during transmission must be within the error tolerance on the receiving side.

2. The baud rate error during reception must satisfy the range indicated in (5) Allowable baud rate range during reception.

To set the baud rate, perform the following calculation for setting the UAnCTL1 and UAnCTL2 registers (when using internal clock).

<1> Set k to fxx/($2 \times$ target baud rate) and m to 0.

<2> If k is 256 or greater ($k \ge 256$), reduce k to half (k/2) and increment m by 1 (m + 1).

<3> Repeat Step <2> until k becomes less than 256 (k < 256).

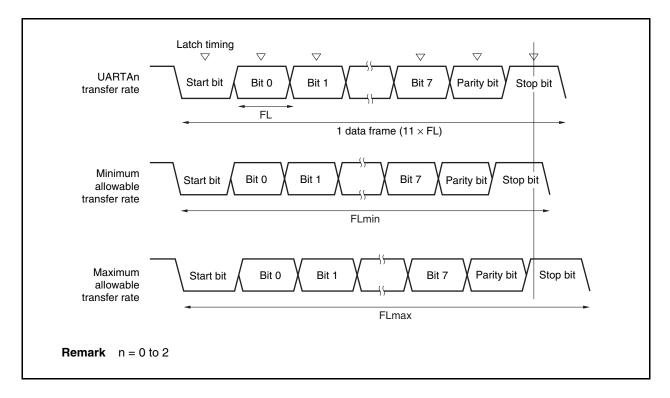
<4> Round off the first decimal point of k to the nearest whole number. If k becomes 256 after round-off, perform Step <2> again to set k to 128.

<5> Set the value of m to UAnCTL1 register and the value of k to the UAnCTL2 register.

Example: When fxx = 20 MHz and target baud rate = 153,600 bps $<1>k = 20,000,000/(2 \times 153,600) = 65.10..., m = 0$ <2>, <3>k = 65.10... < 256, m = 0 <4> Set value of UAnCTL2 register: k = 65 = 41H, set value of UAnCTL1 register: m = 0 Actual baud rate = 20,000,000/(2 × 65) = 153,846 [bps] Baud rate error = {20,000,000/(2 × 65 × 153,600) - 1} × 100 = 0.160 [%]

The representative examples of baud rate settings are shown below.

Baud Rate	fxx = 20 MHz			fxx = 18.874 MHz			f>	x = 16 MH	lz	fxx = 10 MHz		
(bps)	UAnCTL1	UAnCTL2	ERR (%)	UAnCTL1	UAnCTL2	ERR (%)	UAnCTL1	UAnCTL2	ERR (%)	UAnCTL1	UAnCTL2	ERR (%)
300	08H	82H	0.16	07H	F6H	-0.10	07H	D0H	0.16	07H	82H	0.16
600	07H	82H	0.16	06H	F6H	-0.10	06H	D0H	0.16	06H	82H	0.16
1,200	06H	82H	0.16	05H	F6H	-0.10	05H	D0H	0.16	05H	82H	0.16
2,400	05H	82H	0.16	04H	F6H	-0.10	04H	D0H	0.16	04H	82H	0.16
4,800	04H	82H	0.16	03H	F6H	-0.10	03H	D0H	0.16	03H	82H	0.16
9,600	03H	82H	0.16	02H	F6H	-0.10	02H	D0H	0.16	02H	82H	0.16
19,200	02H	82H	0.16	01H	F6H	-0.10	01H	D0H	0.16	01H	82H	0.16
31,250	01H	A0H	0	01H	97H	-0.01	01H	80H	0	00H	A0H	0
38,400	01H	82H	0.16	00H	F6H	-0.10	00H	D0H	0.16	00H	82H	0.16
76,800	00H	82H	0.16	00H	7BH	-0.10	00H	68H	0.16	00H	41H	0.16
153,600	00H	41H	0.16	00H	3DH	0.72	00H	34H	0.16	00H	21H	-1.36
312,500	00H	20H	0	00H	1EH	0.66	00H	1AH	-1.54	00H	10H	0


Table 15-3. Baud Rate Generator Setting Data

Remark fxx: Main clock frequency ERR: Baud rate error (%)

(5) Allowable baud rate range during reception

The baud rate error range at the destination that is allowable during reception is shown below.

Caution The baud rate error during reception must be set within the allowable error range using the following equation.

As shown in Figure 15-17, the receive data latch timing is determined by the counter set using the UAnCTL2 register following start bit detection. The transmit data can be normally received if up to the last data (stop bit) can be received in time for this latch timing.

When this is applied to 11-bit reception, the following is the theoretical result.

 $FL = (Brate)^{-1}$

Brate: UARTAn baud rate (n = 0 to 2)

k: Setting value of UAnCTL2.UAnBRS7 to UAnCTL2.UAnBRS0 bits (n = 0 to 2)

FL: 1-bit data length

Latch timing margin: 2 clocks

Minimum allowable transfer rate: FLmin = $11 \times FL - \frac{k-2}{2k} \times FL = \frac{21k+2}{2k} FL$

Therefore, the maximum baud rate that can be received by the destination is as follows.

BRmax =
$$(FLmin/11)^{-1} = \frac{22k}{21k + 2}$$
 Brate

Similarly, obtaining the following maximum allowable transfer rate yields the following.

$$\frac{10}{11} \times FLmax = 11 \times FL - \frac{k+2}{2 \times k} \times FL = \frac{21k-2}{2 \times k} FL$$

$$FLmax = \frac{21k - 2}{20 \text{ k}} FL \times 11$$

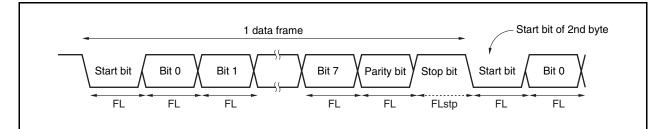
Therefore, the minimum baud rate that can be received by the destination is as follows.

BRmin =
$$(FLmax/11)^{-1} = \frac{20k}{21k - 2}$$
 Brate

Obtaining the allowable baud rate error for UARTAn and the destination from the above-described equations for obtaining the minimum and maximum baud rate values yields the following.

Table 15-4. Maximum/Minimum Allowable Baud Rate Error

Division Ratio (k)	Maximum Allowable Baud Rate Error	Minimum Allowable Baud Rate Error				
4	+2.32%	-2.43%				
8	+3.52%	-3.61%				
20	+4.26%	-4.30%				
50	+4.56%	-4.58%				
100	+4.66%	-4.67%				
255	+4.72%	-4.72%				


Remarks 1. The reception accuracy depends on the bit count in 1 frame, the input clock frequency, and the division ratio (k). The higher the input clock frequency and the larger the division ratio (k), the higher the accuracy.

2. k: Setting value of UAnCTL2.UAnBRS7 to UAnCTL2.UAnBRS0 bits (n = 0 to 2)

(6) Baud rate during continuous transmission

During continuous transmission, the transfer rate from the stop bit to the next start bit is usually 2 base clocks longer. However, timing initialization is performed via start bit detection by the receiving side, so this has no influence on the transfer result.

Assuming 1 bit data length: FL; stop bit length: FLstp; and base clock frequency: fuclk, we obtain the following equation.

FLstp = FL + 2/fuclk

Therefore, the transfer rate during continuous transmission is as follows.

Transfer rate = $11 \times FL + (2/fUCLK)$

15.8 Cautions

- (1) When the clock supply to UARTAn is stopped (for example, in IDLE1, IDLE2, or STOP mode), the operation stops with each register retaining the value it had immediately before the clock supply was stopped. The TXDAn pin output also holds and outputs the value it had immediately before the clock supply was stopped. However, the operation is not guaranteed after the clock supply is resumed. Therefore, after the clock supply is resumed, the circuits should be initialized by setting the UAnCTL0.UAnPWR, UAnCTL0.UAnRXEn, and UAnCTL0.UAnTXEn bits to 000.
- (2) The RXDA1 and KR7 pins must not be used at the same time. To use the RXDA1 pin, do not use the KR7 pin. To use the KR7 pin, do not use the RXDA1 pin (it is recommended to set the PFC91 bit to 1 and clear PFCE91 bit to 0).
- (3) In UARTAn, the interrupt caused by a communication error does not occur. When performing the transfer of transmit data and receive data using DMA transfer, error processing cannot be performed even if errors (parity, overrun, framing) occur during transfer. Either read the UAnSTR register after DMA transfer has been completed to make sure that there are no errors, or read the UAnSTR register during communication to check for errors.
- (4) Start up the UARTAn in the following sequence.
 <1> Set the UAnCTL0.UAnPWR bit to 1.
 <2> Set the ports.
 <3> Set the UAnCTL0.UAnTXE bit to 1, UAnCTL0.UAnRXE bit to 1.
- (5) Stop the UARTAn in the following sequence.
 <1> Set the UAnCTL0.UAnTXE bit to 0, UAnCTL0.UAnRXE bit to 0.
 <2> Set the ports and set the UAnCTL0.UAnPWR bit to 0 (it is not a problem if port setting is not changed).
- (6) In transmit mode (UAnCTL0.UAnPWR bit = 1 and UAnCTL0.UAnTXE bit = 1), do not overwrite the same value to the UAnTX register by software because transmission starts by writing to this register. To transmit the same value continuously, overwrite the same value.
- (7) In continuous transmission, the communication rate from the stop bit to the next start bit is extended 2 base clocks more than usual. However, the reception side initializes the timing by detecting the start bit, so the reception result is not affected.

16.1 Mode Switching of CSIB and Other Serial Interfaces

16.1.1 CSIB4 and UARTA0 mode switching

In the V850ES/JG2, CSIB4 and UARTA0 are alternate functions of the same pin and therefore cannot be used simultaneously. Set CSIB4 in advance, using the PMC3 and PFC3 registers, before use.

Caution The transmit/receive operation of CSIB4 and UARTA0 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.

After res	set: 0000H	R/W	Address	: FFFFF44	6H, FFFF	=447H		
	15	14	13	12	11	10	9	8
PMC3	0	0	0	0	0	0	PMC39	PMC38
	7	6	5	4	3	2	1	0
	0	0	PMC35	PMC34	PMC33	PMC32	PMC31	PMC30
After res	et: 0000H	R/W	Address	FFFFF46	6H, FFFF	467H		
	15	14	13	12	11	10	9	8
PFC3	0	0	0	0	0	0	PFC39	PFC38
	7	6	5	4	3	2	1	0
	0	0	PFC35	PFC34	PFC33	PFC32	PFC31	PFC30
PFCE3L	7 0	6 0	5 0	4 0	3 0	2 PFCE32	1 0	0 0
PFCE3L								
	PMC32	PFCE32	PFC32		0	peration m	ode	
	0	×	×	Port I/O m				
	1	0	0	ASCKA0				
	1	0	1	SCKB4 m				
	DMO0-				Operatio	n mode		
	PMC3n 0	PFC3n ×	Port I/O m	odo	Operatio	minude		
	1	× 0	UARTA0 r					
	1	1	CSIB4 mo					
		1						
	Remarks), 1 Ion't care					

Figure 16-1. CSIB4 and UARTA0 Mode Switch Settings

16.1.2 CSIB0 and I²C01 mode switching

In the V850ES/JG2, CSIB0 and I²C01 are alternate functions of the same pin and therefore cannot be used simultaneously. Set CSIB0 in advance, using the PMC4 and PFC4 registers, before use.

Caution The transmit/receive operation of CSIB0 and I²C01 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.

After reset: 00H R/W Address: FFFFF468H	0 2MC40
After reset: 00H R/W Address: FFFFF468H	
7 6 5 4 3 2 1	
7 6 5 4 3 2 1	0
	0
	0
	PFC40
PMC4n PFC4n Operation mode	
0 × Port I/O mode	
1 0 CSIB0 mode	
1 1 I ² C01 mode	

Figure 16-2. CSIB0 and I²C01 Mode Switch Settings

16.2 Features

- O Transfer rate: 8 Mbps max. (fxx = 20 MHz, using internal clock)
- O Master mode and slave mode selectable
- O 8-bit to 16-bit transfer, 3-wire serial interface
- O Interrupt request signals (INTCBnT, INTCBnR) \times 2
- O Serial clock and data phase switchable
- O Transfer data length selectable in 1-bit units between 8 and 16 bits
- O Transfer data MSB-first/LSB-first switchable

O 3-wire transfer SOBn: Serial data output

SIBn: Serial data input

SCKBn: Serial clock output

Transmission mode, reception mode, and transmission/reception mode specifiable

Remark n = 0 to 4

16.3 Configuration

The following shows the block diagram of CSIBn.

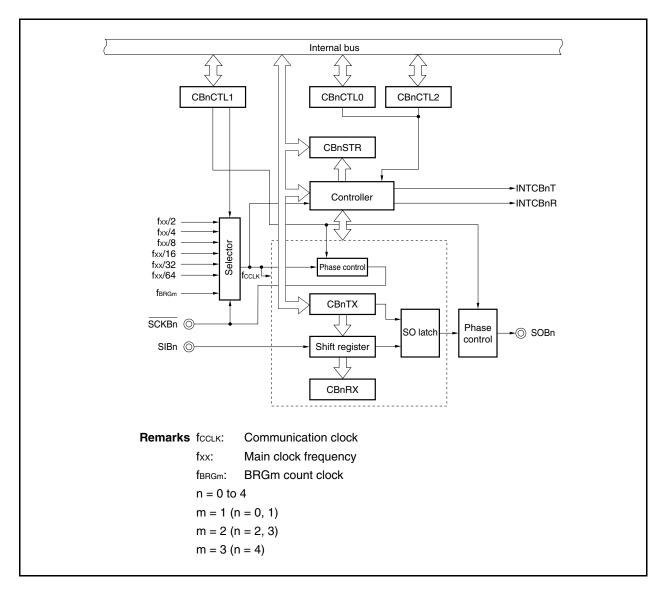


Figure 16-3. Block Diagram of CSIBn

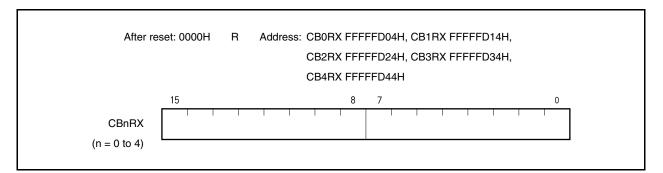
CSIBn includes the following hardware.

Table 16-1.	Configuration	of CSIBn
-------------	---------------	----------

Item	Configuration
Registers	CSIBn receive data register (CBnRX) CSIBn transmit data register (CBnTX)
Control registers	CSIBn control register 0 (CBnCTL0) CSIBn control register 1 (CBnCTL1) CSIBn control register 2 (CBnCTL2) CSIBn status register (CBnSTR)

(1) CSIBn receive data register (CBnRX)

The CBnRX register is a 16-bit buffer register that holds receive data.

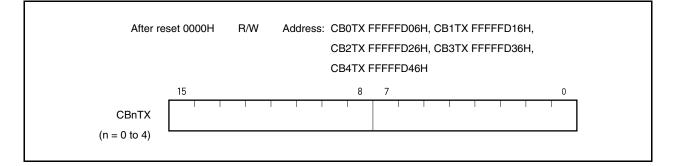

This register is read-only, in 16-bit units.

The receive operation is started by reading the CBnRX register in the reception enabled status.

If the transfer data length is 8 bits, the lower 8 bits of this register are read-only in 8-bit units as the CBnRXL register.

Reset sets this register to 0000H.

In addition to reset input, the CBnRX register can be initialized by clearing (to 0) the CBnPWR bit of the CBnCTL0 register.


(2) CSIBn transmit data register (CBnTX)

The CBnTX register is a 16-bit buffer register used to write the CSIBn transfer data.

This register can be read or written in 16-bit units.

The transmit operation is started by writing data to the CBnTX register in the transmission enabled status. If the transfer data length is 8 bits, the lower 8 bits of this register are read-only in 8-bit units as the CBnTXL register.

Reset sets this register to 0000H.

 Remark
 The communication start conditions are shown below.

 Transmission mode (CBnTXE bit = 1, CBnRXE bit = 0):
 Write to CBnTX register

 Transmission/reception mode (CBnTXE bit = 1, CBnRXE bit = 1):
 Write to CBnTX register

 Reception mode (CBnTXE bit = 0, CBnRXE bit = 1):
 Read from CBnRX register

(1/3)

16.4 Registers

The following registers are used to control CSIBn.

- CSIBn control register 0 (CBnCTL0)
- CSIBn control register 1 (CBnCTL1)
- CSIBn control register 2 (CBnCTL2)
- CSIBn status register (CBnSTR)

(1) CSIBn control register 0 (CBnCTL0)

CBnCTL0 is a register that controls the CSIBn serial transfer operation. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 01H.

			CB	2CTL0 FFF	FFD20H,	CB3CTL	0 FFFFFD30	⊣,
			СВ	4CTL0 FFF	FFD40H			
	<7>	<6>	<5>	<4>	3	2	1	<0>
CBnCTL0	CBnPWR	CBnTXE ^{Note}	CBnRXE ^{Note}	CBnDIR ^{Note}	0	0	CBnTMS ^{Note}	CBnSCE
(n = 0 to 4)								
	CBnPWR		Specific	ation of CS	Bn opera	tion disa	ble/enable	
	0	Disable C	SIBn opera	tion and res	et the CB	nSTR re	gister	
	1	Enable C	SIBn operat	ion				
	• The CB	nPWR bit c	ontrols the	CSIBn oper	ation and	resets th	ne internal circ	uit.
		1						
	CBnTXE ^{Note}		Specifica	ation of trans	smit opera	ation disa	able/enable	
	0	Disable tra	ansmit oper	ation				
	1	Enable tra	ansmit opera	ation				
	The SO	Bn output is	s low level v	vhen the CE	InTXE bit	is 0.		
	CBnRXE ^{Note}		Specifica	ation of rece	ive opera	tion disa	ble/enable	
	0	Disable re	eceive opera	ation				
	1	Enable re	ceive opera	tion				
	even wh	en the pres	scribed data		ed in orde	er to disa	e interrupt is o ble the receiv ated.	
	Ho		BnPWR b				CBnPWR at the same	
	Caution	bit to 0 i		the CBnF	XE and	CBnTX	on, clear the Œ bits.	CBnPWF

(3/3)

of the last data reception, the next communication operation is automatically started.

Caution Be sure to clear bits 3 and 2 to "0".

(2) CSIBn control register 1 (CBnCTL1)

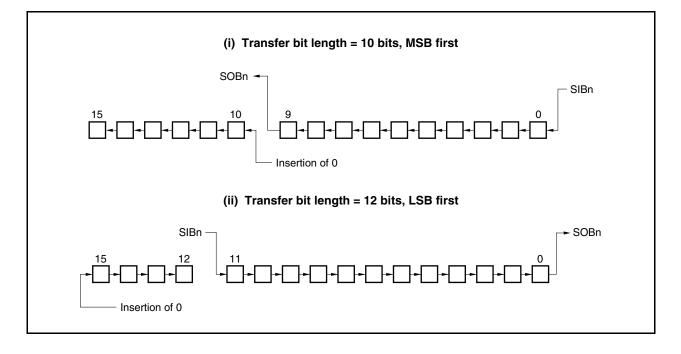
CBnCTL1 is an 8-bit register that controls the CSIBn serial transfer operation. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

	et 00H F	R/W Ad		OCTL1 FFF	FFD21H, C			
				4CTL1 FFF	-	DOCILIF	FFFFD3IN	,
	7	c	5	40121111	3	2	1	0
CBnCTL1	7	6 0	0 0	4 CBnCKP		2 CBnCKS2		0 CBnCKS0
(n = 0 to 4)	Ū	•	0	obliota		BilonoL		Dilottoo
		CBnCKF	CBnDAP		Specification			
				r	eception timir	ig in relatior	to SCKBn	
	Communicati type 1	on O		SCKBn (I/O) SOBn (output) SIBn capture		6 <u>(D5 (D4</u>	<u>↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ </u>	<u>□1 (D0</u>
	Communicati type 2	on O		SCKBn (I/O) OBn (output) SIBn capture			<u></u> <u>D3 (D2 (D</u> ↑ ↑ ↑	
	Communicati type 3	on 1	0	SCKBn (I/O) (output) SIBn capture				
	Communicati type 4	on 1	1	SCKBn (I/O) (output) SIBn capture		 	<u></u> <u>D3 (D2 (D</u> ↑ ↑ ↑	1 <u>X D0</u> ↑
	CBnCKS2	CBnCKS1	CBnCKS0	Commun	ication clock	(fcclk) ^{Note}	Мо	de
	0	0	0	fxx/2			Master I	mode
	0	0	1	fxx/4			Master I	mode
	0	1	0	fxx/8			Master I	mode
	0 0	1 1	0	fxx/8 fxx/16			Master I Master I	
								mode
	0	1	1	fxx/16			Master	mode mode
	0	1 0	1 0	fxx/16 fxx/32			Master I Master I	mode mode mode
	0 1 1	1 0 0	1 0 1	fxx/16 fxx/32 fxx/64 fBRGm	clock (SCKB	<u>n)</u>	Master Master Master	mode mode mode mode
	0 1 1 1 1	1 0 1 1 t the com	1 0 1 0 1 municatic = 0, 1, m	fxx/16 fxx/32 fxx/64 fBRGm External o n clock (fo = 1	clock (SCKB		Master Ma	mode mode mode mode
	0 1 1 1 1 1 Note Se	1 0 1 t the com When n When n	1 0 1 0 1 municatic	fxx/16 fxx/32 fxx/64 fBRGm External of n clock (for = 1 = 2			Master Ma	mode mode mode mode

Caution The CBnCTL1 register can be rewritten only when the CBnCTL0.CBnPWR bit = 0.

(3) CSIBn control register 2 (CBnCTL2)

CBnCTL2 is an 8-bit register that controls the number of CSIBn serial transfer bits. This register can be read or written in 8-bit units. Reset sets this register to 00H.


Caution The CBnCTL2 register can be rewritten only when the CBnCTL0.CBnPWR bit = 0 or when both the CBnTXE and CBnRXE bits = 0.

After re	After reset: 00H		Address: C	B0CTL2 FI	FFFD02H	, CB1CTL2	2 FFFFFD1	2H,
			С	B2CTL2 FI	FFFD22H	, CB3CTL2	2 FFFFFD3	2H,
			С	B4CTL2 FI	FFFD42H			
	7	6	5	4	3	2	1	0
CBnCTL2	0	0	0	0	CBnCL3	CBnCL2	CBnCL1	CBnCL0
(n = 0 to 4)								
	CBnCL3	CBnCL2	CBnCL1	CBnCL0	S	erial registe	er bit length	ı
	0	0	0	0	8 bits			
	0	0	0	1	9 bits			
	0	0	1	0	10 bits			
	0	0	1	1	11 bits			
	0	1	0	0	12 bits			
	0	1	0	1	13 bits			
	0	1	1	0	14 bits			
	0	1	1	1	15 bits			
	1	×	×	×	16 bits			
	Remarks		data stuff					epare and d CBnRX
		2. ×: do	on't care					

(a) Transfer data length change function

The CSIBn transfer data length can be set in 1-bit units between 8 and 16 bits using the CBnCTL2.CBnCL3 to CBnCTL2.CBnCL0 bits.

When the transfer bit length is set to a value other than 16 bits, set the data to the CBnTX or CBnRX register starting from the LSB, regardless of whether the transfer start bit is the MSB or LSB. Any data can be set for the higher bits that are not used, but the receive data becomes 0 following serial transfer.

(4) CSIBn status register (CBnSTR)

CBnSTR is an 8-bit register that displays the CSIBn status.

This register can be read or written in 8-bit or 1-bit units, but the CBnTSF flag is read-only. Reset sets this register to 00H.

In addition to reset input, the CBnSTR register can be initialized by clearing (0) the CBnCTL0.CBnPWR bit.

			CB	2STR FFF	FFD23H, C	B3STR FF	FFFD33H	1,
			CB	4STR FFF	FFD43H			
	<7>	6	5	4	3	2	1	<0>
CBnSTR	CBnTSF	0	0	0	0	0	0	CBnOVE
(n = 0 to 4)								
	CBnTSF			Commu	inication sta	atus flag		
	0	Communi	cation stop	ped				
	1	Communi	cating					
	register, is perfor	and during med.	reception		nen a dumn	ny read of	the CBnR	X register
	register, is perfor	and during med.	reception	, it is set wh		ny read of ast edge of	the CBnR	X register
	register, is perfor When tra	and during med.	reception	, it is set wh	o 0 at the la	ny read of ast edge of	the CBnR	X register
	register, is perform When tra CBnOVE	and during med. ansfer end	reception	, it is set wh	o 0 at the la	ny read of ast edge of	the CBnR	X register

<R> 16.5 Interrupt Request Signals

CSIBn can generate the following two types of interrupt request signals.

- Reception complete interrupt request signal (INTCBnR)
- Transmission enable interrupt request signal (INTCBnT)

Of these two interrupt request signals, the reception complete interrupt request signal has the higher priority by default, and the priority of the transmission enable interrupt request signal is lower.

Interrupt	Priority
Reception complete	High
Transmission enable	Low

Table 16-2. Interrupts and Their Default Priority

(1) Reception complete interrupt request signal (INTCBnR)

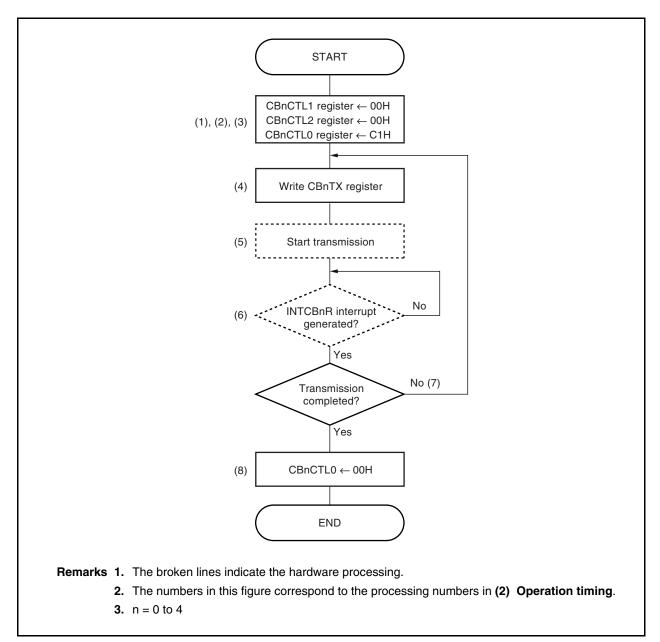
When receive data is transferred to the CBnRX register while reception is enabled, the reception complete interrupt request signal is generated.

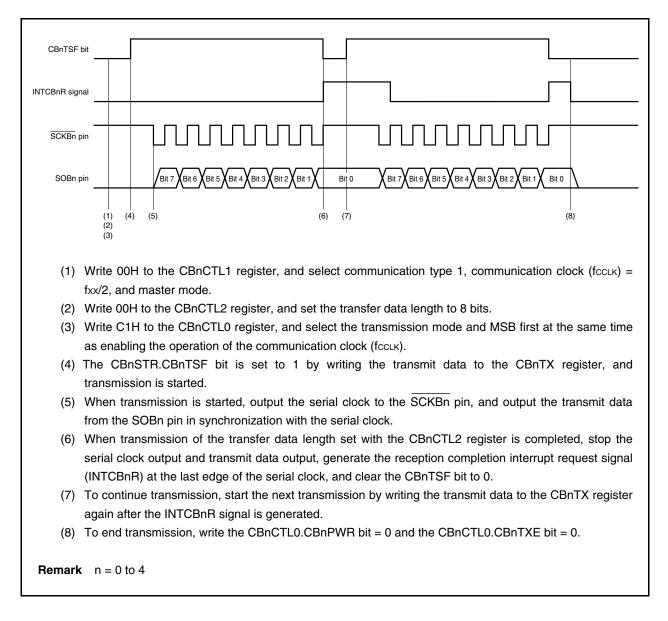
This interrupt request signal can also be generated if an overrun error occurs.

When the reception complete interrupt request signal is acknowledged and the data is read, read the CBnSTR register to check that the result of reception is not an error.

In the single transfer mode, the INTCBnR interrupt request signal is generated upon completion of transmission, even when only transmission is executed.

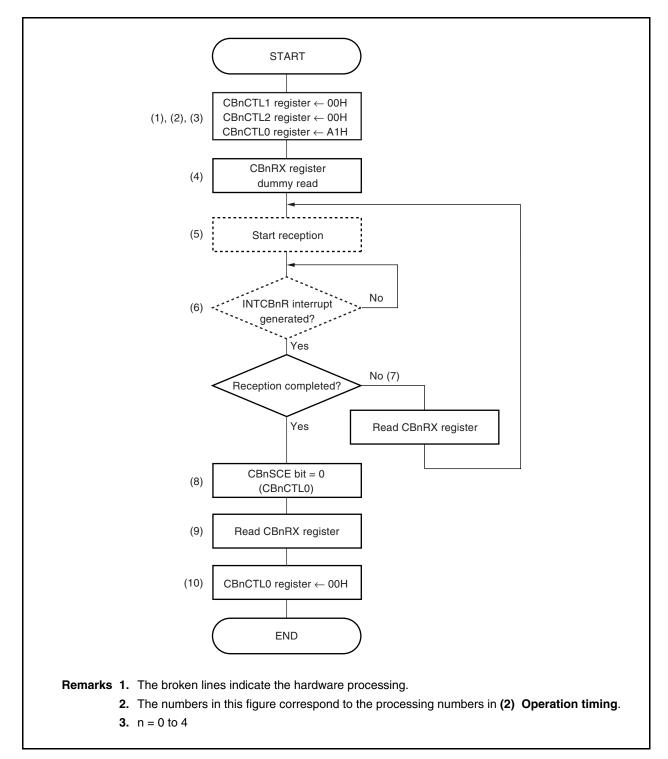
(2) Transmission enable interrupt request signal (INTCBnT)

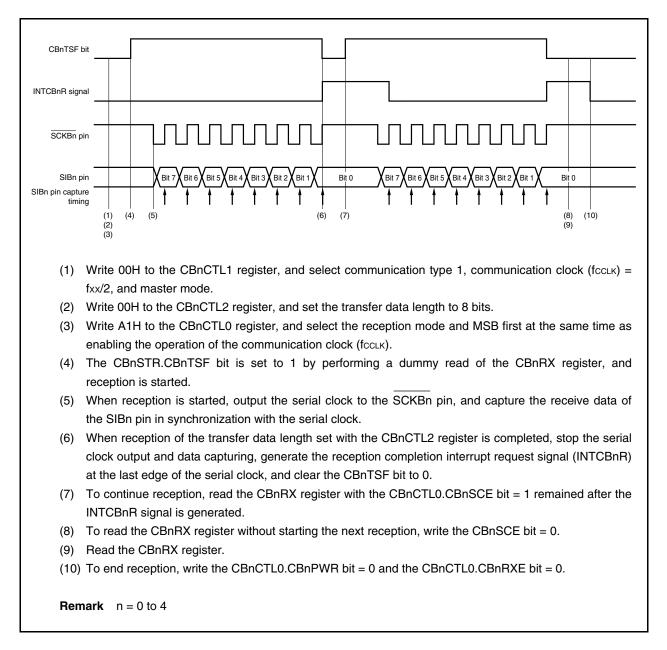

In the continuous transmission or continuous transmission/reception mode, transmit data is transferred from the CBnTX register and, as soon as writing to CBnTX has been enabled, the transmission enable interrupt request signal is generated.


In the single transmission and single transmission/reception modes, the INTCBnT interrupt is not generated.

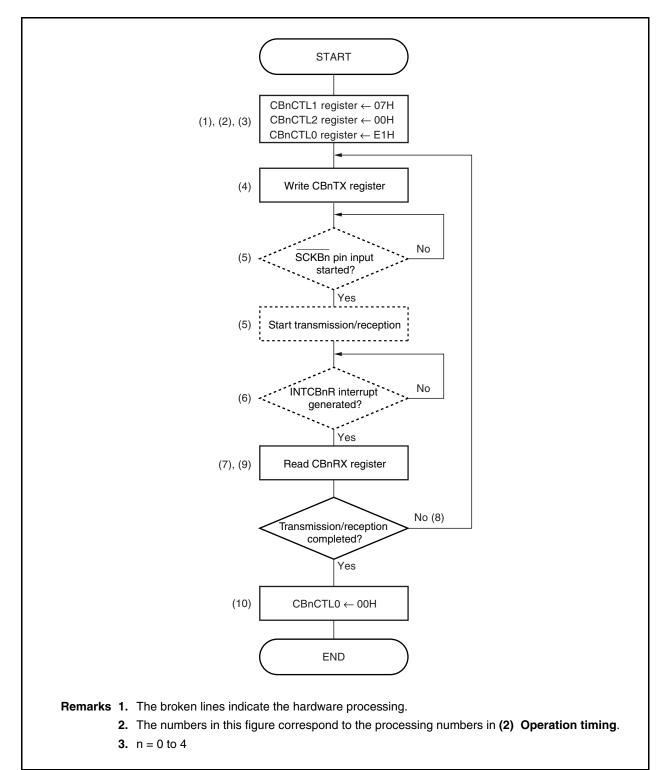
<R> 16.6 Operation

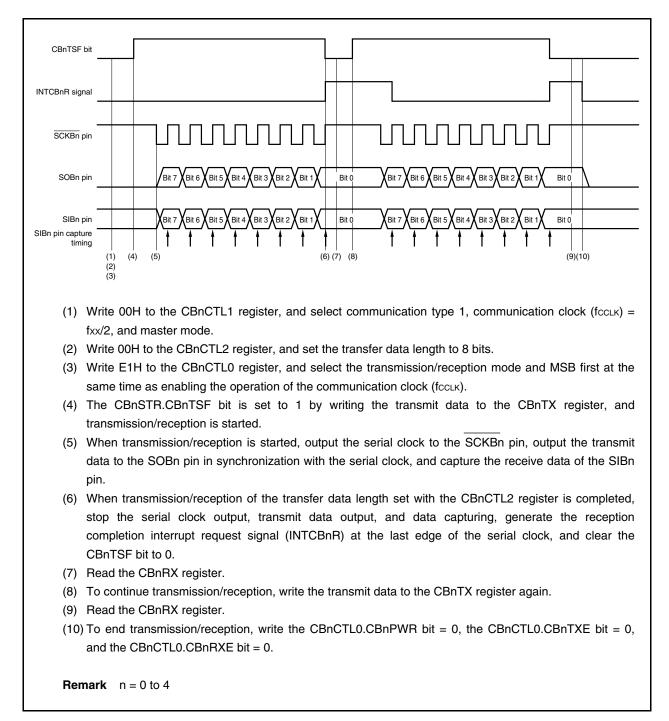
16.6.1 Single transfer mode (master mode, transmission mode)


MSB first (CBnCTL0.CBnDIR bit = 0), communication type 1 (CBnCTL1.CBnCKP and CBnCTL1.CBnDAP bits = 00), communication clock (f_{CCLK}) = $f_{XX}/2$ (CBnCTL1.CBnCKS2 to CBnCTL1.CBnCKS0 bits = 000), transfer data length = 8 bits (CBnCTL2.CBnCL3 to CBnCTL2.CBnCL0 bits = 0000)

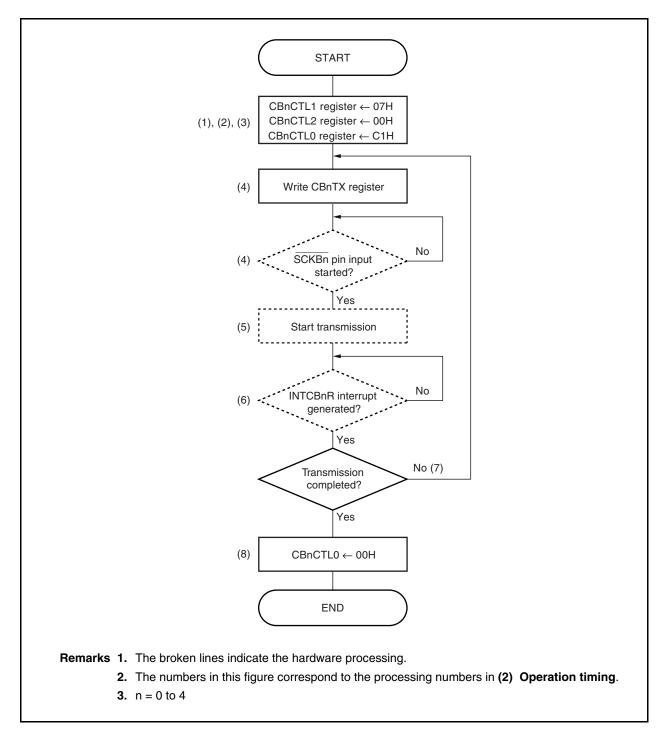


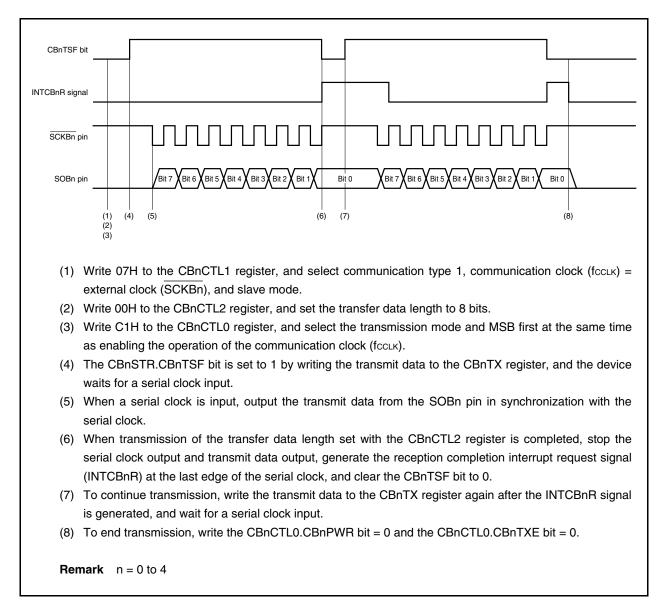
16.6.2 Single transfer mode (master mode, reception mode)


MSB first (CBnCTL0.CBnDIR bit = 0), communication type 1 (CBnCTL1.CBnCKP and CBnCTL1.CBnDAP bits = 00), communication clock (fccLK) = fxx/2 (CBnCTL1.CBnCKS2 to CBnCTL1.CBnCKS0 bits = 000), transfer data length = 8 bits (CBnCTL2.CBnCL3 to CBnCTL2.CBnCL0 bits = 0000)

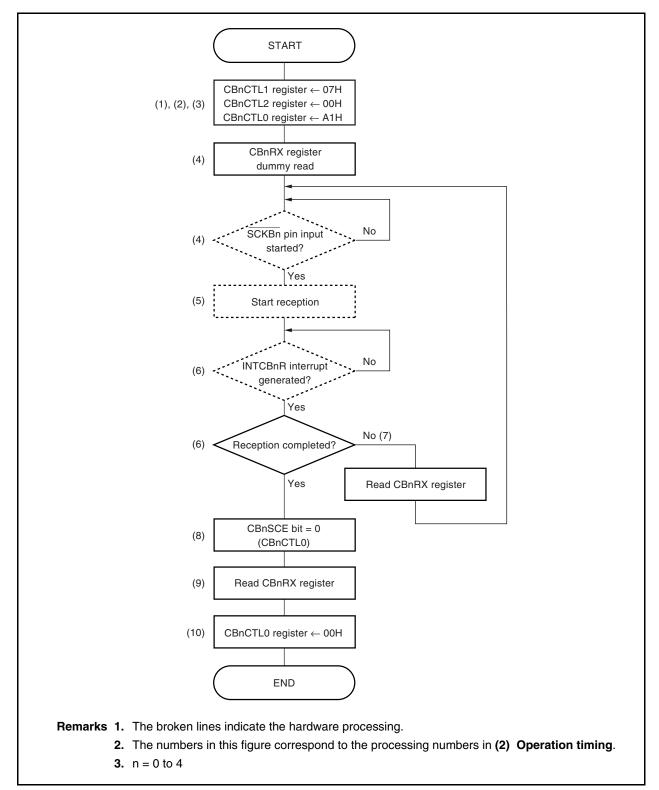


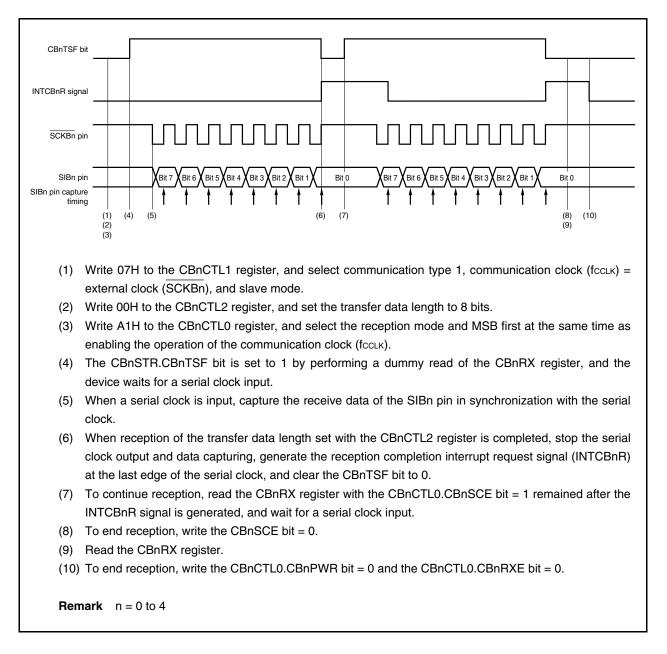
16.6.3 Single transfer mode (master mode, transmission/reception mode)


MSB first (CBnCTL0.CBnDIR bit = 0), communication type 1 (CBnCTL1.CBnCKP and CBnCTL1.CBnDAP bits = 00), communication clock (fccLK) = fxx/2 (CBnCTL1.CBnCKS2 to CBnCTL1.CBnCKS0 bits = 000), transfer data length = 8 bits (CBnCTL2.CBnCL3 to CBnCTL2.CBnCL0 bits = 0000)

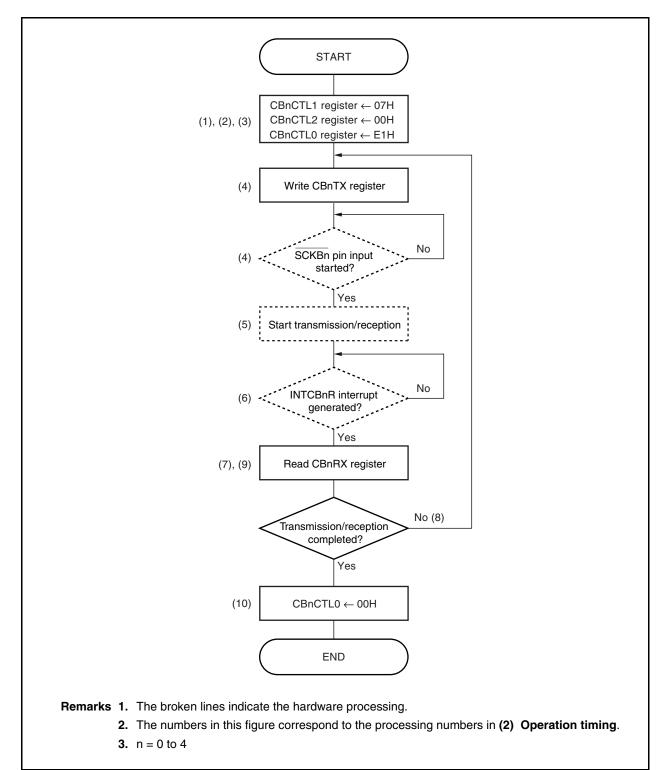


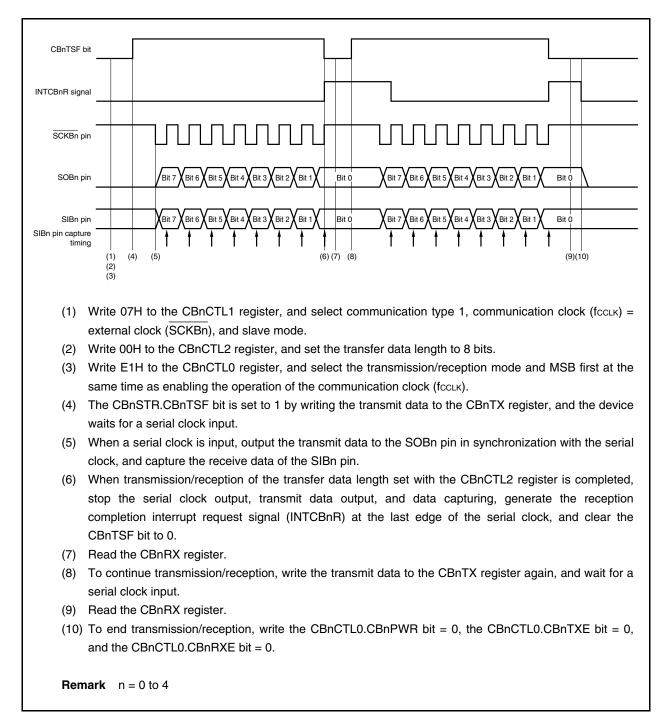
16.6.4 Single transfer mode (slave mode, transmission mode)


MSB first (CBnCTL0.CBnDIR bit = 0), communication type 1 (CBnCTL1.CBnCKP and CBnCTL1.CBnDAP bits = 00), communication clock (f_{CCLK}) = external clock (\overline{SCKBn}) (CBnCTL1.CBnCKS2 to CBnCTL1.CBnCKS0 bits = 111), transfer data length = 8 bits (CBnCTL2.CBnCL3 to CBnCTL2.CBnCL0 bits = 0000)

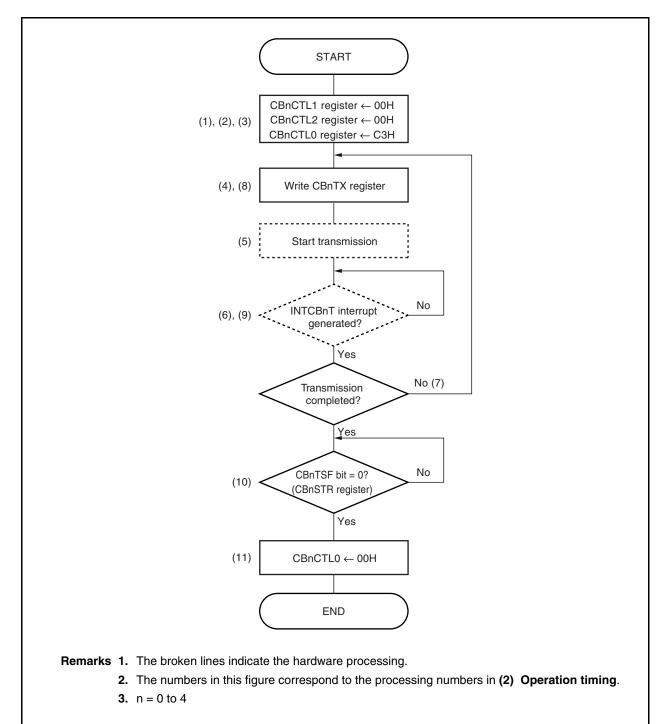


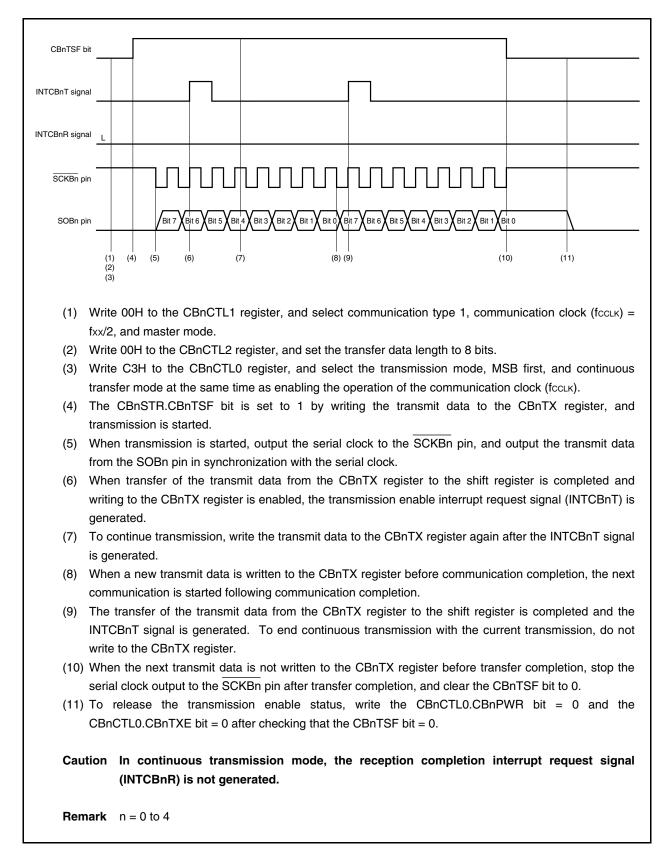
16.6.5 Single transfer mode (slave mode, reception mode)


MSB first (CBnCTL0.CBnDIR bit = 0), communication type 1 (CBnCTL1.CBnCKP and CBnCTL1.CBnDAP bits = 00), communication clock (f_{CCLK}) = external clock (\overline{SCKBn}) (CBnCTL1.CBnCKS2 to CBnCTL1.CBnCKS0 bits = 111), transfer data length = 8 bits (CBnCTL2.CBnCL3 to CBnCTL2.CBnCL0 bits = 0000)

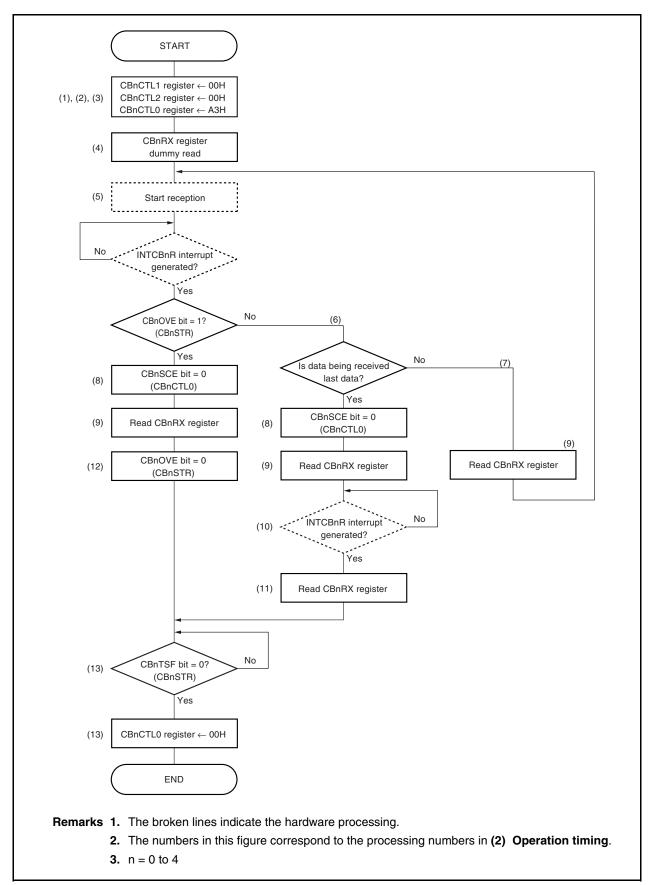


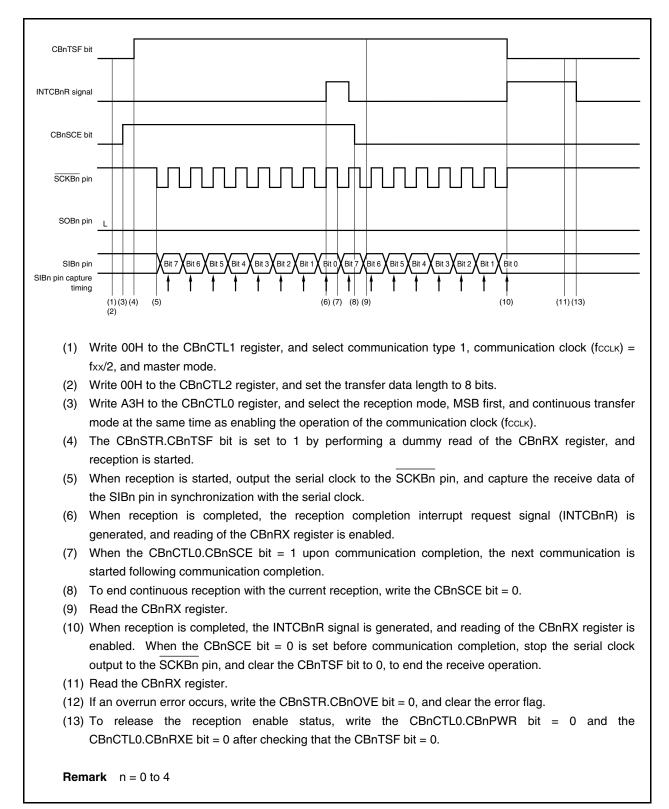
16.6.6 Single transfer mode (slave mode, transmission/reception mode)


MSB first (CBnCTL0.CBnDIR bit = 0), communication type 1 (CBnCTL1.CBnCKP and CBnCTL1.CBnDAP bits = 00), communication clock (f_{CCLK}) = external clock (\overline{SCKBn}) (CBnCTL1.CBnCKS2 to CBnCTL1.CBnCKS0 bits = 111), transfer data length = 8 bits (CBnCTL2.CBnCL3 to CBnCTL2.CBnCL0 bits = 0000)

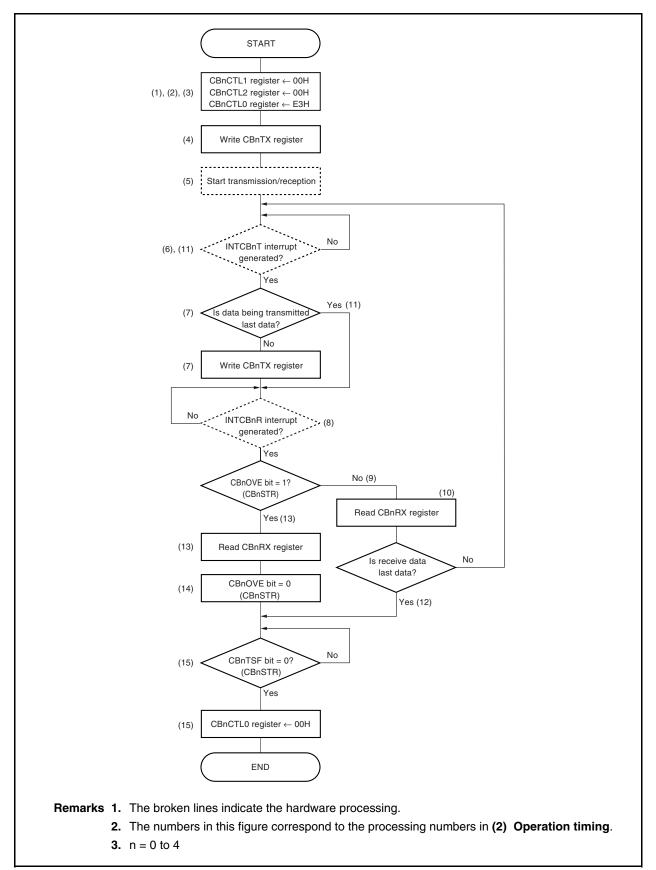


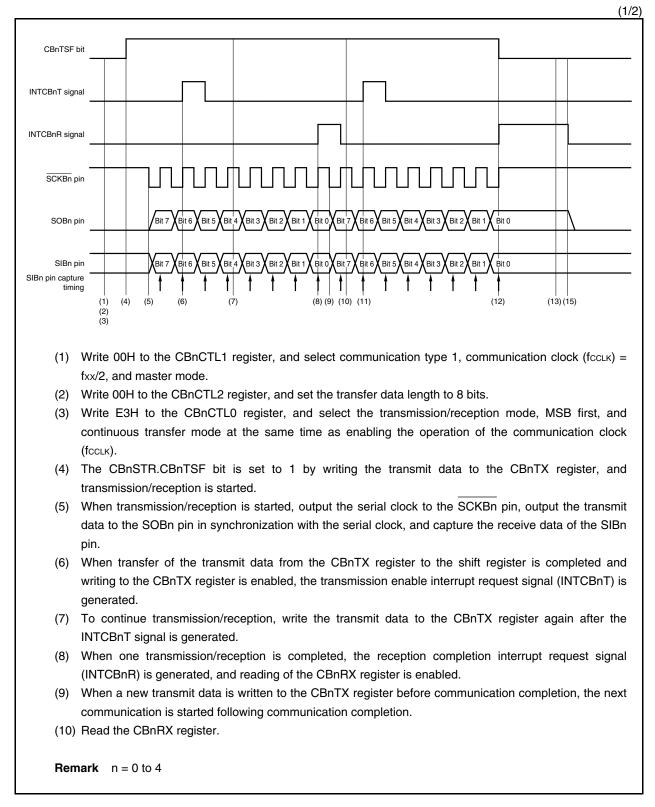
16.6.7 Continuous transfer mode (master mode, transmission mode)


MSB first (CBnCTL0.CBnDIR bit = 0), communication type 1 (CBnCTL1.CBnCKP and CBnCTL1.CBnDAP bits = 00), communication clock (f_{CCLK}) = $f_{XX}/2$ (CBnCTL1.CBnCKS2 to CBnCTL1.CBnCKS0 bits = 000), transfer data length = 8 bits (CBnCTL2.CBnCL3 to CBnCTL2.CBnCL0 bits = 0000)



16.6.8 Continuous transfer mode (master mode, reception mode)

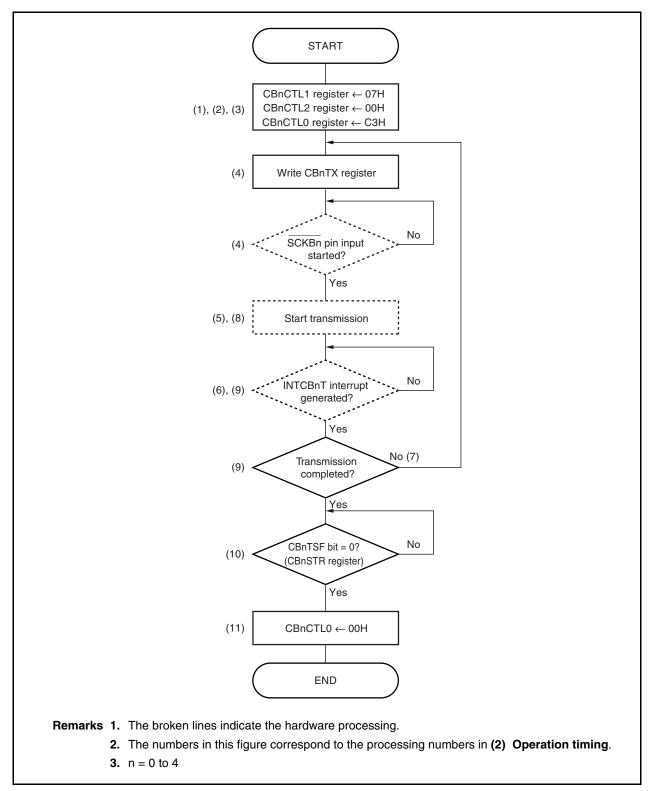

MSB first (CBnCTL0.CBnDIR bit = 0), communication type 1 (CBnCTL1.CBnCKP and CBnCTL1.CBnDAP bits = 00), communication clock (f_{CCLK}) = $f_{XX}/2$ (CBnCTL1.CBnCKS2 to CBnCTL1.CBnCKS0 bits = 000), transfer data length = 8 bits (CBnCTL2.CBnCL3 to CBnCTL2.CBnCL0 bits = 0000)

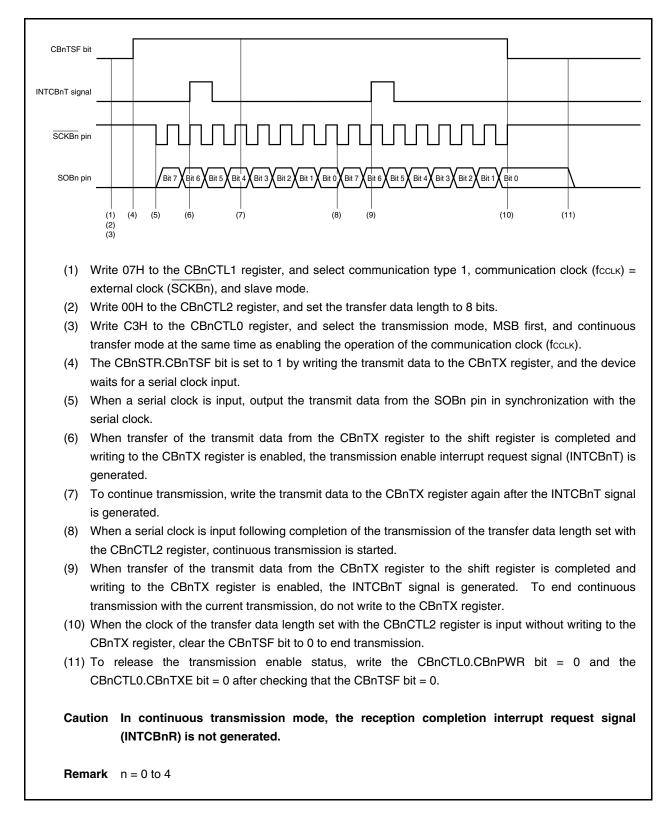


16.6.9 Continuous transfer mode (master mode, transmission/reception mode)

MSB first (CBnCTL0.CBnDIR bit = 0), communication type 1 (CBnCTL1.CBnCKP and CBnCTL1.CBnDAP bits = 00), communication clock (f_{CCLK}) = $f_{XX}/2$ (CBnCTL1.CBnCKS2 to CBnCTL1.CBnCKS0 bits = 000), transfer data length = 8 bits (CBnCTL2.CBnCL3 to CBnCTL2.CBnCL0 bits = 0000)

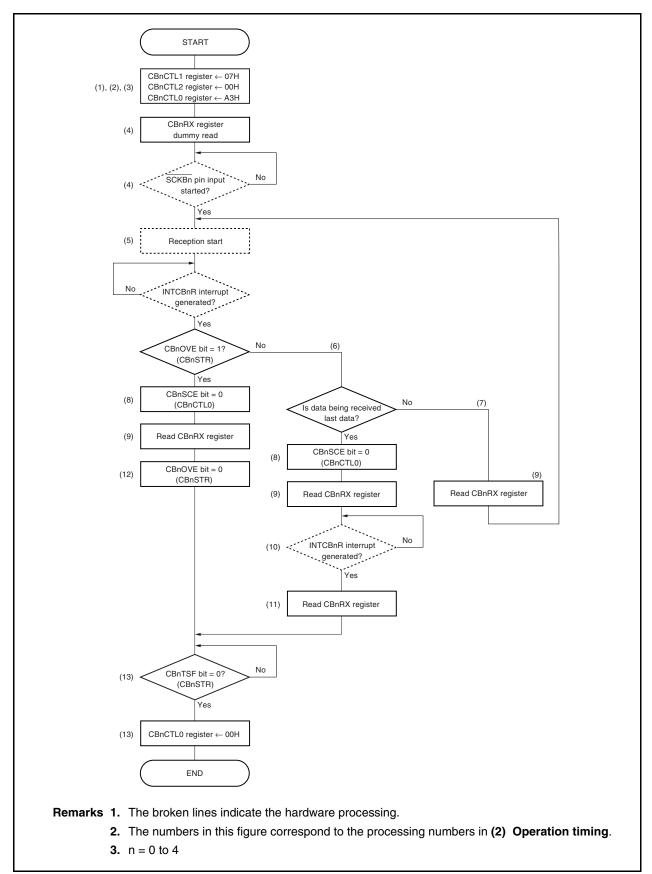
(2/2)

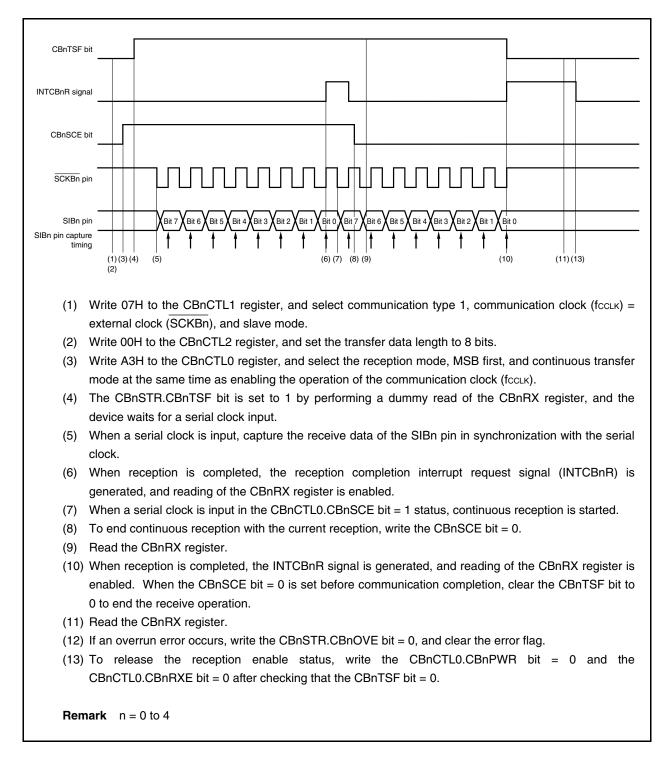

- (11) The transfer of the transmit data from the CBnTX register to the shift register is completed and the INTCBnT signal is generated. To end continuous transmission/reception with the current transmission/reception, do not write to the CBnTX register.
- (12) When the next transmit data is not written to the CBnTX register before transfer completion, stop the serial clock output to the SCKBn pin after transfer completion, and clear the CBnTSF bit to 0.
- (13) When the reception error interrupt request signal (INTCBnR) is generated, read the CBnRX register.
- (14) If an overrun error occurs, write the CBnSTR.CBnOVE bit = 0, and clear the error flag.
- (15) To release the transmission/reception enable status, write the CBnCTL0.CBnPWR bit = 0, the CBnCTL0.CBnTXE bit = 0, and the CBnCTL0.CBnRXE bit = 0 after checking that the CBnTSF bit = 0.


Remark n = 0 to 4

16.6.10 Continuous transfer mode (slave mode, transmission mode)

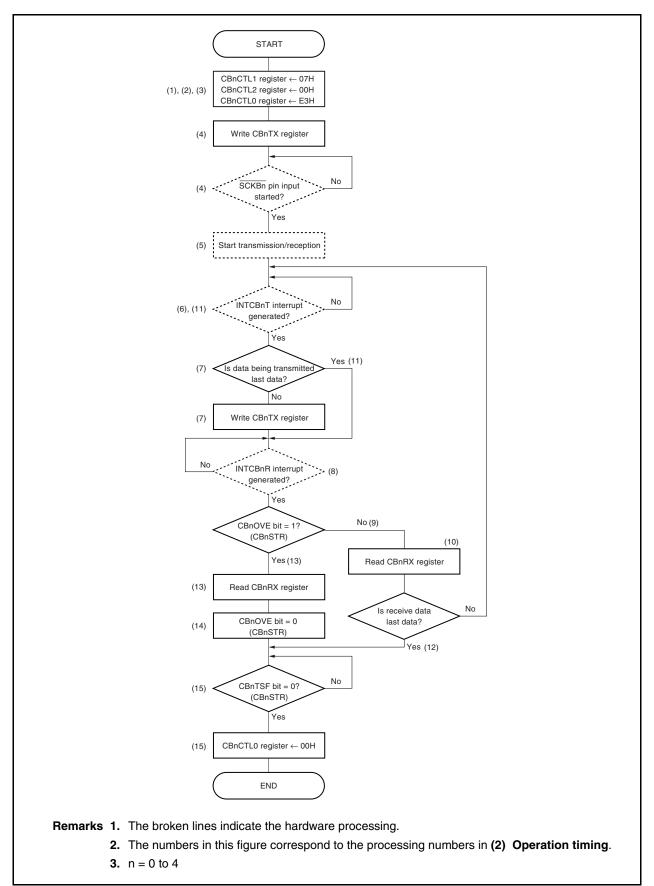
MSB first (CBnCTL0.CBnDIR bit = 0), communication type 1 (CBnCTL1.CBnCKP and CBnCTL1.CBnDAP bits = 00), communication clock (f_{CCLK}) = external clock (\overline{SCKBn}) (CBnCTL1.CBnCKS2 to CBnCTL1.CBnCKS0 bits = 111), transfer data length = 8 bits (CBnCTL2.CBnCL3 to CBnCTL2.CBnCL0 bits = 0000)

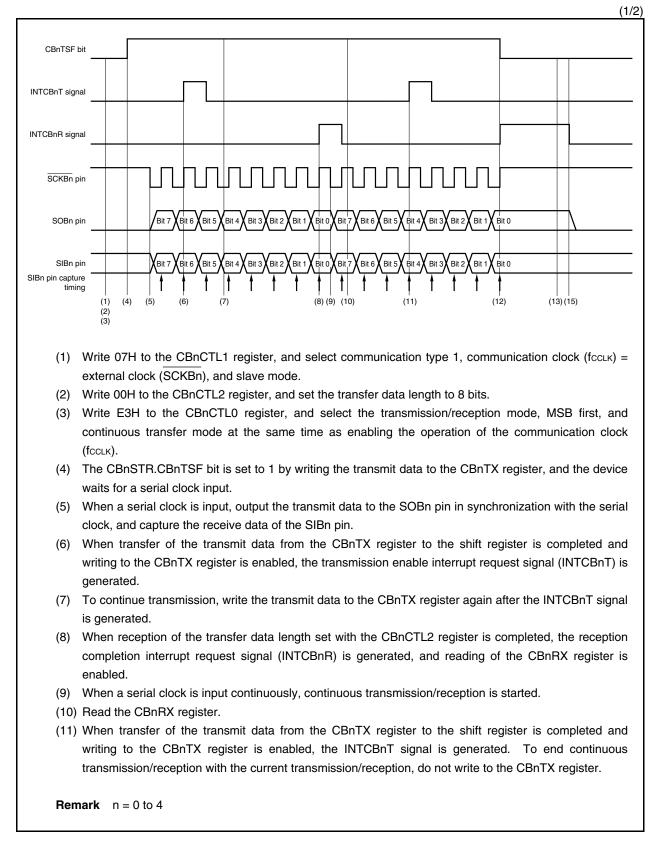



16.6.11 Continuous transfer mode (slave mode, reception mode)

MSB first (CBnCTL0.CBnDIR bit = 0), communication type 1 (CBnCTL1.CBnCKP and CBnCTL1.CBnDAP bits = 00), communication clock (f_{CCLK}) = external clock (\overline{SCKBn}) (CBnCTL1.CBnCKS2 to CBnCTL1.CBnCKS0 bits = 111), transfer data length = 8 bits (CBnCTL2.CBnCL3 to CBnCTL2.CBnCL0 bits = 0000)

(1) Operation flow


(2) Operation timing


16.6.12 Continuous transfer mode (slave mode, transmission/reception mode)

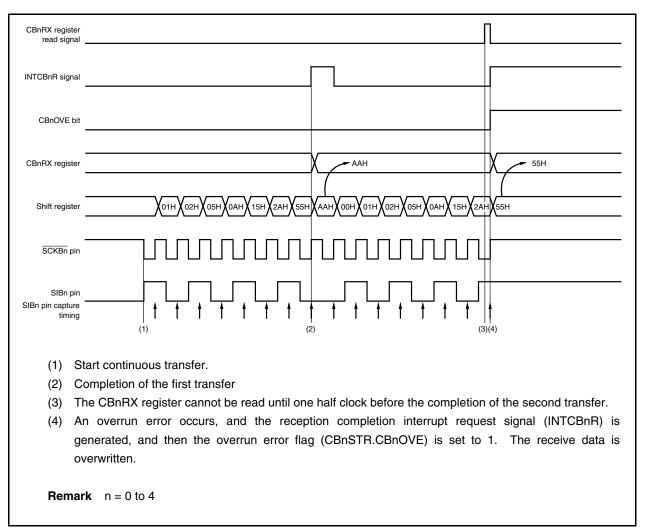
MSB first (CBnCTL0.CBnDIR bit = 0), communication type 1 (CBnCTL1.CBnCKP and CBnCTL1.CBnDAP bits = 00), communication clock (f_{CCLK}) = external clock (\overline{SCKBn}) (CBnCTL1.CBnCKS2 to CBnCTL1.CBnCKS0 bits = 111), transfer data length = 8 bits (CBnCTL2.CBnCL3 to CBnCTL2.CBnCL0 bits = 0000)

(1) Operation flow

(2) Operation timing

(2/2)

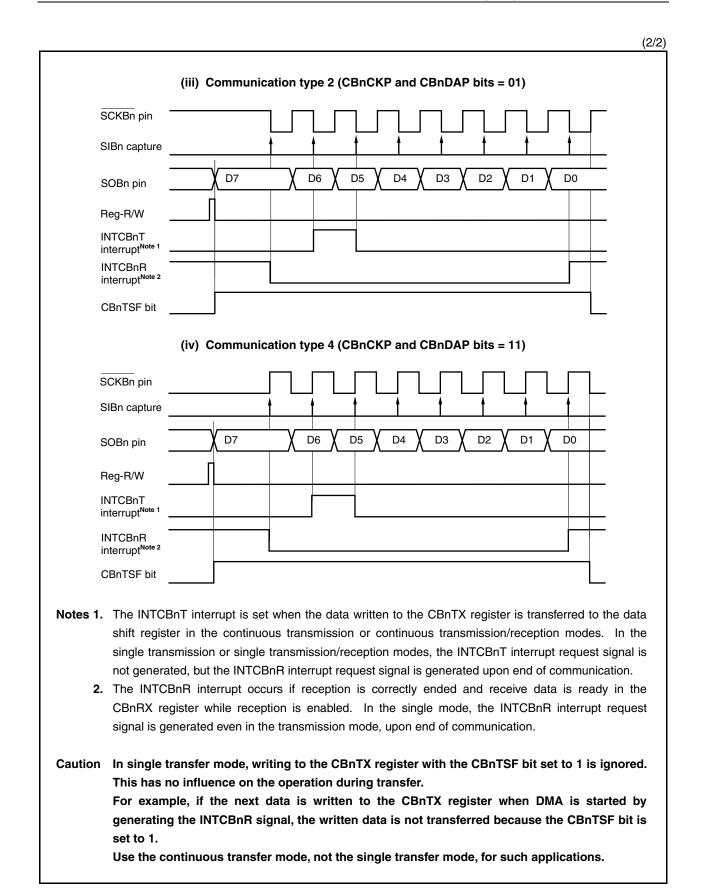
- (12) When the clock of the transfer data length set with the CBnCTL2 register is input without writing to the CBnTX register, the INTCBnR signal is generated. Clear the CBnTSF bit to 0 to end transmission/reception.
- (13) When the INTCBnR signal is generated, read the CBnRX register.
- (14) If an overrun error occurs, write the CBnSTR.CBnOVE bit = 0, and clear the error flag.
- (15) To release the transmission/reception enable status, write the CBnCTL0.CBnPWR bit = 0, the CBnCTL0.CBnTXE bit = 0, and the CBnCTL0.CBnRXE bit = 0 after checking that the CBnTSF bit = 0.


Remark n = 0 to 4

16.6.13 Reception error

When transfer is performed with reception enabled (CBnCTL0.CBnRXE bit = 1) in the continuous transfer mode, the reception completion interrupt request signal (INTCBnR) is generated again when the next receive operation is completed before the CBnRX register is read after the INTCBnR signal is generated, and the overrun error flag (CBnSTR.CBnOVE) is set to 1.

Even if an overrun error has occurred, the previous receive data is lost since the CBnRX register is updated. Even if a reception error has occurred, the INTCBnR signal is generated again upon the next reception completion if the CBnRX register is not read.


To avoid an overrun error, complete reading the CBnRX register until one half clock before sampling the last bit of the next receive data from the INTCBnR signal generation.

(1) Operation timing

16.6.14 Clock timing

	(1/2)
	(i) Communication type 1 (CBnCKP and CBnDAP bits = 00)
SCKB	
SIBn c	
SOBn	pin <u>V D7 V D6 V D5 V D4 V D3 V D2 V D1 V D0</u>
Reg-R	w
INTCB interru	
INTCE interru	InR pt ^{Note 2}
CBnTS	
	(ii) Communication type 3 (CBnCKP and CBnDAP bits = 10)
SCKBr	
SIBn ca	
SOBn	pin <u>X D7 X D6 X D5 X D4 X D3 X D2 X D1 X D0</u>
Reg-R/	w
INTCB interru	nT
INTCB interru	nR pt ^{Note 2}
CBnTS	SF bit
shif sing not 2. The CBi sigr	e INTCBnT interrupt is set when the data written to the CBnTX register is transferred to the data t register in the continuous transmission or continuous transmission/reception mode. In the gle transmission or single transmission/reception mode, the INTCBnT interrupt request signal is generated, but the INTCBnR interrupt request signal is generated upon end of communication. e INTCBnR interrupt occurs if reception is correctly ended and receive data is ready in the nRX register while reception is enabled. In the single mode, the INTCBnR interrupt request and is generated even in the transmission mode, upon end of communication.
Thi For ger set	single transfer mode, writing to the CBnTX register with the CBnTSF bit set to 1 is ignored. s has no influence on the operation during transfer. r example, if the next data is written to the CBnTX register when DMA is started by nerating the INTCBnR signal, the written data is not transferred because the CBnTSF bit is to 1. e the continuous transfer mode, not the single transfer mode, for such applications.

16.7 Output Pins

(1) SCKBn pin

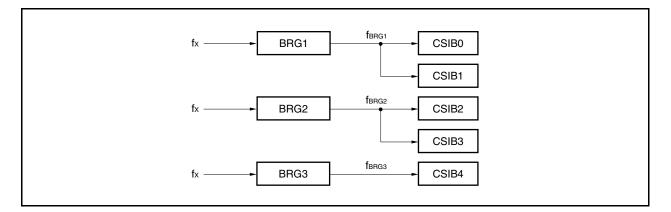
When CSIBn operation is disabled (CBnCTL0.CBnPWR bit = 0), the SCKBn pin output status is as follows.

CBnCKP	CBnCKS2	CBnCKS1	CBnCKS0	SCKBn Pin Output
0	1	1	1	High impedance
		Other than above)	Fixed to high level
1	1	1	1	High impedance
		Other than above)	Fixed to low level

Remarks 1. The output level of the SCKBn pin changes if any of the CBnCTL1.CBnCKP and CBnCKS2 to CBnCKS0 bits is rewritten.

2. n = 0 to 4

(2) SOBn pin


When CSIBn operation is disabled (CBnPWR bit = 0), the SOBn pin output status is as follows.

CBnTXE	CBnDAP	CBnDIR	SOBn Pin Output
0	×	×	Fixed to low level
1	0	×	SOBn latch value (low level)
	1	0	CBnTX0 value (MSB)
		1	CBnTX0 value (LSB)

- Remarks 1. The SOBn pin output changes when any one of the CBnCTL0.CBnTXE, CBnCTL0.CBnDIR bits, and CBnCTL1.CBnDAP bit is rewritten.
 - 2. ×: Don't care
 - **3.** n = 0 to 4

16.8 Baud Rate Generator

The BRG1 to BRG3 and CSIB0 to CSIB4 baud rate generators are connected as shown in the following block diagram.

(1) Prescaler mode registers 1 to 3 (PRSM1 to PRSM3)

The PRSM1 to PRSM3 registers control generation of the baud rate signal for CSIB. These registers can be read or written in 8-bit or 1-bit units. Reset sets these registers to 00H.

After reset: 00H R/W Address: PRSM1 FFFFF320H, PRSM2 FFFFF324H, PRSM3 FFFFF328H 7 5 0 6 <4> 3 2 1 PRSMm 0 0 0 BGCEm 0 0 BGCSm1 BGCSm0 (m = 1 to 3) BGCEm Baud rate output 0 Disabled 1 Enabled BGCSm1 BGCSm0 Input clock selection (fBGCSm) Setting value (k) 0 0 fxx 0 0 1 fxx/2 1 1 0 fxx/4 2 1 1 fxx/8 3 Cautions 1. Do not rewrite the PRSMm register during operation. 2. Set the PRSMm register before setting the BGCEm bit to 1.

(2) Prescaler compare registers 1 to 3 (PRSCM1 to PRSCM3)

The PRSCM1 to PRSCM3 registers are 8-bit compare registers. These registers can be read or written in 8-bit units. Reset sets these registers to 00H.

After reset: 00H R/W Address: PRSCM1 FFFFF321H, PRSCM2 FFFFF325H, PRSCM3 FFFFF329H 7 6 5 4 3 2 1 0 PRSCMm7 PRSCMm6 PRSCMm5 PRSCMm4 PRSCMm3 PRSCMm2 PRSCMm1 PRSCMm0 PRSCMm Cautions 1. Do not rewrite the PRSCMm register during operation. 2. Set the PRSCMm register before setting the PRSMm.BGCEm bit to 1.

16.8.1 Baud rate generation

The transmission/reception clock is generated by dividing the main clock. The baud rate generated from the main clock is obtained by the following equation.

$$f_{BRGm} = \frac{f_{XX}}{2^{k+1} \times N}$$

Caution Set fBRGm to 8 MHz or lower.

Remark fBRGm: E	BRGm count clock
-----------------	------------------

fxx: Main clock oscillation frequency

k: PRSMm register setting value = 0 to 3

N: PRSCMm register setting value = 1 to 256

However, N = 256 only when PRSCMm register is set to 00H.

m = 1 to 3

16.9 Cautions

- (1) When transferring transmit data and receive data using DMA transfer, error processing cannot be performed even if an overrun error occurs during serial transfer. Check that the no overrun error has occurred by reading the CBnSTR.CBnOVE bit after DMA transfer has been completed.
- (2) In regards to registers that are forbidden from being rewritten during operations (CBnCTL0.CBnPWR bit is 1), if rewriting has been carried out by mistake during operations, set the CBnCTL0.CBnPWR bit to 0 once, then initialize CSIBn.

Registers to which rewriting during operation are prohibited are shown below.

- CBnCTL0 register: CBnTXE, CBnRXE, CBnDIR, CBnTMS bits
- CBnCTL1 register: CBnCKP, CBnDAP, CBnCKS2 to CBnCKS0 bits
- CBnCTL2 register: CBnCL3 to CBnCL0 bits
- (3) In communication type 2 or 4 (CBnCTL1.CBnDAP bit = 1), the CBnSTR.CBnTSF bit is cleared half a SCKBn clock after occurrence of a reception complete interrupt (INTCBnR).

In the single transfer mode, writing the next transmit data is ignored during communication (CBnTSF bit = 1), and the next communication is not started. Also if reception-only communication (CBnCTL0.CBnTXE bit = 0, CBnCTL0.CBnRXE bit = 1) is set, the next communication is not started even if the receive data is read during communication (CBnTSF bit = 1).

Therefore, when using the single transfer mode with communication type 2 or 4 (CBnDAP bit = 1), pay particular attention to the following.

- To start the next transmission, confirm that CBnTSF bit = 0 and then write the transmit data to the CBnTX register.
- To perform the next reception continuously when reception-only communication (CBnTXE bit = 0, CBnRXE bit = 1) is set, confirm that CBnTSF bit = 0 and then read the CBnRX register.

Or, use the continuous transfer mode instead of the single transfer mode. Use of the continuous transfer mode is recommended especially for using DMA.

Remark n = 0 to 4

CHAPTER 17 I²C BUS

To use the I²C bus function, set the P38/SDA00, P39/SCL00, P40/SDA01, P41/SCL01, P90/SDA02, and P91/SCL02 pins as the serial transmit/receive data I/O pins (SDA00 to SDA02) and serial clock I/O pins (SCL00 to SCL02), and set them to N-ch open-drain output.

17.1 Mode Switching of I²C Bus and Other Serial Interfaces

17.1.1 UARTA2 and I²C00 mode switching

In the V850ES/JG2, UARTA2 and I²C00 are alternate functions of the same pin and therefore cannot be used simultaneously. Set I²C00 in advance, using the PMC3 and PFC3 registers, before use.

Caution The transmit/receive operation of UARTA2 and I²C00 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.

After re	set: 0000H	R/W	Address	: FFFFF44	16H, FFFF	=447H		
	15	14	13	12	11	10	9	8
PMC3	0	0	0	0	0	0	PMC39	PMC38
	7	6	5	4	3	2	1	0
	0	0	PMC35	PMC34	PMC33	PMC32	PMC31	PMC30
After res	set: 0000H	R/W	Address:	FFFFF46	6H, FFFFF	467H		
	15	14	13	12	11	10	9	8
PFC3	0	0	0	0	0	0	PFC39	PFC38
	7	6	5	4	3	2	1	0
	0	0	PFC35	PFC34	PFC33	PFC32	PFC31	PFC30
	PMC3n	PFC3n			Operatio	n mode		
			Port I/O m	ada	Operatio	minoue		
	1	×0	UARTA2 r					
		1	1 ² C00 mod					
	Remarks	1. n =						

Figure 17-1. UARTA2 and I²C00 Mode Switch Settings

17.1.2 CSIB0 and I²C01 mode switching

In the V850ES/JG2, CSIB0 and I²C01 are alternate functions of the same pin and therefore cannot be used simultaneously. Set I²C01 in advance, using the PMC4 and PFC4 registers, before use.

Caution The transmit/receive operation of CSIB0 and I²C01 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.

After re	set: 00H	R/W	Address: F	FFFF448H				
	7	6	5	4	3	2	1	0
PMC4	0	0	0	0	0	PMC42	PMC41	PMC40
After re	set: 00H	R/W	Address: F	FFFF468H				
	7	6	5	4	3	2	1	0
PFC4	0	0	0	0	0	0	PFC41	PFC40
	PMC4n	PFC4n			Operatio	on mode		
	0	×	Port I/O m	ode				
	1	0	CSIB0 mo	de				
	1	1	I ² C01 mod	le				
	Remarks		0, 1 don't care					

Figure 17-2. CSIB0 and I²C01 Mode Switch Settings

17.1.3 UARTA1 and I²C02 mode switching

In the V850ES/JG2, UARTA1 and I²C02 are alternate functions of the same pin and therefore cannot be used simultaneously. Set I²C02 in advance, using the PMC9, PFC9, and PFCE9 registers, before use.

Caution The transmit/receive operation of UARTA1 and I²C02 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.

After res	set: 0000H	R/W	Address	: FFFFF45	2H, FFFF	=453H		
	15	14	13	12	11	10	9	8
PMC9	PMC915	PMC914	PMC913	PMC912	PMC911	PMC910	PMC99	PMC98
	7	6	5	4	3	2	1	0
	PMC97	PMC96	PMC95	PMC94	PMC93	PMC92	PMC91	PMC90
After res	et: 0000H	R/W	Address:	FFFFF47	2H, FFFF	473H		
	15	14	13	12	11	10	9	8
PFC9	PFC915	PFC914	PFC913	PFC912	PFC911	PFC910	PFC99	PFC98
	7	6	5	4	3	2	1	0
	PFC97	PFC96	PFC95	PFC94	PFC93	PFC92	PFC91	PFC90
After res	et: 0000H	R/W 14	Address:	: FFFFF71 12	2H, FFFFF 11	713H 10	9	8
PFCE9	PFCE915	PFCE914	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
	PFCE97	PFCE96	PFCE95	PFCE94	PFCE93	PFCE92	PFCE91	PFCE90
	PMC9n	PFCE9n	PFC9n		O	peration mo	ode	
	1	1	0	UARTA1	mode			
	1	1	1	I ² C02 mo	de			
	Remark	n = 0, 1						

Figure 17-3. UARTA1 and I²C02 Mode Switch Settings

17.2 Features

I²C00 to I²C02 have the following two modes.

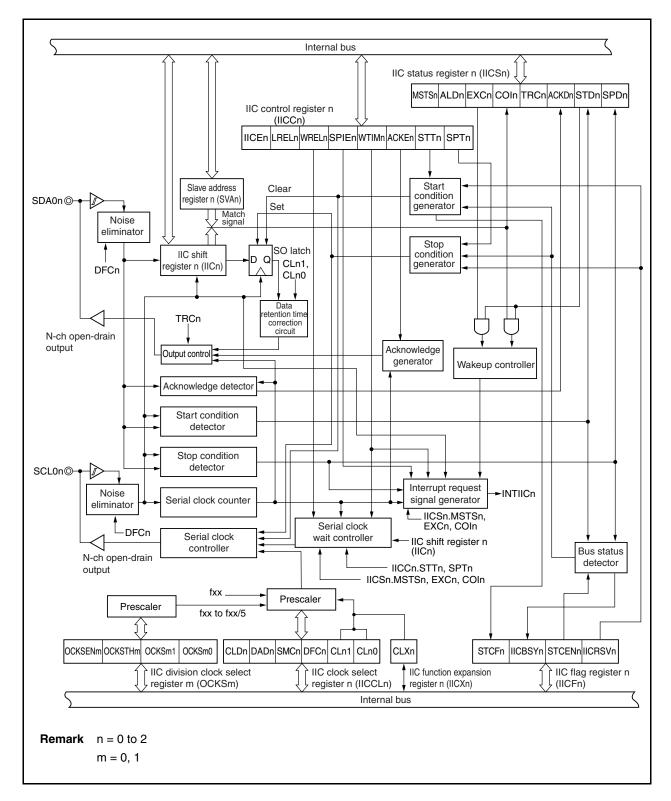
- Operation stopped mode
- I²C (Inter IC) bus mode (multimasters supported)

(1) Operation stopped mode

In this mode, serial transfers are not performed, thus enabling a reduction in power consumption.

(2) I²C bus mode (multimaster support)

This mode is used for 8-bit data transfers with several devices via two lines: a serial clock pin (SCL0n) and a serial data bus pin (SDA0n).


This mode complies with the I^2C bus format and the master device can generate "start condition", "address", "transfer direction specification", "data", and "stop condition" data to the slave device via the serial data bus. The slave device automatically detects the received statuses and data by hardware. This function can simplify the part of an application program that controls the I^2C bus.

Since SCL0n and SDA0n pins are used for N-ch open-drain outputs, I²C0n requires pull-up resistors for the serial clock line and the serial data bus line.

Remark n = 0 to 2

17.3 Configuration

The block diagram of the l²C0n is shown below.

A serial bus configuration example is shown below.

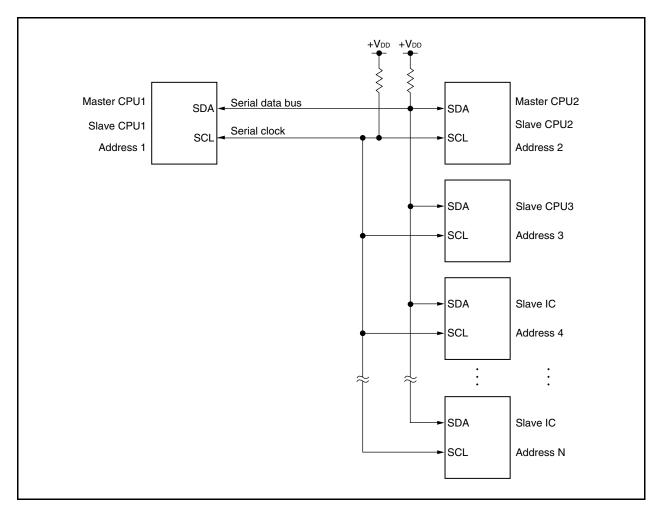


Figure 17-5. Serial Bus Configuration Example Using I^2C Bus

 I^2COn includes the following hardware (n = 0 to 2).

Item	Configuration
Registers	IIC shift register n (IICn) Slave address register n (SVAn)
Control registers	IIC control register n (IICCn) IIC status register n (IICSn) IIC flag register n (IICF0n) IIC clock select register n (IICCLn) IIC function expansion register n (IICXn) IIC division clock select registers 0, 1 (OCKS0, OCKS1)

 Table 17-1. Configuration of l²C0n

(1) IIC shift register n (IICn)

The IICn register converts 8-bit serial data into 8-bit parallel data and vice versa, and can be used for both transmission and reception (n = 0 to 2).

Write and read operations to the IICn register are used to control the actual transmit and receive operations.

This register can be read or written in 8-bit units.

Reset sets this register to 00H.

(2) Slave address register n (SVAn)

The SVAn register sets local addresses when in slave mode (n = 0 to 2). This register can be read or written in 8-bit units. Reset sets this register to 00H.

(3) SO latch

The SO latch is used to retain the output level of the SDA0n pin (n = 0 to 2).

(4) Wakeup controller

This circuit generates an interrupt request signal (INTIICn) when the address received by this register matches the address value set to the SVAn register or when an extension code is received (n = 0 to 2).

(5) Prescaler

This selects the sampling clock to be used.

(6) Serial clock counter

This counter counts the serial clocks that are output and the serial clocks that are input during transmit/receive operations and is used to verify that 8-bit data was transmitted or received.

(7) Interrupt request signal generator

This circuit controls the generation of interrupt request signals (INTIICn). An I^2C interrupt is generated following either of two triggers.

- Falling edge of eighth or ninth clock of the serial clock (set by IICCn.WTIMn bit)
- Interrupt occurrence due to stop condition detection (set by IICCn.SPIEn bit)

Remark n = 0 to 2

(8) Serial clock controller

In master mode, this circuit generates the clock output via the SCL0n pin from the sampling clock (n = 0 to 2).

(9) Serial clock wait controller

This circuit controls the wait timing.

(10) $\overline{\text{ACK}}$ generator, stop condition detector, start condition detector, and $\overline{\text{ACK}}$ detector

These circuits are used to generate and detect various statuses.

(11) Data hold time correction circuit

This circuit generates the hold time for data corresponding to the falling edge of the SCL0n pin.

(12) Start condition generator

A start condition is generated when the IICCn.STTn bit is set. However, in the communication reservation disabled status (IICFn.IICRSVn bit = 1), this request is ignored and the IICFn.STCFn bit is set to 1 if the bus is not released (IICFn.IICBSYn bit = 1).

(13) Stop condition generator

A stop condition is generated when the IICCn.SPTn bit is set.

(14) Bus status detector

Whether the bus is released or not is ascertained by detecting a start condition and stop condition. However, the bus status cannot be detected immediately after operation, so set the bus status detector to the initial status by using the IICFn.STCENn bit.

17.4 Registers

I²C00 to I²C02 are controlled by the following registers.

- IIC control registers 0 to 2 (IICC0 to IICC2)
- IIC status registers 0 to 2 (IICS0 to IICS2)
- IIC flag registers 0 to 2 (IICF0 to IICF2)
- IIC clock select registers 0 to 2 (IICCL0 to IICCL2)
- IIC function expansion registers 0 to 2 (IICX0 to IICX2)
- IIC division clock select registers 0, 1 (OCKS0, OCKS1)

The following registers are also used.

- IIC shift registers 0 to 2 (IIC0 to IIC2)
- Slave address registers 0 to 2 (SVA0 to SVA2)

Remark For the alternate-function pin settings, see Table 4-15 Settings When Port Pins Are Used for Alternate Functions.

(1) IIC control registers 0 to 2 (IICC0 to IICC2)

The IICCn register enables/stops l^2 C0n operations, sets the wait timing, and sets other l^2 C operations (n = 0 to 2).

These registers can be read or written in 8-bit or 1-bit units. However, set the SPIEn, WTIMn, and ACKEn bits when the IICEn bit is 0 or during the wait period. When setting the IICEn bit from "0" to "1", these bits can also be set at the same time.

Reset sets these registers to 00H.

After reset:	00H	R/W	Addre	ss: IICC0 FF	FFFD82H,		92H, IICC2	FFFFDA2H			
	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>			
IICCn	llCEn	LRELn	WRELn	SPIEn	WTIMn	ACKEn	STTn	SPTn			
(n = 0 to 2)								<u> </u>			
	llCEn		Specification of I ² Cn operation enable/disable								
	0	Operation	Operation stopped. IICSn register reset ^{Note 1} . Internal operation stopped.								
	1	Operation	enabled.								
	Be sure to	set this bit to	o 1 when the	SCL0n and	SDA0n line	s are high leve	I.				
	Condition f	or clearing (IICEn bit = 0)			Condition for se	etting (IICEn	bit = 1)			
	 Cleared b After reset 	by instructior et	1			Set by instruc	tion				
	LRELn ^{Note 2}				Exit fro	n communicati	ons				
	0	Normal	operation								
	The standb	The SCL The STT register	are cleared.	On lines are bits and the	set to high MSTSn, E	KCn, COIn, TR		, and STDn bits of the IICSn			
	After a ste	op condition	is detected, curs or an ex			e. d after the star	t condition.				
	Condition f	or clearing (LRELn bit = ())	(Condition for setting (LRELn bit = 1)					
	AutomationAfter reserved	-	after execut	ion		Set by instruc	tion				
	WRELn ^{Note 2}	2			Wait state	cancellation c	ontrol				
	0		e not cancel	ed							
	1	Wait state canceled. This setting is automatically cleared after wait state is canceled.									
	Condition f	or clearing (WRELn bit =	0)		Condition for se	etting (WRE	Ln bit = 1)			
	 Automation After reserved 	-	after execut	ion		 Set by instruct 	tion				
		bits are res	-				s, and IICC	Ln.CLDn and IICCLn.DAI			
	9	SDA0n line	e is low lev	el, the sta	rt conditi	on is detecte	ed immedi	line is high level and tl ately. To avoid this, aft 1 with a bit manipulatio			

Remark The LRELn and WRELn bits are 0 when read after the data has been set.

instruction.

SPIEn ^{Note}	Enable/disable generation of i	nterrupt request when stop condition is detected		
0	Disabled			
1	Enabled			
Condition for	or clearing (SPIEn bit = 0)	Condition for setting (SPIEn bit = 1)		
Cleared bAfter rese	y instruction t	Set by instruction		
WTIMn ^{Note}	Control of wait sta	ate and interrupt request generation		
0		th clock's falling edge. s, clock output is set to low level and the wait state is se the clock is set to low level and the wait state is set for		
1	Interrupt request is generated at the ninth clock's falling edge. Master mode: After output of nine clocks, clock output is set to low level and the wait state is set. Slave mode: After input of nine clocks, the clock is set to low level and the wait state is set for the master device			
bit setting b falling edge	Slave mode: After input of nine clocks, master device. ress transfer, an interrupt occurs at the fallin ecomes valid when the address transfer is c of the ninth clock during address transfer.	the clock is set to low level and the wait state is set for t g edge of the ninth clock regardless of this bit setting. T completed. In master mode, a wait state is inserted at th For a slave device that has received a local address, a w		
bit setting b falling edge state is inse an extensio	Slave mode: After input of nine clocks, master device. ress transfer, an interrupt occurs at the fallin ecomes valid when the address transfer is c of the ninth clock during address transfer. erted at the falling edge of the ninth clock aft n code, however, a wait state is inserted at	the clock is set to low level and the wait state is set for t g edge of the ninth clock regardless of this bit setting. T completed. In master mode, a wait state is inserted at th For a slave device that has received a local address, a v er ACK is generated. When the slave device has receive the falling edge of the eighth clock.		
bit setting b falling edge state is inse an extensio Condition fo	Slave mode: After input of nine clocks, master device. ress transfer, an interrupt occurs at the fallin ecomes valid when the address transfer is c of the ninth clock during address transfer. erted at the falling edge of the ninth clock aft n code, however, a wait state is inserted at or clearing (WTIMn bit = 0) y instruction	the clock is set to low level and the wait state is set for t g edge of the ninth clock regardless of this bit setting. T completed. In master mode, a wait state is inserted at th For a slave device that has received a local address, a er ACK is generated. When the slave device has received		
bit setting b falling edge state is inse an extensio Condition fo • Cleared b	Slave mode: After input of nine clocks, master device. ress transfer, an interrupt occurs at the fallin ecomes valid when the address transfer is of of the ninth clock during address transfer. Inted at the falling edge of the ninth clock aft n code, however, a wait state is inserted at or clearing (WTIMn bit = 0) y instruction t	the clock is set to low level and the wait state is set for the gedge of the ninth clock regardless of this bit setting. The completed. In master mode, a wait state is inserted at the For a slave device that has received a local address, a weight \overline{ACK} is generated. When the slave device has received the falling edge of the eighth clock.		
bit setting b falling edge state is inse an extensio Condition fo • Cleared b • After rese	Slave mode: After input of nine clocks, master device. ress transfer, an interrupt occurs at the fallin ecomes valid when the address transfer is of of the ninth clock during address transfer. Inted at the falling edge of the ninth clock aft n code, however, a wait state is inserted at or clearing (WTIMn bit = 0) y instruction t	the clock is set to low level and the wait state is set for t g edge of the ninth clock regardless of this bit setting. T completed. In master mode, a wait state is inserted at th For a slave device that has received a local address, a w er ACK is generated. When the slave device has receive the falling edge of the eighth clock. Condition for setting (WTIMn bit = 1) • Set by instruction		
bit setting b falling edge state is inse an extensio Condition fo • Cleared b • After rese	Slave mode: After input of nine clocks, master device. ress transfer, an interrupt occurs at the fallin ecomes valid when the address transfer is of of the ninth clock during address transfer. erted at the falling edge of the ninth clock aft n code, however, a wait state is inserted at the relearing (WTIMn bit = 0) y instruction t Acknowledgment disabled.	the clock is set to low level and the wait state is set for the gedge of the ninth clock regardless of this bit setting. The completed. In master mode, a wait state is inserted at the For a slave device that has received a local address, a were ACK is generated. When the slave device has receive the falling edge of the eighth clock. Condition for setting (WTIMn bit = 1) Set by instruction		
bit setting b falling edge state is inse an extensio Condition fo • Cleared b • After rese ACKEn ^{Note} 0 1 The ACKEr the address However, th	Slave mode: After input of nine clocks, master device. ress transfer, an interrupt occurs at the fallin ecomes valid when the address transfer is confident of the ninth clock during address transfer. erted at the falling edge of the ninth clock after n code, however, a wait state is inserted at the relating (WTIMn bit = 0) y instruction t Acknowledgment disabled. Acknowledgment enabled. During the ninth setting is invalid for address reception bies match.	the clock is set to low level and the wait state is set for t g edge of the ninth clock regardless of this bit setting. T completed. In master mode, a wait state is inserted at the For a slave device that has received a local address, a we er ACK is generated. When the slave device has receive the falling edge of the eighth clock. Condition for setting (WTIMn bit = 1) • Set by instruction		
bit setting b falling edge state is inse an extensio Condition fo • Cleared b • After rese ACKEn ^{Note} 0 1 The ACKEr the address However, th receives the	Slave mode: After input of nine clocks, master device. ress transfer, an interrupt occurs at the fallin ecomes valid when the address transfer is of of the ninth clock during address transfer. erted at the falling edge of the ninth clock aft n code, however, a wait state is inserted at the relearing (WTIMn bit = 0) y instruction t Acknowledgment disabled. Acknowledgment enabled. During the nine bit setting is invalid for address reception bits esting is valid for reception of the setting is valid for the set is the set ing the	the clock is set to low level and the wait state is set for the gedge of the ninth clock regardless of this bit setting. The completed. In master mode, a wait state is inserted at the For a slave device that has received a local address, a weith a state is generated. When the slave device has receive the falling edge of the eighth clock. Condition for setting (WTIMn bit = 1) • Set by instruction Renowledgment control nth clock period, the SDA0n line is set to low level. y the slave device. In this case, ACK is generated when		

(3/4)

STTn	Star	t condition trigger				
0	Start condition is not generated.					
1	low level while the SCLn line is high level a rated amount of time has elapsed, the SCI During communication with a third party: If the communication reservation function i • This trigger functions as a start condition automatically generates a start condition. If the communication reservation function i • The IICFn.STCFn bit is set to 1 and inform does not generate a start condition.	s enabled (IICFn.IICRSVn bit = 0) reserve flag. When set to 1, it releases the bus and the				
	In the wait state (when master device):					
	A restart condition is generated after the w	all state is released.				
For slave: • Setting to	the wait period that follows outp Even when the communication communication reservation stat o 1 at the same time as the SPTn bit is prohibit	reservation function is disabled (IICRSVn bit = 1), the tus is entered.				
	or clearing (STTn bit = 0)	Condition for setting (STTn bit = 1)				
 reservation Cleared I Cleared a device When the 	 STTn bit is set to 1 in the communication on disabled status by loss in arbitration after start condition is generated by master LRELn bit = 1 (communication save) IICEn bit = 0 (operation stop) 	Set by instruction				

SPTn	Stop c	condition trigger				
0	Stop condition is not generated.					
1	Stop condition is generated (termination of master device's transfer). After the SDA0n line goes to low level, either set the SCL0n line to high level or wait until the SCL0n pin goes to high level. Next, after the rated amount of time has elapsed, the SDA0n line is changed from low level to high level and a stop condition is generated.					
For master For master • Cannot t • The SPT • When th eight clo The WTI SPTn bit	after the slave has been notified of r transmission: A stop condition cannot be genera 1 during the wait period that follo be set to 1 at the same time as the STTn bit. In bit can be set to 1 only when in master mode ^{№1} e WTIMn bit has been set to 0, if the SPTn bit is s cks, note that a stop condition will be generated of	CKEn bit has been set to 0 and during the wait period of final reception. rated normally during the ACK reception period. Se ows output of the ninth clock. ***. set to 1 during the wait period that follows output of during the high-level period of the ninth clock. wait period following output of eight clocks, and the lows output of the ninth clock.				
Condition	for clearing (SPTn bit = 0)	Condition for setting (SPTn bit = 1)				
AutomatiWhen the	cally cleared after stop condition is detected e LRELn bit = 1 (communication save) e IICEn bit = 0 (operation stop)	 Set by instruction 				

Note Set the SPTn bit to 1 only in master mode. However, when the IICRSVn bit is 0, the SPTn bit must be set to 1 and a stop condition generated before the first stop condition is detected following the switch to the operation enabled status. For details, see **17.15 Cautions**.

Caution When the TRCn bit = 1, the WRELn bit is set to 1 during the ninth clock and the wait state is canceled, after which the TRCn bit is cleared to 0 and the SDA0n line is set to high impedance.

Remarks 1. The SPTn bit is 0 if it is read immediately after data setting. **2.** n = 0 to 2

(2) IIC status registers 0 to 2 (IICS0 to IICS2)

The IICSn register indicates the status of l^2C0n (n = 0 to 2).

These registers are read-only, in 8-bit or 1-bit units. However, the IICSn register can only be read when the IICCn.STTn bit is 1 or during the wait period.

Reset sets these registers to 00H.

Caution Accessing the IICSn register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers.

• When the CPU operates with the subclock and the main clock oscillation is stopped

(1/3)

• When the CPU operates with the internal oscillation clock

	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>			
IICSn	MSTSn	ALDn	EXCn	COIn	TRCn	ACKDn	STDn	SPDn			
= 0 to 2)											
	MSTSn				Mast	Aaster device status					
	0	Slave devic	e status or c	communicatio	on standb	dby status					
	1	Master dev	ice communi	ication status	6						
	Condition	for clearing (N	/ISTSn bit =	0)		Condition for setting (MSTSn bit = 1)					
	When the Cleared I	 a stop condition is detected When a start condition is generated 									
	ALDn				Arbitrat	ion loss detectio	n				
	0	This status	means eithe	r that there v	was no ar	arbitration or that the arbitration result was a "win". vas a "loss". The MSTSn bit is cleared to 0. Condition for setting (ALDn bit = 1)					
	1	This status	indicates the	e arbitration r	result was						
	Condition	for clearing (/	LDn bit = 0)							
	read ^{Note}	ically cleared e IICEn bit ch et		Ū		• When the arbi	tration result	t is a "loss".			
	EXCn			Dete	ection of e	of extension code reception					
	0	Extension	code was not	t received.							
	1	Extension	code was rec	ceived.							
	Condition	for clearing (E	XCn bit = 0))		Condition for se	tting (EXCn	bit = 1)			
	When a s Cleared I	start conditior stop conditior by LRELn bit e IICEn bit ch	n is detected = 1 (commu	nication save	'	0	r "0000" or "1	of the received address 1111" (set at the rising			

IICSn register.

 Cleared by LRELn bit = 1 (communication save) When the IICEn bit changes from 1 to 0 (operation stop) After reset eighth clock). eighth clock). 	COIn	Match	ng address detection			
Condition for clearing (COIn bit = 0) Condition for setting (COIn bit = 1) • When a start condition is detected • When a stop condition is detected • Cleared by LRELn bit = 1 (communication save) • When the received address matches the local address (SVAn register) (set at the rising edge of 1 eighth clock). • When the IICEn bit changes from 1 to 0 (operation stop) • After reset TRCn Transmit/receive status detection 0 Receive status (other than transmit status). The SDA0n line is set to high impedance. 1 Transmit status. The value in the SO latch is enabled for output to the SDA0n line (valid starting a the falling edge of the first byte's ninth clock). Condition for clearing (TRCn bit = 0) Condition for setting (TRCn bit = 1) • When a stop condition is detected • When a start condition is generated • When the IICEn bit changes from 1 to 0 (operation stop) • Cleared by IICCn.WRELn bit = 1 (communication save) • When the ALDn bit changes from 0 to 1 (arbitration loss) • When "1" is output to the first byte's LSB (transfer direction specification bit) Slave • When a start condition is detected • When a start condition is detected When not used for communication • ACK was not detected. • ACK was not detected. 1 ACK was detected. • ACK detection	0	Addresses do not match.				
• When a start condition is detected • When a stop condition is detected • When a stop condition is detected • When the received address matches the local address (SVAn register) (set at the rising edge of the eighth clock). • When the IICEn bit changes from 1 to 0 (operation stop) • When the IICEn bit changes from 1 to 0 (operation stop) • After reset • Receive status (other than transmit status). The SDA0n line is set to high impedance. 1 Transmit status. The value in the SO latch is enabled for output to the SDA0n line (valid starting a the falling edge of the first byte's ninth clock). Condition for clearing (TRCn bit = 0) Condition for setting (TRCn bit = 1) • When a stop condition is detected Master • Cleared by LRELn bit = 1 (communication save) • When a start condition is generated • When the IICEn bit changes from 1 to 0 (operation stop) • When a start condition is generated • When the ALDn bit changes from 0 to 1 (arbitration loss) • When "1" is output to the first byte's LSB (transfer direction specification bit) Slave • When a start condition is detected • When a start condition is detected When a start condition is detected • When a start condition bit) Slave • When a start condition is detected • When a start condition bit) Slave • When a start condition is detected. • ACK	1	Addresses match.				
• When a stop condition is detected address (SVAn register) (set at the rising edge of 1 eighth clock). • When the IICEn bit changes from 1 to 0 (operation stop) eighth clock). • After reset Transmit/receive status detection 0 Receive status (other than transmit status). The SDAOn line is set to high impedance. 1 Transmit status. The value in the SO latch is enabled for output to the SDAOn line (valid starting a the falling edge of the first byte's ninth clock). Condition for clearing (TRCn bit = 0) Condition for setting (TRCn bit = 1) • When a stop condition is detected Master • Cleared by LRELn bit = 1 (communication save) When the IICEn bit changes from 1 to 0 (operation stop) • When the IICEn bit changes from 1 to 0 (operation stop) Condition for setting (TRCn bit = 1) • When a stop condition is detected Master • When the ALDn bit changes from 0 to 1 (arbitration loss) • When "1" is output to the first byte's LSB (transfer direction specification bit) Slave • When a start condition is detected • When a start condition is detected When not used for communication ACK ACK 0 ACK ACK 1 ACK was not detected. 1	Condition	for clearing (COIn bit = 0)	Condition for setting (COIn bit = 1)			
0 Receive status (other than transmit status). The SDA0n line is set to high impedance. 1 Transmit status. The value in the SO latch is enabled for output to the SDA0n line (valid starting a the falling edge of the first byte's ninth clock). Condition for clearing (TRCn bit = 0) Condition for setting (TRCn bit = 1) • When a stop condition is detected Cleared by LRELn bit = 1 (communication save) • When the IICEn bit changes from 1 to 0 (operation stop) • When a start condition is generated • When the IICEn bit changes from 0 to 1 (arbitration loss) • When the ALDn bit changes from 0 to 1 (arbitration loss) • After reset Master • When "1" is output to the first byte's LSB (transfer direction specification bit) Slave • When a start condition is detected When not used for communication • When a start condition is detected ACK Dn • When a start condition is detected ACK • When not used for communication ACK	 When a s Cleared When the stop) 	stop condition is detected by LRELn bit = 1 (communication save) e IICEn bit changes from 1 to 0 (operation	address (SVAn register) (set at the rising edge of the			
1 Transmit status. The value in the SO latch is enabled for output to the SDA0n line (valid starting a the falling edge of the first byte's ninth clock). Condition for clearing (TRCn bit = 0) Condition for setting (TRCn bit = 1) • When a stop condition is detected Master • When the ALDn bit changes from 0 to 1 (arbitration loss) • When "1" is output to the first byte's LSB (transfer direction specification bit) Slave • When a start condition is detected • When a start condition is detected • When "1" is output to the first byte's LSB (transfer direction specification bit) Slave • When a start condition is detected • When not used for communication • When a start condition bit Slave • When a start condition is detected • When not used for communication • When a start condition is detected • When not used for communication • When a start condition is detected. 1 ACK was not detected. 1 ACK was detected.	TRCn	Transmit	receive status detection			
the falling edge of the first byte's ninth clock). Condition for clearing (TRCn bit = 0) Condition for setting (TRCn bit = 1) • When a stop condition is detected Master • Cleared by LRELn bit = 1 (communication save) • When the IICEn bit changes from 1 to 0 (operation stop) • Cleared by IICCn.WRELn bit = 1 *** • When "0" is output to the first byte's LSB (transfer direction specification bit) • When the ALDn bit changes from 0 to 1 (arbitration loss) • When "1" is input by the first byte's LSB (transfer direction specification bit) • After reset Master • When "1" is output to the first byte's LSB (transfer direction specification bit) • When "1" is input by the first byte's LSB (transfer direction specification bit) Slave • When a start condition is detected When not used for communication • ACK • When not used for communication • ACK • When a start condition is detected. • ACK 1 ACK was not detected. • ACK	0	Receive status (other than transmit status).	The SDA0n line is set to high impedance.			
 When a stop condition is detected Cleared by LRELn bit = 1 (communication save) When the IICEn bit changes from 1 to 0 (operation stop) Cleared by IICCn.WRELn bit = 1^{Nore} When the ALDn bit changes from 0 to 1 (arbitration loss) After reset Master When "1" is output to the first byte's LSB (transfer direction specification bit) Slave When a start condition is detected When not used for communication ACKDn ACKDn ACK was not detected. ACK was detected. 	1					
• When a stop condition is detected Master • Cleared by LRELn bit = 1 (communication save) • When the IICEn bit changes from 1 to 0 (operation stop) • Cleared by IICCn.WRELn bit = 1 ^{Note} • When "0" is output to the first byte's LSB (transfer direction specification bit) • When "1" is output to the first byte's LSB (transfer direction specification bit) • When "1" is input by the first byte's LSB (transfer direction specification bit) • When a start condition is detected • When not used for communication • When not used for communication • WKen • CKDn ACKDn • ACKDn ACK was not detected. 1 ACK was detected.	Condition	for clearing (TRCn bit = 0)	Condition for setting (TRCn bit = 1)			
0 ACK was not detected. 1 ACK was detected.	 Cleared When the stop) Cleared When the loss) After resembles Master When "1" direction Slave When a state 	by LRELn bit = 1 (communication save) a IICEn bit changes from 1 to 0 (operation by IICCn.WRELn bit = 1^{Note} a ALDn bit changes from 0 to 1 (arbitration bit changes from 0 to	 When a start condition is generated When "0" is output to the first byte's LSB (transfer direction specification bit) Slave When "1" is input by the first byte's LSB (transfer 			
0 ACK was not detected. 1 ACK was detected.			ACK detection			
1 ACK was detected.	-	ACK was not detected				
	-					
			Condition for setting (ACKD bit = 1)			

When a stop condition is detected	After the SDA0n bit is set to low level at the rising
 At the rising edge of the next byte's first clock 	edge of the SCL0n pin's ninth clock
 Cleared by LRELn bit = 1 (communication save) 	
When the IICEn bit changes from 1 to 0 (operation	
stop)	
After reset	

Note The TRCn bit is cleared to 0 and SDA0n line becomes high impedance when the WRELn bit is set to 1 and the wait state is canceled to 0 at the ninth clock by TRCn bit = 1.

User's Manual U17715EJ2V0UD

Remark n = 0 to 2

569

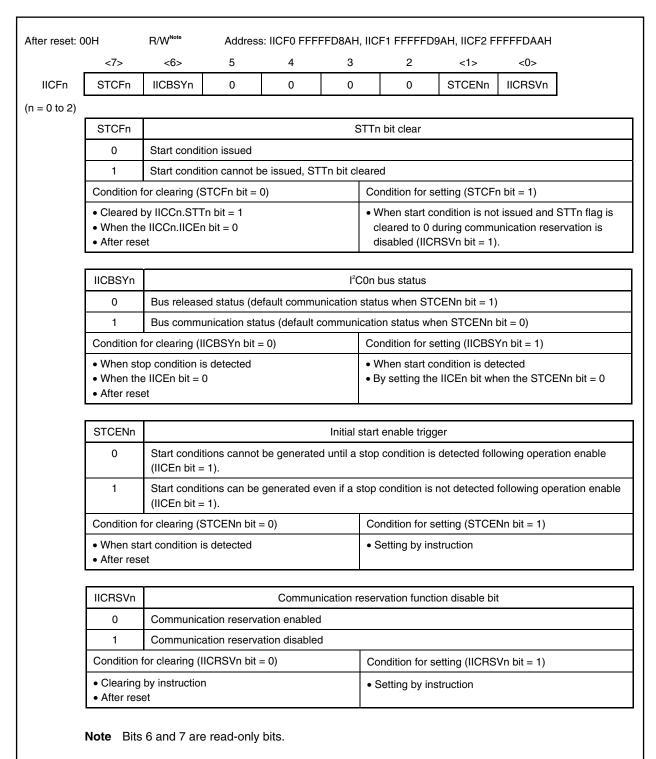
(2/3)

(3/3)

STDn	Start	condition detection			
0	Start condition was not detected.				
1	Start condition was detected. This indicates	that the address transfer period is in effect			
Condition	for clearing (STDn bit = 0)	Condition for setting (STDn bit = 1)			
 At the ris following Cleared 	stop condition is detected sing edge of the next byte's first clock address transfer by LRELn bit = 1 (communication save) e IICEn bit changes from 1 to 0 (operation	When a start condition is detected			

SPDn	Stop	condition detection
0	Stop condition was not detected.	
1	Stop condition was detected. The master d released.	evice's communication is terminated and the bus is
Condition	for clearing (SPDn bit = 0)	Condition for setting (SPDn bit = 1)
clock foll start con	e IICEn bit changes from 1 to 0 (operation	When a stop condition is detected

(3) IIC flag registers 0 to 2 (IICF0 to IICF2)


The IICFn register sets the l^2C0n operation mode and indicates the l^2C bus status.

These registers can be read or written in 8-bit or 1-bit units. However, the STCFn and IICBSYn bits are readonly.

IICRSVn enables/disables the communication reservation function (see **17.14 Communication Reservation**). The initial value of the IICBSYn bit is set by using the STCENn bit (see **17.15 Cautions**).

The IICRSVn and STCENn bits can be written only when operation of I^2C0n is disabled (IICCn.IICEn bit = 0). After operation is enabled, IICFn can be read (n = 0 to 2).

Reset sets these registers to 00H.

Cautions 1. Write the STCENn bit only when operation is stopped (IICEn bit = 0).

- 2. When the STCENn bit = 1, the bus released status (IICBSYn bit = 0) is recognized regardless of the actual bus status immediately after the l^2 Cn bus operation is enabled. Therefore, to issue the first start condition (STTn bit = 1), it is necessary to confirm that the bus has been released, so as to not disturb other communications.
 - 3. Write the IICRSVn bit only when operation is stopped (IICEn bit = 0).

(4) IIC clock select registers 0 to 2 (IICCL0 to IICCL2)

The IICCLn register sets the transfer clock for I²C0n.

These registers can be read or written in 8-bit or 1-bit units. However, the CLDn and DADn bits are read-only. Set the IICCLn register when the IICCn.IICEn bit = 0.

The SMCn, CLn1, and CLn0 bits are set by the combination of the IICXn.CLXn bit and the OCKSTHm, OCKSm1, and OCKSm0 bits of the OCKSm register (see **17.4 (6)** I^2 COn transfer clock setting method) (n = 0 to 2, m = 0, 1).

Reset sets these registers to 00H.

CCLn [0 to 2)	0 CLDn	0	CLDn	DADn	SMCn	DFCn	CLn1	CLn0					
= 0 to 2)	CLDn						OLIII	CLIIU					
-	CLDn		Detection of SCL0n pin level (valid only when IICCn.IICEn bit = 1)										
	-		Detec	tion of SCL0	n pin leve	l (valid only wh	en IICCn.IIC	En bit = 1)					
	0	The SCL0r	pin was det	ected at low	level.								
	1	The SCL0r	pin was det	ected at high	n level.								
	Condition	for clearing (C	CLDn bit = 0))		Condition for s	etting (CLDn	bit = 1)					
		 When the SCL0n pin is at high level When the SCL0n pin is at high level When the SCL0n pin is at high level 											
Г	DADn	Detection of SDA0n pin level (valid only when IICEn bit = 1)											
	0	The SDA0n pin was detected at low level.											
	1	The SDA0n pin was detected at high level.											
	Condition	for clearing ([DADn bit = 0)		Condition for s	etting (DAD0	n bit = 1)					
		 e SDA0n pin is at low level e IICEn bit = 0 (operation stop) et 											
Γ	SMCn	Operation mode switching											
	0	Operation i	Operation in standard mode.										
	1	Operation i	Operation in high-speed mode.										
ſ	DFCn	Digital filter operation control											
Γ	0	Digital filter off.											
	1	Digital filter	Digital filter on.										
	The digital filter can be used only in high-speed mode. In high-speed mode, the transfer clock does not vary regardless of the DFCn bit setting (on/off). The digital filter is used to eliminate noise in high-speed mode.												

(5) IIC function expansion registers 0 to 2 (IICX0 to IICX2)

The IICXn register sets I²C0n function expansion (valid only in the high-speed mode).

These registers can be read or written in 8-bit or 1-bit units.

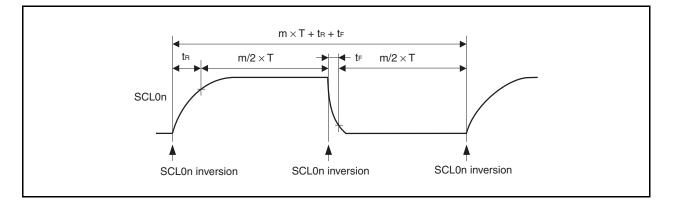
Setting of the CLXn bit is performed in combination with the SMCn, CLn1, and CLn0 bits of the IICCLn register and the OCKSTHm, OCKSm1, and OCKSm0 bits of the OCKSm register (see **17.4 (6)** I^2 **C0n transfer clock setting method**) (m = 0, 1).

Set the IICXn register when the IICCn.IICEn bit = 0.

Reset sets these registers to 00H.

	_		_					
	7	6	5	4	3	2	1	<0>
IICXn	0	0	0	0	0	0	0	CLXn

(6) I²C0n transfer clock setting method


The l²C0n transfer clock frequency (fscL) is calculated using the following expression (n = 0 to 2).

 $f_{SCL} = 1/(m \times T + t_R + t_F)$

- m = 12, 18, 24, 36, 44, 48, 54, 60, 66, 72, 86, 88, 96, 132, 172, 176, 198, 220, 258, 344 (see Table 17-2 Clock Settings).
- T: 1/fxx
- tR: SCL0n pin rise time
- t⊧: SCL0n pin fall time

For example, the l²C0n transfer clock frequency (fscL) when fxx = 19.2 MHz, m = 198, t_R = 200 ns, and t_F = 50 ns is calculated using following expression.

 $f_{SCL} = 1/(198 \times 52 \text{ ns} + 200 \text{ ns} + 50 \text{ ns}) \cong 94.7 \text{ kHz}$

The clock to be selected can be set by the combination of the SMCn, CLn1, and CLn0 bits of the IICCLn register, the CLXn bit of the IICXn register, and the OCKSTHm, OCKSm1, and OCKSm0 bits of the OCKSm register (n = 0 to 2, m = 0, 1).

Table 17-2.	Clock	Settings	(1/2)
-------------	-------	----------	-------

IICX0		IICCL0		Selection Clock	Transfer	Settable Main Clock	Operating
Bit 0	Bit 3	Bit 1	Bit 0		Clock	Frequency (fxx) Range	Mode
CLX0	SMC0	CL01	CL00				
0	0	0	0	fxx (when OCKS0 = 18H set)	fxx/44	2.00 MHz ≤ fxx ≤ 4.19 MHz	Standard
				fxx/2 (when OCKS0 = 10H set)	fxx/88	4.00 MHz ≤ fxx ≤ 8.38 MHz	mode
				fxx/3 (when OCKS0 = 11H set)	fxx/132	6.00 MHz ≤ fxx ≤ 12.57 MHz	- (SMC0 bit = 0)
				fxx/4 (when OCKS0 = 12H set)	fxx/176	8.00 MHz ≤ fxx ≤ 16.76 MHz	-
				fxx/5 (when OCKS0 = 13H set)	fxx/220	10.00 MHz ≤ fxx ≤ 20.00 MHz	-
0	0	0	1	fxx (when OCKS0 = 18H set)	fxx/86	4.19 MHz ≤ fxx ≤ 8.38 MHz	
				fxx/2 (when OCKS0 = 10H set)	fxx/172	8.38 MHz ≤ fxx ≤ 16.76 MHz	
				fxx/3 (when OCKS0 = 11H set)	fxx/258	12.57 MHz ≤ fxx ≤ 20.00 MHz	
				fxx/4 (when OCKS0 = 12H set)	fxx/344	16.76 MHz ≤ fxx ≤ 20.00 MHz	
0	0	1	0	fxx ^{Note}	fxx/86	4.19 MHz ≤ fxx ≤ 8.38 MHz	
0	0	1	1	fxx (when OCKS0 = 18H set)	fxx/66	6.40 MHz	
				fxx/2 (when OCKS0 = 10H set)	fxx/132	12.80 MHz	
				fxx/3 (when OCKS0 = 11H set)	fxx/198	19.20 MHz	
0	1	0	×	fxx (when OCKS0 = 18H set)	fxx/24	4.19 MHz \leq fxx \leq 8.38 MHz	High-speed
				fxx/2 (when OCKS0 = 10H set)	fxx/48	$8.00 \text{ MHz} \le \text{fxx} \le 16.76 \text{ MHz}$	mode (SMC0 bit = 1)
				fxx/3 (when OCKS0 = 11H set)	fxx/72	12.00 MHz \leq fxx \leq 20.00 MHz	
				fxx/4 (when OCKS0 = 12H set)	fxx/96	16.00 MHz ≤ fxx ≤ 20.00 MHz	
0	1	1	0	fxx ^{Note}	fxx/24	$4.00 \text{ MHz} \le \text{fxx} \le 8.38 \text{ MHz}$	
0	1	1	1	fxx (when OCKS0 = 18H set)	fxx/18	6.40 MHz	
				fxx/2 (when OCKS0 = 10H set)	fxx/36	12.80 MHz	
				fxx/3 (when OCKS0 = 11H set)	fxx/54	19.20 MHz	
1	1	0	×	fxx (when OCKS0 = 18H set)	fxx/12	$4.00 \text{ MHz} \le \text{fxx} \le 4.19 \text{ MHz}$	
				fxx/2 (when OCKS0 = 10H set)	fxx/24	8.00 MHz \leq fxx \leq 8.38 MHz	
				fxx/3 (when OCKS0 = 11H set)	fxx/36	12.00 MHz \leq fxx \leq 12.57 MHz	
				fxx/4 (when OCKS0 = 12H set)	fxx/48	16.00 MHz ≤ fxx ≤ 16.67 MHz	
				fxx/5 (when OCKS0 = 13H set)	fxx/60	20.00 MHz	
1	1	1	0	fxx ^{Note}	fxx/12	$4.00 \text{ MHz} \le f_{xx} \le 4.19 \text{ MHz}$	
	Other that	an above)	Setting prohibited	-	_	-

Note Since the selection clock is fxx regardless of the value set to the OCKS0 register, clear the OCKS0 register to 00H (I²C division clock stopped status).

Remark ×: don't care

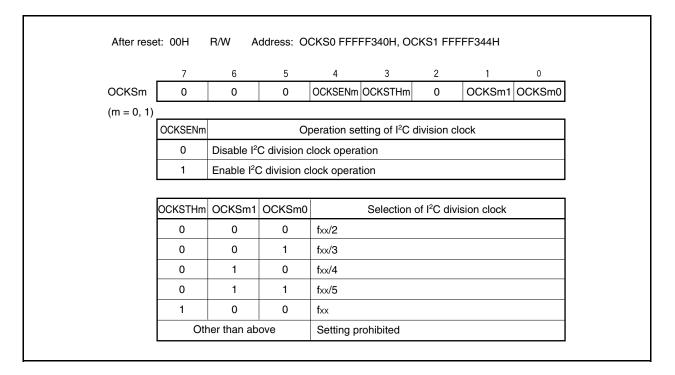
IICXm		IICCLm		Selection Clock	Transfer	Settable Main Clock	Operating
	D:4 0			Selection Clock	Clock	Frequency (fxx) Range	Mode
Bit 0	Bit 3	Bit 1	Bit 0				
CLXm	SMCm	CLm1	CLm0		£ /44		
0	0	0	0	fxx (when OCKS1 = 18H set)	fxx/44	2.00 MHz \leq fxx \leq 4.19 MHz	Standard mode
				fxx/2 (when OCKS1 = 10H set)	fxx/88	4.00 MHz ≤ fxx ≤ 8.38 MHz	(SMCm bit = 0)
				fxx/3 (when OCKS1 = 11H set)	fxx/132	6.00 MHz ≤ fxx ≤ 12.57 MHz	-
				fxx/4 (when OCKS1 = 12H set)	fxx/176	8.00 MHz ≤ fxx ≤ 16.76 MHz	-
				fxx/5 (when OCKS1 = 13H set)	fxx/220	10.00 MHz ≤ fxx ≤ 20.00 MHz	_
0	0	0	1	fxx (when OCKS1 = 18H set)	fxx/86	4.19 MHz \leq fxx \leq 8.38 MHz	-
				fxx/2 (when OCKS1 = 10H set)	fxx/172	8.38 MHz ≤ fxx ≤ 16.76 MHz	-
				fxx/3 (when OCKS1 = 11H set)	fxx/258	12.57 MHz \leq fxx \leq 20.00 MHz	_
				fxx/4 (when OCKS1 = 12H set)	fxx/344	16.76 MHz \leq fxx \leq 20.00 MHz	
0	0	1	0	fxx ^{Note}	fxx/86	$4.19 \text{ MHz} \leq \text{fxx} \leq 8.38 \text{ MHz}$	
0	0	1	1	fxx (when OCKS1 = 18H set)	fxx/66	6.40 MHz	
				fxx/2 (when OCKS1 = 10H set)	fxx/132	12.80 MHz	
				fxx/3 (when OCKS1 = 11H set)	fxx/198	19.20 MHz	
0	1	0	×	fxx (when OCKS1 = 18H set)	fxx/24	4.19 MHz ≤ fxx ≤ 8.38 MHz	High-speed
				fxx/2 (when OCKS1 = 10H set)	fxx/48	8.00 MHz ≤ fxx ≤ 16.76 MHz	mode
				fxx/3 (when OCKS1 = 11H set)	fxx/72	12.00 MHz ≤ fxx ≤ 20.00 MHz	(SMCm bit = 1)
				fxx/4 (when OCKS1 = 12H set)	fxx/96	16.00 MHz ≤ fxx ≤ 20.00 MHz	
0	1	1	0	fxx ^{Note}	fxx/24	$4.00 \text{ MHz} \le \text{fxx} \le 8.38 \text{ MHz}$	
0	1	1	1	fxx (when OCKS1 = 18H set)	fxx/18	6.40 MHz	
				fxx/2 (when OCKS1 = 10H set)	fxx/36	12.80 MHz	
				fxx/3 (when OCKS1 = 11H set)	fxx/54	19.20 MHz	-
1	1	0	×	fxx (when OCKS1 = 18H set)	fxx/12	4.00 MHz ≤ fxx ≤ 4.19 MHz	-
				fxx/2 (when OCKS1 = 10H set)	fxx/24	8.00 MHz ≤ fxx ≤ 8.38 MHz	_
				fxx/3 (when OCKS1 = 11H set)	fxx/36	12.00 MHz ≤ fxx ≤ 12.57 MHz	-
				fxx/4 (when OCKS1 = 12H set)	fxx/48	16.00 MHz ≤ fxx ≤ 16.67 MHz	-
				fxx/5 (when OCKS1 = 13H set)	fxx/60	20.00 MHz	-
1	1	1	0	fxx ^{Note}	fxx/12	4.00 MHz ≤ fxx ≤ 4.19 MHz	-
	Other that		-	Setting prohibited	_	_	_

Table 17-2. Clock Settings (2/2)

Note Since the selection clock is fxx regardless of the value set to the OCKS1 register, clear the OCKS1 register to 00H (l²C division clock stopped status).

Remarks 1. m = 1, 2

2. \times : don't care

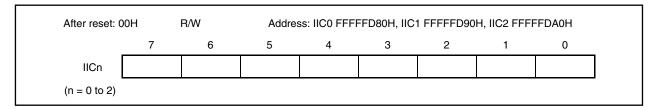

(7) IIC division clock select registers 0, 1 (OCKS0, OCKS1)

The OCKSm register controls the l^2 C0n division clock (n = 0 to 2, m = 0, 1).

These registers control the I²C00 division clock via the OCKS0 register and the I²C01 and I²C02 division clocks via the OCKS1 register.

These registers can be read or written in 8-bit units.

Reset sets these registers to 00H.



(8) IIC shift registers 0 to 2 (IIC0 to IIC2)

The IICn register is used for serial transmission/reception (shift operations) synchronized with the serial clock. These registers can be read or written in 8-bit units, but data should not be written to the IICn register during a data transfer.

Access (read/write) the IICn register only during the wait period. Accessing this register in communication states other than the wait period is prohibited. However, for the master device, the IICn register can be written once only after the transmission trigger bit (IICCn.STTn bit) has been set to 1.

A wait state is released by writing the IICn register during the wait period, and data transfer is started (n = 0 to 2). Reset sets these registers to 00H.

(9) Slave address registers 0 to 2 (SVA0 to SVA2)

The SVAn register holds the I²C bus's slave address.

These registers can be read or written in 8-bit units, but bit 0 should be fixed to 0. However, rewriting this register is prohibited when the IICSn.STDn bit = 1 (start condition detection). Reset sets these registers to 00H.

After reset: (ЮН	R/W	Addres	s: SVA0 FFF	FFD83H, SV		093H, SVA2 F	FFFFDA3H
	7	6	5	4	3	2	1	0
SVAn								0
(n = 0 to 2)								

17.5 I²C Bus Mode Functions

17.5.1 Pin configuration

The serial clock pin (SCL0n) and serial data bus pin (SDA0n) are configured as follows (n = 0 to 2).

SCL0nThis pin is used for serial clock input and output. This pin is an N-ch open-drain output for both master and slave devices. Input is Schmitt input. SDA0nThis pin is used for serial data input and output. This pin is an N-ch open-drain output for both master and slave devices. Input is Schmitt input.

Since outputs from the serial clock line and the serial data bus line are N-ch open-drain outputs, an external pull-up resistor is required.

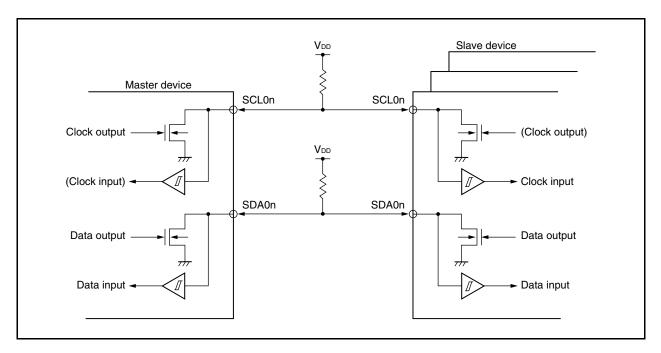
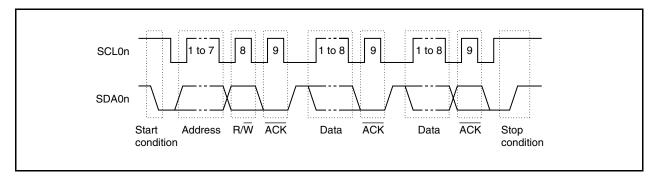
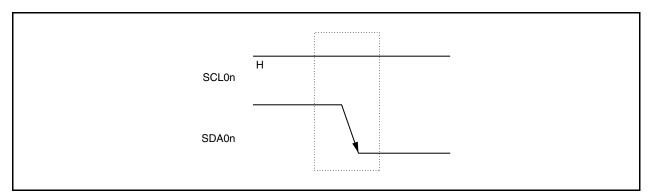



Figure 17-6. Pin Configuration Diagram

17.6 I²C Bus Definitions and Control Methods

The following section describes the I²C bus's serial data communication format and the signals used by the I²C bus. The transfer timing for the "start condition", "address", "transfer direction specification", "data", and "stop condition" generated on the I²C bus's serial data bus is shown below.


The master device generates the start condition, slave address, and stop condition.

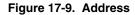
ACK can be generated by either the master or slave device (normally, it is generated by the device that receives 8bit data).

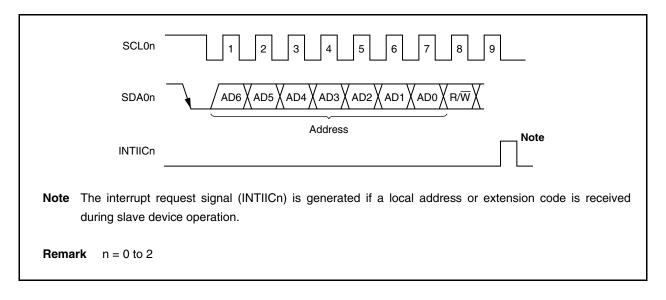
The serial clock (SCL0n) is continuously output by the master device. However, in the slave device, the SCL0n pin's low-level period can be extended and a wait state can be inserted (n = 0 to 2).

17.6.1 Start condition

A start condition is met when the SCL0n pin is high level and the SDA0n pin changes from high level to low level. The start condition for the SCL0n and SDA0n pins is a signal that the master device outputs to the slave device when starting a serial transfer. The slave device can defect the start condition (n = 0 to 2).

A start condition is output when the IICCn.STTn bit is set (1) after a stop condition has been detected (IICSn.SPDn bit = 1). When a start condition is detected, the IICSn.STDn bit is set (1) (n = 0 to 2).

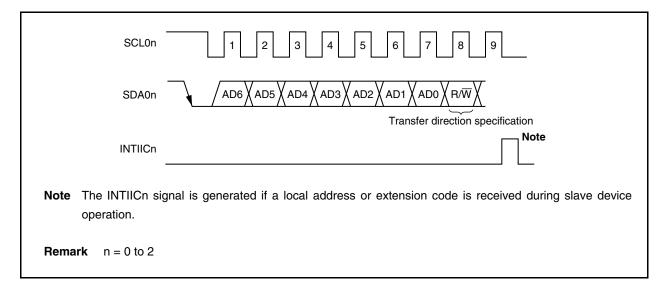

Caution When the IICCn.IICEn bit of the V850ES/JG2 is set to 1 while communications with other devices are in progress, the start condition may be detected depending on the status of the communication line. Be sure to set the IICCn.IICEn bit to 1 when the SCL0n and SDA0n lines are high level.


17.6.2 Addresses

The 7 bits of data that follow the start condition are defined as an address.

An address is a 7-bit data segment that is output in order to select one of the slave devices that are connected to the master device via the bus lines. Therefore, each slave device connected via the bus lines must have a unique address.

The slave devices include hardware that detects the start condition and checks whether or not the 7-bit address data matches the data values stored in the SVAn register. If the address data matches the values of the SVAn register, the slave device is selected and communicates with the master device until the master device generates a start condition or stop condition (n = 0 to 2).


The slave address and the eighth bit, which specifies the transfer direction as described in **17.6.3 Transfer direction specification** below, are written together to IIC shift register n (IICn) and then output. Received addresses are written to the IICn register (n = 0 to 2).

The slave address is assigned to the higher 7 bits of the IICn register.

17.6.3 Transfer direction specification

In addition to the 7-bit address data, the master device sends 1 bit that specifies the transfer direction. When this transfer direction specification bit has a value of 0, it indicates that the master device is transmitting data to a slave device. When the transfer direction specification bit has a value of 1, it indicates that the master device is receiving data from a slave device.

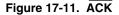
17.6.4 ACK

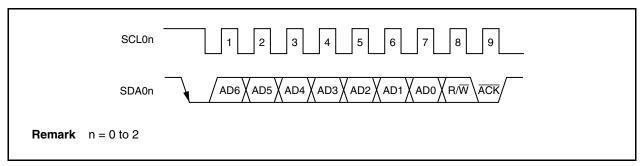
ACK is used to confirm the serial data status of the transmitting and receiving devices.

The receiving device returns ACK for every 8 bits of data it receives.

The transmitting device normally receives \overline{ACK} after transmitting 8 bits of data. When \overline{ACK} is returned from the receiving device, the reception is judged as normal and processing continues. The detection of \overline{ACK} is confirmed with the IICSn.ACKDn bit.

When the master device is the receiving device, after receiving the final data, it does not return \overline{ACK} and generates the stop condition. When the slave device is the receiving device and does not return \overline{ACK} , the master device generates either a stop condition or a restart condition, and then stops the current transmission. Failure to return \overline{ACK} may be caused by the following factors.


- (a) Reception was not performed normally.
- (b) The final data was received.
- (c) The receiving device (slave) does not exist for the specified address.


When the receiving device sets the SDA0n line to low level during the ninth clock, ACK is generated (normal reception).

When the IICCn.ACKEn bit is set to 1, automatic \overrightarrow{ACK} generation is enabled. Transmission of the eighth bit following the 7 address data bits causes the IICSn.TRCn bit to be set. Normally, set the ACKEn bit to 1 for reception (TRCn bit = 0).

When the slave device is receiving (when TRCn bit = 0), if the slave device cannot receive data or does not need to receive any more data, clear the ACKEn bit to 0 to indicate to the master that no more data can be received.

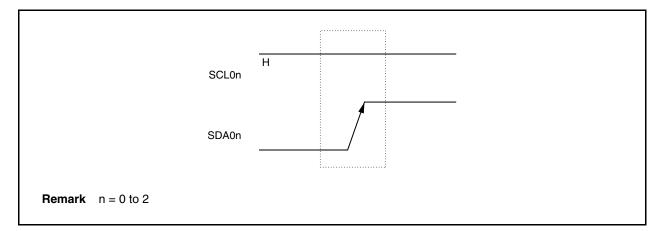
Similarly, when the master device is receiving (when TRCn bit = 0) and the subsequent data is not needed, clear the ACKEn bit to 0 to prevent \overline{ACK} from being generated. This notifies the slave device (transmitting device) of the end of the data transmission (transmission stopped).

When the local address is received, ACK is automatically generated regardless of the value of the ACKEn bit. No ACK is generated if the received address is not a local address (NACK).

When receiving the extension code, set the ACKEn bit to 1 in advance to generate ACK.

The ACK generation method during data reception is based on the wait timing setting, as described by the following.

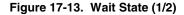
- When 8-clock wait is selected (IICCn.WTIMn bit = 0):
- ACK is generated at the falling edge of the SCL0n pin's eighth clock if the ACKEn bit is set to 1 before the wait state cancellation.
- When 9-clock wait is selected (IICCn.WTIMn bit = 1):
 ACK is generated if the ACKEn bit is set to 1 in advance.


Remark n = 0 to 2

17.6.5 Stop condition

When the SCL0n pin is high level, changing the SDA0n pin from low level to high level generates a stop condition (n = 0 to 2).

A stop condition is generated when the master device outputs to the slave device when serial transfer has been completed. When used as the slave device, the start condition can be detected.



A stop condition is generated when the IICCn.SPTn bit is set to 1. When the stop condition is detected, the IICSn.SPDn bit is set to 1 and the interrupt request signal (INTIICn) is generated when the IICCn.SPIEn bit is set to 1 (n = 0 to 2).

17.6.6 Wait state

A wait state is used to notify the communication partner that a device (master or slave) is preparing to transmit or receive data (i.e., is in a wait state).

Setting the SCL0n pin to low level notifies the communication partner of the wait state. When the wait state has been canceled for both the master and slave devices, the next data transfer can begin (n = 0 to 2).

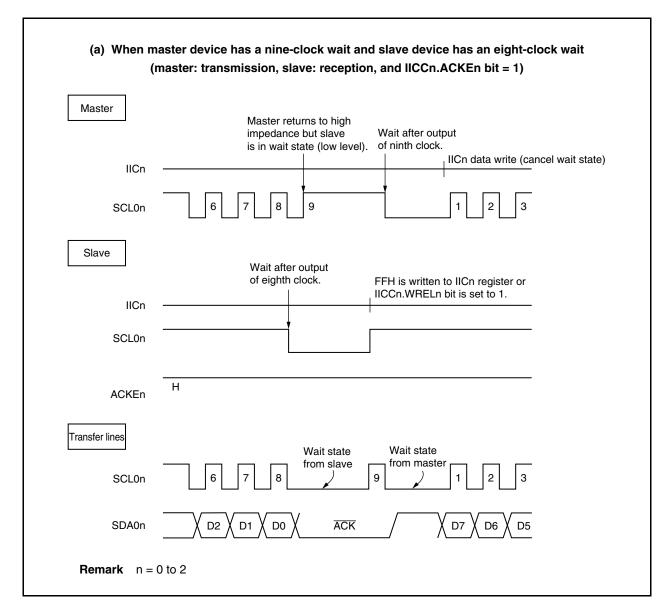
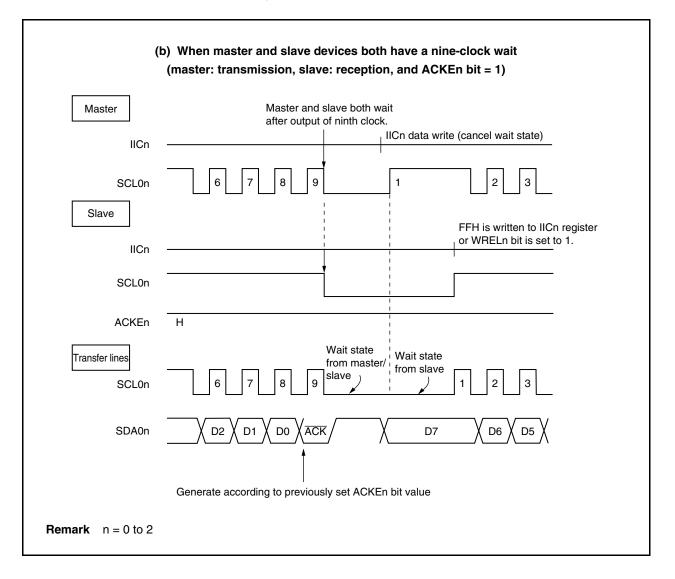



Figure 17-13. Wait State (2/2)

A wait state may be automatically generated depending on the setting of the IICCn.WTIMn bit (n = 0 to 2).

Normally, when the IICCn.WRELn bit is set to 1 or when FFH is written to the IICn register on the receiving side, the wait state is canceled and the transmitting side writes data to the IICn register to cancel the wait state. The master device can also cancel the wait state via either of the following methods.

• By setting the IICCn.STTn bit to 1

• By setting the IICCn.SPTn bit to 1

17.6.7 Wait state cancellation method

In the case of l^2C0n , wait state can be canceled normally in the following ways (n = 0 to 2).

- By writing data to the IICn register
- By setting the IICCn.WRELn bit to 1 (wait state cancellation)
- By setting the IICCn.STTn bit to 1 (start condition generation)
- By setting the IICCn.SPTn bit to 1 (stop condition generation)

If any of these wait state cancellation actions is performed, I²C0n will cancel wait state and restart communication. When canceling wait state and sending data (including address), write data to the IICn register.

To receive data after canceling wait state, or to complete data transmission, set the WRELn bit to 1.

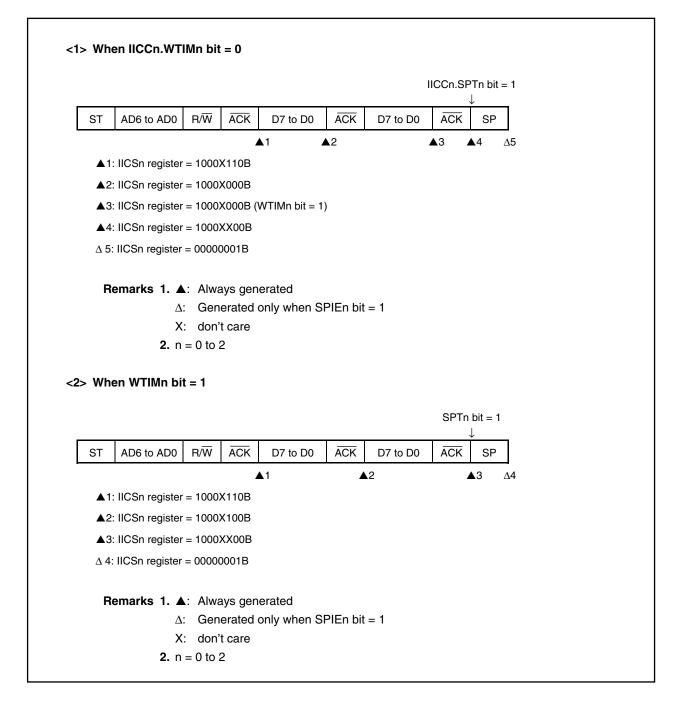
To generate a restart condition after canceling wait state, set the STTn bit to 1.

To generate a stop condition after canceling wait state, set the SPTn bit to 1.

Execute cancellation only once for each wait state.

For example, if data is written to the IICn register following wait state cancellation by setting the WRELn bit to 1, conflict between the SDAn line change timing and IICn register write timing may result in the data output to the SDAn line may be incorrect.

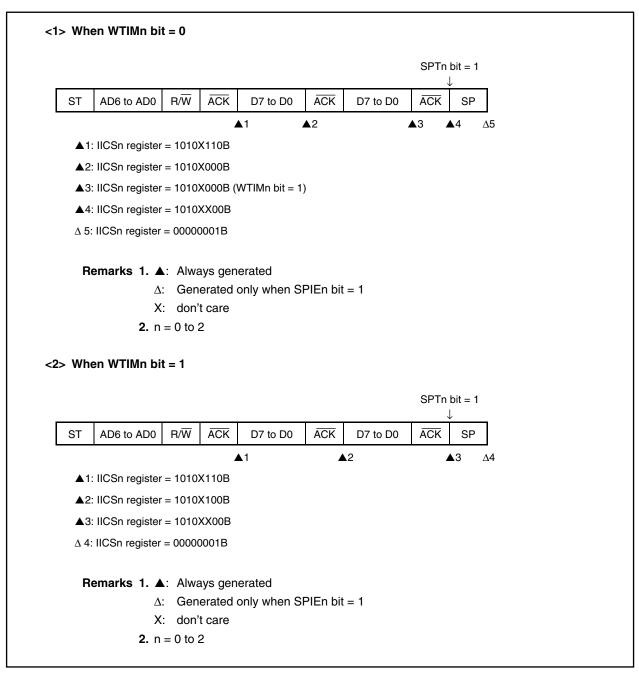
Even in other operations, if communication is stopped halfway, clearing the IICCn.IICEn bit to 0 will stop communication, enabling wait state to be cancelled.


If the I²C bus dead-locks due to noise, etc., setting the IICCn.LRELn bit to 1 causes the communication operation to be exited, enabling wait state to be cancelled.

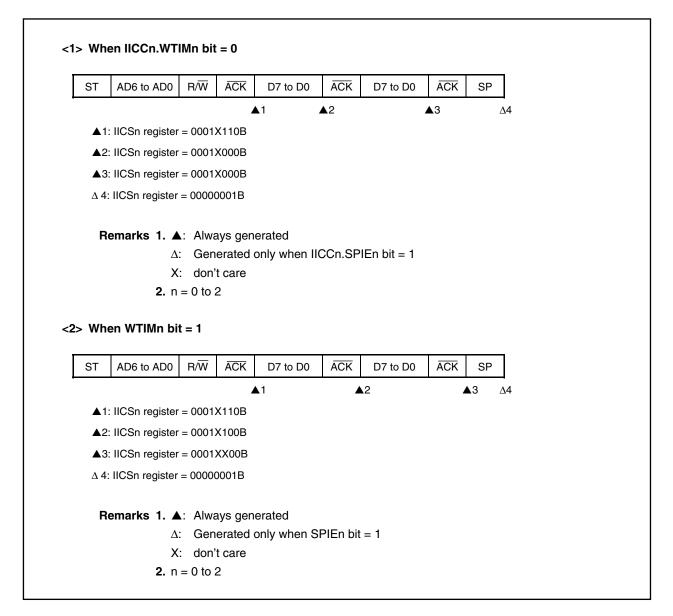
17.7 I²C Interrupt Request Signals (INTIICn)

The following shows the value of the IICSn register at the INTIICn interrupt request signal generation timing and at the INTIICn signal timing (n = 0 to 2).

17.7.1 Master device operation


(1) Start ~ Address ~ Data ~ Data ~ Stop (normal transmission/reception)

(2) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop (restart)


	<1> When W	TIMn t	oit = 0									
					STTn	bit = 1 ↓					SPTn	bit = 1 ↓
ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ACK	ST	AD6 to AD0	R/W	ACK	D7 to D0	ĀCK	SP
				1	1 2	▲3			4	4	▲5	▲ 6 ∆7
	▲1: IICS	n registe	er = 100	0X110B								
	▲2: IICS	n registe	er = 100	0X000B (WTIN	/In bit =	1)						
	▲3: IICS	n registe	er = 100	0XX00B (WTI	Mn bit =	0)						
	▲4: IICS	n registe	er = 100	0X110B (WTIN	/In bit =	0)						
	▲5: IICS	n registe	er = 100	0X000B (WTIN	/In bit =	1)						
	▲6: IICS	n registe	er = 100	0XX00B								
	Δ 7: IICS	n registe	er = 0000	00001B								
	<2> When W	2.	X: dor n = 0 tc oit = 1		STTn	bit = 1					SPTn	bit = 1
ST	AD6 to AD0	R/W	ACK	D7 to D0	ĀCK	↓ ST	AD6 to AD0	R/W	ACK	D7 to D0	ACK	↓ SP
51	ADO IO ADO			1		2	ADO IO ADO			3		4 Δ5
	▲1: IICS	n registe			-				-			
	▲2: IICS											
	▲3: IICS											
	▲4: IICS											
	Δ 5: IICS	n registe	er = 0000	00001B								
	Remar					SPIEn t	bit = 1					

(3) Start ~ Code ~ Data ~ Data ~ Stop (extension code transmission)

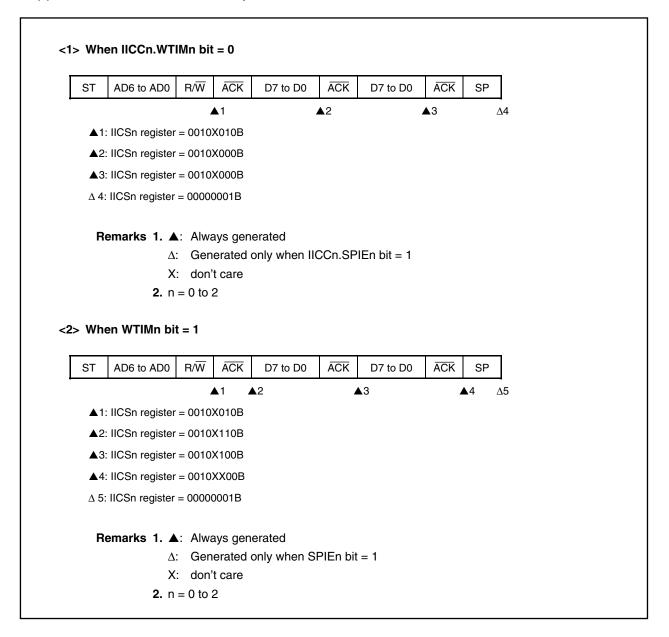
17.7.2 Slave device operation (when receiving slave address data (address match))

(1) Start ~ Address ~ Data ~ Data ~ Stop

(2) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop

ST	AD6 to AD0	R/W	ACK	D7 to D0	ACK	ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ĀCK	SP	
				1	▲2					3	▲4		
	▲1: IICS	n registe	er = 000	1X110B									
	▲2: IICS	n registe	er = 000	1X000B									
	▲3: IICS	n registe	er = 000	1X110B									
	▲4: IICS	n registe	er = 000	1X000B									
	∆ 5: IICSi	n registe	er = 0000	00001B									
	Domor	ke 1	▲ · Λ Ι	vays generat	od								
	Remar			nerated only		SPIEn ł	oit = 1						
		4	<u> </u>	norated entry	which c		511 - 1						
			X: dor	n't care									
			X: dor n = 0 to	n't care 2									
	<2> When W	2.	n = 0 to	02	addre	ee mai	tch)						
	<2> When W	2.	n = 0 to	02	, addre	ess mat	tch)						
ST	<2> When W AD6 to AD0	2.	n = 0 to	02	, addre	ss mat	tch) AD6 to AD0	R/W	ĀĊĶ	D7 to D0	ĀCK	SP	
	1	2. TIMn b	n = 0 to bit = 1 (ACK	o 2 after restart	ĀCK		1	R/W		D7 to D0		SP	
	1	2. TIMn b R/W	$n = 0 \text{ to}$ $\mathbf{Dit} = 1 (\mathbf{ACK})$	o 2 after restart D7 to D0 ▲1	ĀCK	ST	1	R/W					
	AD6 to AD0	2. TIMn b R/W	n = 0 to $pit = 1 ($ ACK a a $br = 000$	o 2 after restart D7 to D0 1 1X110B	ĀCK	ST	1	R/W					
	AD6 to AD0	2. TIMn b R/W	$m = 0 \text{ tot}$ $pit = 1 ($ \overline{ACK} $arr = 000$ $er = 000$	after restart	ĀCK	ST	1	R/W					
	AD6 to AD0 ▲1: IICS ▲2: IICS	2. TIMn k R/W n registe n registe	$n = 0 \text{ to}$ $pit = 1 ($ \overline{ACK} $ar = 000$ $er = 000$ $er = 000$	2 after restart D7 to D0 1 1X110B 1X10B 1X110B 1X110B	ĀCK	ST	1	R/W					
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS	2. TIMn t R/W n registe n registe n registe	n = 0 to $pit = 1 ($ ACK $accorrectors$ a	after restart D7 to D0 1 1X110B 1XX00B 1X110B 1XX00B 1XX00B	ĀCK	ST	1	R/W					
	AD6 to AD0 ▲ 1: IICS ▲ 2: IICS ▲ 3: IICS ▲ 4: IICS ▲ 5: IICS	2. TIMn b R/W n registe n registe n registe n registe	n = 0 tot pit = 1 (ACK ar = 000 er = 000 er = 000 er = 000 er = 000 er = 000	after restart D7 to D0 1 1X110B 1XX00B 1X110B 1XX00B 1XX00B	ĀĊĸ	ST	1	R/W					
	AD6 to AD0 ▲ 1: IICS ▲ 2: IICS ▲ 3: IICS ▲ 4: IICS ▲ 5: IICS	2. TIMn k R/W n registe n registe n registe n registe n registe	$n = 0 \text{ to}$ \overline{ACK}	after restart D7 to D0 1 1X110B 1XX00B 1X110B 1XX00B 1XX00B 00001B	ACK	ST	AD6 to AD0	R/W					

(3) Start ~ Address ~ Data ~ Start ~ Code ~ Data ~ Stop


	<1> When W	/TIMn k	oit = 0 (after restart	, exten	sion c	ode receptio	n)					
ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ĀCK	ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ACK	SP	ור
	•			1	▲2				▲3		▲4		Δ5
	▲1: IICS	n registe	er = 000	1X110B									
	▲2: IICS	n registe	er = 000	1X000B									
	▲3: IICS	n registe	er = 001	0X010B									
	▲4: IICS	n registe	er = 001	0X000B									
	Δ 5: IICS	n registe	er = 000	00001B									
	<2> When W	2.	∆: Ge X: dor n = 0 tc		when S			n)					
ST	AD6 to AD0	R/W	ACK	D7 to D0	ACK	ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ĀCK	SP	ן ר
<u> </u>	1			1	· · · · ·	▲2		·	▲3	▲ 4	A	5	∆6
	▲1: IICS	n registe	er = 000	1X110B									
	▲2: IICS	n registe	er = 000	1XX00B									
	▲3: IICS	n registe	er = 001	0X010B									
	▲4: IICS	n registe	er = 001	0X110B									
	▲5: IICS	n registe	er = 001	0XX00B									
	Δ 6: IICS	n registe	er = 000	00001B									
	Remai					SPIEn I	oit = 1						

(4) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop

ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ĀCK	ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ACK	SP
				1	▲2					3		2
	▲1: IICS	n registe	er = 000	1X110B								
	▲2: IICS	n registe	er = 000	1X000B								
	▲3: IICS	n registe	er = 0000	00X10B								
	Δ 4: IICS	n registe	er = 0000	00001B								
	-											
	Remai			ays generat			oit _ 1					
			∆: Ge	nerated only	when a		JII = I					
			X∙ dor	't care								
			X: dor n = 0 to									
	<2> When W	2.	n = 0 to	2	, addre	ss mis	smatch (= no	t exten	sion co	ode))		
	1	2. /TIMn k	n = 0 to oit = 1 (2 after restart				1				SP
ST	<2> When W AD6 to AD0	2.	n = 0 to Dit = 1 (ACK	2 after restart	ĀCK	ST	AD6 to AD0	t exten	ĀCK	D7 to D0	ĀĊĸ	SP
	AD6 to AD0	2. /TIMn k R/W	n = 0 to Dit = 1 (ACK	2 after restart D7 to D0	ĀCK			1	ĀCK		ĀCK	SP
	AD6 to AD0	2. /TIMn k R/W	$n = 0 \text{ to}$ $pit = 1 ($ \overline{ACK} $er = 000^{\circ}$	2 after restart D7 to D0 1 1X110B	ĀCK	ST		1	ĀCK	D7 to D0	ĀĊĸ	_
	AD6 to AD0 ▲1: IICS ▲2: IICS	2. /TIMn t R/W	n = 0 to bit = 1 (<u>ACK</u>	2 after restart D7 to D0 1 1X110B 1XX00B	ĀCK	ST		1	ĀCK	D7 to D0	ĀĊĶ	_
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS	2. /TIMn t R/W n registe n registe	$n = 0 \text{ to}$ $pit = 1 ($ \overline{ACK} $ar = 000^{\circ}$ $er = 000^{\circ}$ $er = 000^{\circ}$	2 after restart D7 to D0 1 1X110B 1XX00B 00X10B	ĀCK	ST		1	ĀCK	D7 to D0	ĀĊĸ	_
	AD6 to AD0 ▲1: IICS ▲2: IICS	2. /TIMn t R/W n registe n registe	$n = 0 \text{ to}$ $pit = 1 ($ \overline{ACK} $ar = 000^{\circ}$ $er = 000^{\circ}$ $er = 000^{\circ}$	2 after restart D7 to D0 1 1X110B 1XX00B 00X10B	ĀCK	ST		1	ĀCK	D7 to D0	ĀĊK	_
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS ▲4: IICS	2. /TIMn t R/W n registe n registe n registe	n = 0 to pit = 1 (\overline{ACK} $ar = 000^{\circ}$ $er = 000^{\circ}$ $er = 0000^{\circ}$ $er = 0000^{\circ}$	2 after restart D7 to D0 1 1X110B 1XX00B 00X10B 00001B	ACK	ST		1	ĀCK	D7 to D0	ĀĊĸ	_
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS ▲4: IICS	2. /TIMn k R/W n registe n registe n registe n registe rks 1.	n = 0 to $pit = 1 ($ ACK $ar = 000$ $er = 0000$ $er = 0000$ $er = 0000$ $ar = 0000$	2 after restart D7 to D0 1 1X110B 1XX00B 00X10B	ACK	ST 2	AD6 to AD0	1	ĀCK	D7 to D0	ĀĊK	_
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS ▲4: IICS	2. TIMn t R/W n registe n registe n registe rks 1.	n = 0 to $pit = 1 ($ ACK $ar = 000$ $er = 0000$ $er = 0000$ $er = 0000$ $ar = 0000$	2 after restart D7 to D0 1 1X110B 1X10B 00X10B 00001B vays generat nerated only	ACK	ST 2	AD6 to AD0	1	ĀCK	D7 to D0	ĀCK	_

17.7.3 Slave device operation (when receiving extension code)

(1) Start ~ Code ~ Data ~ Data ~ Stop

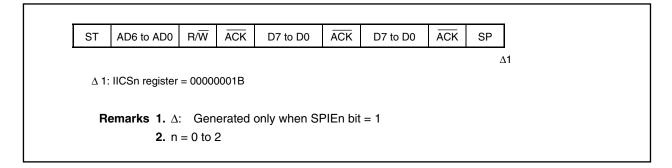
(2) Start ~ Code ~ Data ~ Start ~ Address ~ Data ~ Stop

ST	AD6 to AD0	R/W	ĀĊK	D7 to D0	ĀCK	ST	AD6 to AD0	R/W	ĀĊK	D7 to D0	ACK	SP	
			1		▲2				4	▲3	▲4		ļ
	▲1: IICS	n registe	er = 001	0X010B									
	▲2: IICS	n registe	er = 001	0X000B									
	▲3: IICS	n registe	er = 000	1X110B									
	▲4: IICS	n registe	er = 000	1X000B									
	∆ 5: IICS	n registe	er = 000	00001B									
	Remar	'ks 1.	▲: Alv	vays generat	ed								
				enerated only	when S	SPIEn I	oit = 1						
			X∙doi	n't care									
	<2> When W	2.	n = 0 to	02	, addre	ss ma	tch)						
ST	<2> When W AD6 to AD0	2.	n = 0 to	02	, addre	ss ma ST	tch) AD6 to AD0	R/W	ĀCK	D7 to D0	ĀCK	SP	
	1	2. TIMn t R/W	$n = 0 \text{ to}$ $\mathbf{Dit} = 1 (0)$ $\overline{\mathbf{ACK}}$	o 2 (after restart	ĀCK			R/W		D7 to D0 ▲4		SP	
	1	2. TIMn b R/W	$n = 0 \text{ to}$ $\mathbf{Dit} = 1 (\mathbf{ACK})$	2 (after restart D7 to D0 ▲2	ĀCK	ST		R/W					
	AD6 to AD0	2. TIMn b R/W	$n = 0 \text{ to}$ $pit = 1 ($ \overline{ACK} 1 $arr = 001$	after restart D7 to D0 ▲2 0X010B	ĀCK	ST		R/W					1
	AD6 to AD0	2. TIMn b R/W n registe n registe	$n = 0 \text{ to}$ $\overline{\text{ACK}}$ $\overline{\text{ACK}}$ 1 $er = 001$ $er = 001$	2 (after restart D7 to D0 ▲2 0X010B 0X110B	ĀCK	ST		R/W					
	AD6 to AD0 ▲1: IICS ▲2: IICS	2. TTIMn to R/W n registe n registe n registe	n = 0 to \overline{ACK} ACK ar = 001 ar = 001 ar = 001	2 (after restart D7 to D0 ▲2 0X010B 0X110B 0XX00B	ĀCK	ST		R/W					2
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS	2. TIMn b R/W n registe n registe n registe n registe	n = 0 to pit = 1 (\overline{ACK} 1 er = 001 er = 001 er = 001 er = 001	2 (after restart D7 to D0 2 0X010B 0X110B 0XX00B 1X110B	ĀCK	ST		R/W					
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS ▲4: IICS	2. TIMn E R/W n registe n registe n registe n registe n registe	n = 0 to \overline{ACK} ACK ar = 001 ar = 001 ar = 001 ar = 001 ar = 000 ar = 000	2 (after restart D7 to D0 ▲2 0X010B 0X110B 0XX00B 1X110B 1XX00B	ĀCK	ST		R/W					
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS ▲4: IICS ▲5: IICS ▲6: IICS	2. TIMn k R/W n registe n registe n registe n registe n registe	n = 0 to pit = 1 (\overline{ACK} ar = 001 er = 001 er = 001 er = 000 er = 000 er = 000	2 (after restart D7 to D0 ▲2 0X010B 0X110B 0XX00B 1X110B 1XX00B	ĀĊĸ	ST		R/W					
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS ▲4: IICS ▲5: IICS ▲6: IICS	2. TIMn k R/W n registe n registe n registe n registe n registe r registe	n = 0 tot arrow interval in the second sec	2 (after restart D7 to D0 ▲2 0X010B 0X110B 0XX00B 1X110B 1XX00B 00001B	ACK	ST 3	AD6 to AD0	R/W					
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS ▲4: IICS ▲5: IICS ▲6: IICS	2. TIMn k R/W n registe n registe n registe n registe n registe	n = 0 tot pit = 1 (\overline{ACK} 1 - 4 er = 001 er = 000 er = 000 er = 000 er = 000 er = 000 er = 000	2 (after restart D7 to D0 ▲2 0X010B 0X110B 0XX00B 1X110B 1XX00B 00001B vays generat	ACK	ST 3	AD6 to AD0	R/W					

(3) Start ~ Code ~ Data ~ Start ~ Code ~ Data ~ Stop

ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ĀCK	ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ACK	SP	
			▲1		▲2			4	▲3		▲4		2
	▲1: IICS	n registe	er = 001	0X010B									
	▲2: IICS	n registe	er = 001	0X000B									
	▲3: IICS	n registe	er = 001	0X010B									
	▲4: IICS	n registe	er = 001	0X000B									
	Δ 5: IICS	n registe	er = 0000	00001B									
	Remar	'ks 1.	▲: Alv	vays generat	ed								
			∆: Ge	nerated only	when S	SPIEn l	oit = 1						
			X: dor	n't care									
		2.	n = 0 tc	2									
	<2> When W	TIMn b	oit = 1 (after restar	t, exten	sion c	ode receptio	n)					
	<2> When W AD6 to AD0	TIMn b	bit = 1 (ACK	after restart	t, exten	sion co	AD6 to AD0	n) R/W	ĀCK	D7 to D0	ĀCK	SP	
	1	R/W	ĀCK		ĀCK	1	-	R/W	_	D7 to D0	-	SP 6	
	1	R/W	ACK	D7 to D0	ĀCK	ST	-	R/W	_		-		
	AD6 to AD0	R/W	ACK 1 er = 001	D7 to D0 2 0X010B	ĀCK	ST	-	R/W	_		-		
ST	AD6 to AD0	R/W n registe n registe	ACK 1 er = 001 er = 001	D7 to D0 2 0X010B 0X110B	ĀCK	ST	-	R/W	_		-		
	AD6 to AD0 ▲1: IICS ▲2: IICS	R/W n registe n registe n registe	ACK 1 er = 001 er = 001 er = 001	D7 to D0 2 0X010B 0X110B 0XX00B	ĀCK	ST	-	R/W	_		-		
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS	R/W n registe n registe n registe n registe	ACK 1 er = 001 er = 001 er = 001 er = 001	D7 to D0 2 0X010B 0X110B 0XX00B 0X010B	ĀCK	ST	-	R/W	_		-		
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS ▲4: IICS	R/W n registe n registe n registe n registe n registe	ACK 1 er = 001 er = 001 er = 001 er = 001 er = 001	D7 to D0 2 0X010B 0X110B 0XX00B 0X010B 0X110B	ĀCK	ST	-	R/W	_		-		
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS ▲4: IICS ▲5: IICS	R/W n registe n registe n registe n registe n registe n registe	ACK 1 er = 001 er = 001 er = 001 er = 001 er = 001 er = 001	D7 to D0 2 0X010B 0X110B 0XX00B 0X010B 0X110B 0XX00B	ĀCK	ST	-	R/W	_		-		
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS ▲4: IICS ▲5: IICS ▲6: IICS ▲7: IICS	R/W n registe n registe n registe n registe n registe n registe	ACK 1 er = 0011 er = 0011	D7 to D0 2 0X010B 0X110B 0XX00B 0X010B 0X110B 0XX00B	ĀĊĸ	ST	-	R/W	_		-		
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS ▲4: IICS ▲5: IICS ▲6: IICS ▲7: IICS	R/W n registe n registe n registe n registe n registe n registe	ACK 1 er = 001 er = 000 er = 0000 er = 0000 er = 0000 er = 0000 er = 0000 er = 0000 er = 0000 e	D7 to D0 2 0X010B 0X110B 0XX00B 0X010B 0X110B 0XX00B 00X01B	ACK	ST ▲3	AD6 to AD0	R/W	_		-		
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS ▲4: IICS ▲5: IICS ▲6: IICS ▲7: IICS	R/W n registe n registe n registe n registe n registe registe	ACK 1 er = 001 er = 000 er = 0000 er = 0000 er = 0000 er = 0000 er = 0000 er = 0000 er = 0000 e	D7 to D0 2 0X010B 0X110B 0XX00B 0X110B 0X110B 0XX00B 00X01B vays generat nerated only n't care	ACK	ST ▲3	AD6 to AD0	R/W	_		-		

٦

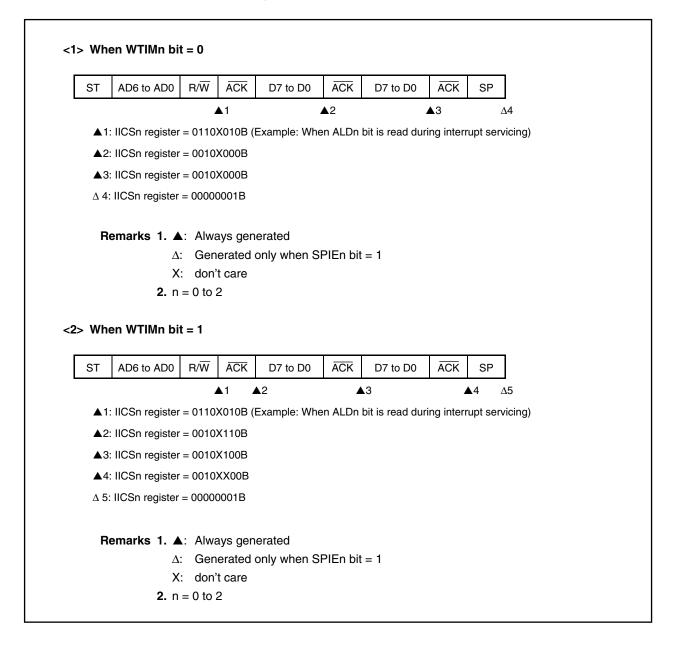

(4) Start ~ Code ~ Data ~ Start ~ Address ~ Data ~ Stop

Г

ST	AD6 to AD0	R/W	ACK	D7 to D0	ĀCK	ST	AD6 to AD0	R/W	ACK	D7 to D0	ĀCK	SP	
-			1		▲2	_				3	_		
	▲1: IICS	n registe	er = 001	0X010B									
	▲2: IICS	-											
	▲3: IICS	•											
	∆ 4: IICS	•											
		-											
	Remai	'ks 1.	▲: Alv	vays generat	ed								
			∆: Ge	nerated only	when S	SPIEn l	oit = 1						
			X: dor	n't care									
		2.	n = 0 tc	2									
		2.	n = 0 to	02									
	<2> When W				, addre	ess mis	smatch (= no	t exten	sion co	ode))			
		TIMn b	oit = 1 (after restart	- T	r						CD	
ST	<2> When W AD6 to AD0	'TIMn k R/W	Dit = 1 (ACK	after restart	ĀCK	ST	AD6 to AD0	t exten R/W	ĀCK	D7 to D0	ĀĊĸ	SP	
	AD6 to AD0	TIMn b	Dit = 1 (ACK	after restart D7 to D0 ▲2	ĀCK	r			ĀCK		ĀĊĶ	SP	2
	AD6 to AD0	TIMn b R/₩ n registe	Dit = 1 (ACK 1 Ack er = 001	after restart D7 to D0 ▲2 0X010B	ĀCK	ST			ĀCK	D7 to D0	ĀĊĸ	SP	2
	AD6 to AD0 ▲1: IICS ▲2: IICS	R/W R/W n registe n registe	ACK ACK A1 Ar = 001 er = 001	after restart D7 to D0 ▲2 0X010B 0X110B	ĀCK	ST			ĀCK	D7 to D0	ĀĊĶ	SP	2
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS	R/W R/W n registe n registe n registe	\overrightarrow{ACK} \overrightarrow	after restart D7 to D0 2 0X010B 0X110B 0XX00B	ĀCK	ST			ĀCK	D7 to D0	ĀĊĸ	SP	2
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS ▲4: IICS	R/W R/W n registe n registe n registe n registe	ACK ACK 1 4 4 5 1 4 4 5 1 4 4 1 4 5 1 4 1 4 1 4 5 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 1 1 1 1 1 1 1	after restart D7 to D0 ▲2 0X010B 0X110B 0XX00B 00X10B	ĀCK	ST			ĀCK	D7 to D0	ĀĊK	SP	2
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS	R/W R/W n registe n registe n registe n registe	ACK ACK 1 4 4 5 1 4 4 5 1 4 4 1 4 5 1 4 1 4 1 4 5 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 1 1 1 1 1 1 1	after restart D7 to D0 ▲2 0X010B 0X110B 0XX00B 00X10B	ĀCK	ST			ĀCK	D7 to D0	ĀCK	SP	2
	AD6 to AD0 ▲ 1: IICS ▲ 2: IICS ▲ 3: IICS ▲ 4: IICS ▲ 5: IICS	R/W R/W n registe n registe n registe n registe n registe	ACK ACK T T T T T T T T	after restart	ACK	ST			ĀCK	D7 to D0	ĀĊĶ	SP	2
	AD6 to AD0 ▲ 1: IICS ▲ 2: IICS ▲ 3: IICS ▲ 4: IICS ▲ 5: IICS	R/W R/W n registe n registe n registe n registe n registe	a \overline{ACK} a \overline{ACK} b \overline{ACK} b \overline{ACK} c \overline{ACK} 	after restart	ACK	ST ▲3	AD6 to AD0		ĀCK	D7 to D0	ĀĊĸ	SP	2
	AD6 to AD0 ▲ 1: IICS ▲ 2: IICS ▲ 3: IICS ▲ 4: IICS ▲ 5: IICS	R/W R/W n registe n registe n registe n registe n registe	a \overline{ACK} a \overline{ACK} b \overline{ACK} b \overline{ACK} c \overline{ACK} 	after restart	ACK	ST ▲3	AD6 to AD0		ĀCK	D7 to D0	ĀĊĶ	SP	

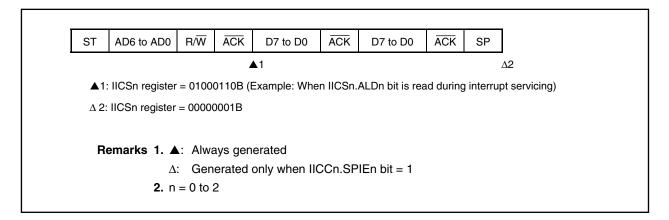
17.7.4 Operation without communication

(1) Start ~ Code ~ Data ~ Data ~ Stop

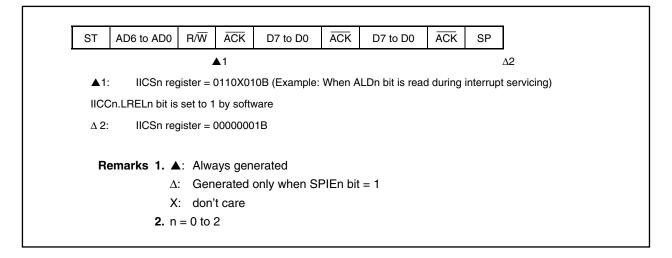


17.7.5 Arbitration loss operation (operation as slave after arbitration loss)

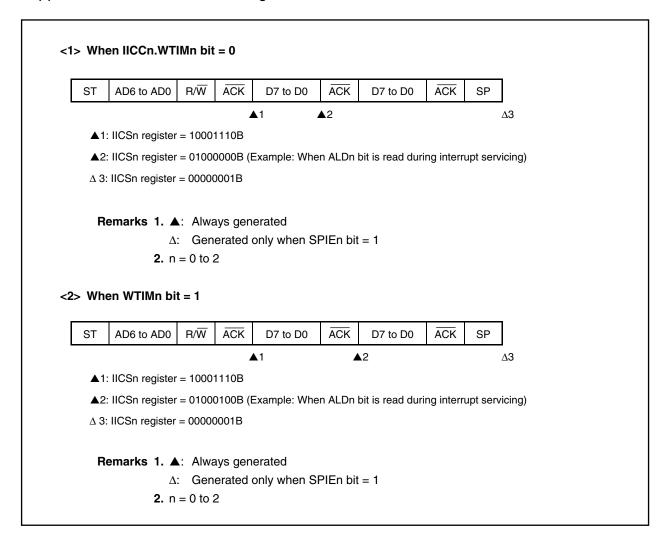
(1) When arbitration loss occurs during transmission of slave address data


▲1 ▲2 ▲3 $\Delta 4$ ▲1: IICSn register = 0101X110B (Example: When IICSn.ALDn bit is read during interrupt set ▲2: IICSn register = 0001X000B ▲3: IICSn register = 0001X000B $\Delta 4$: IICSn register = 0000001B Remarks 1. ▲: Always generated Δ : Generated only when IICCn.SPIEn bit = 1 X: don't care 2. n = 0 to 2
▲2: IICSn register = 0001X000B ▲3: IICSn register = 0001X000B Δ 4: IICSn register = 00000001B Remarks 1. ▲: Always generated Δ : Generated only when IICCn.SPIEn bit = 1 X: don't care
 ▲3: IICSn register = 0001X000B △ 4: IICSn register = 00000001B Remarks 1. ▲: Always generated △: Generated only when IICCn.SPIEn bit = 1 X: don't care
 Δ 4: IICSn register = 00000001B Remarks 1. ▲: Always generated Δ: Generated only when IICCn.SPIEn bit = 1 X: don't care
Remarks 1. ▲: Always generated ∆: Generated only when IICCn.SPIEn bit = 1 X: don't care
Δ : Generated only when IICCn.SPIEn bit = 1 X: don't care
Δ : Generated only when IICCn.SPIEn bit = 1 X: don't care
X: don't care
When WTIMn bit = 1
ST AD6 to AD0 R/W ACK D7 to D0 ACK D7 to D0 ACK SP
▲ 1 ▲ 2 ▲ 3 Δ4
▲1: IICSn register = 0101X110B (Example: When ALDn bit is read during interrupt servicing
▲2: IICSn register = 0001X100B
▲3: IICSn register = 0001XX00B
Δ 4: IICSn register = 0000001B
Remarks 1. ▲: Always generated
Δ : Generated only when SPIEn bit = 1
X: don't care

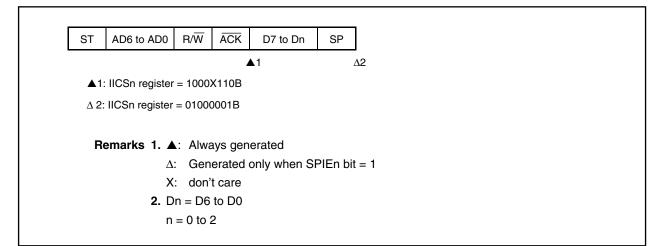
(2) When arbitration loss occurs during transmission of extension code

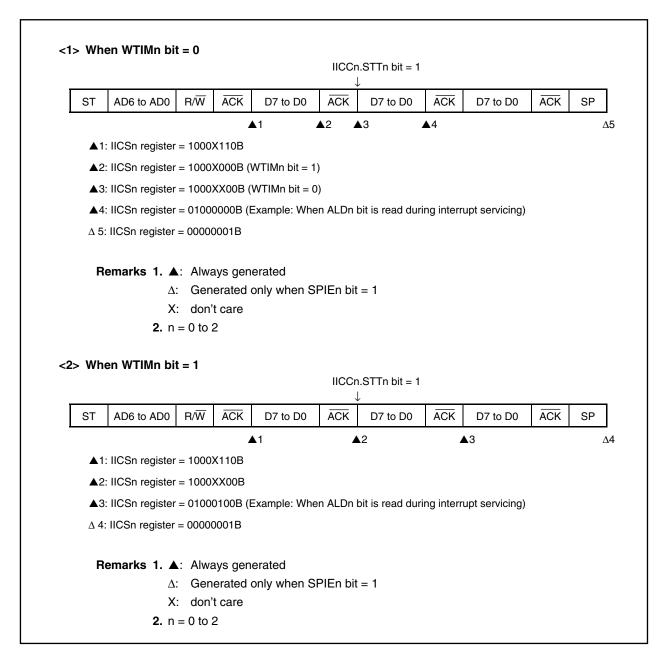


17.7.6 Operation when arbitration loss occurs (no communication after arbitration loss)

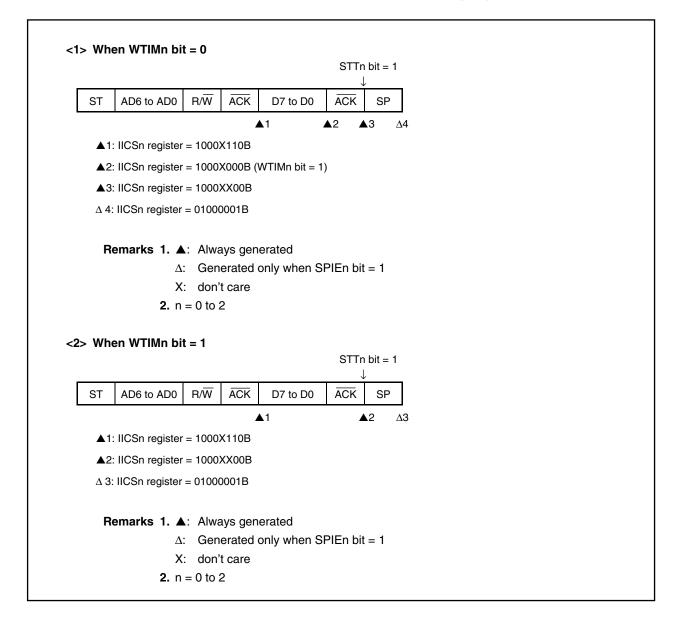

(1) When arbitration loss occurs during transmission of slave address data

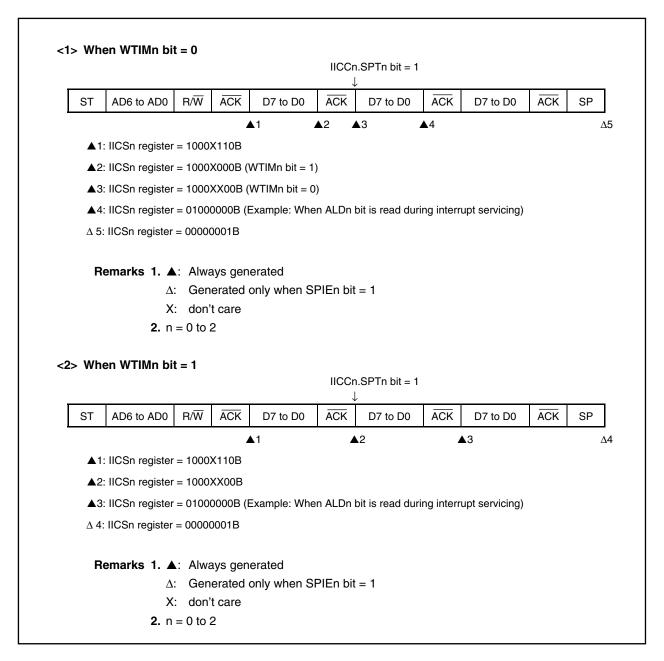
(2) When arbitration loss occurs during transmission of extension code


(3) When arbitration loss occurs during data transfer


(4) When arbitration loss occurs due to restart condition during data transfer

ST	AD6 to AD0	R/W	ĀCK	D7 to Dn	ST	AD6 to AD0	R/W	ACK	D7 to D0	ACK	s
				1					2		
	▲1: IICSn regis	ter = 10	00X110	3							
	▲2: IICSn regis	ter = 01	000110E	3 (Example: W	hen ALI	Dn bit is read di	uring int	errupt se	ervicing)		
4	Δ 3: IICSn register = 00000001B										
	Remarks 1.	▲ : Al	ways g	enerated							
				d only when	SPIEn	bit = 1					
			on't care								
	2.		D6 to D	0							
		n = 0 t	:02								
:2> E	Extension cod	de									
< 2> E	Extension coo	de R/W	ĀCK	D7 to Dn	ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ĀCK	ŝ
				D7 to Dn	ST	AD6 to AD0		ACK	D7 to D0	ĀCK	;
ST		R/W		1	ST	AD6 to AD0			D7 to D0	ĀĊĶ	
ST	AD6 to AD0	R/W ter = 10	00X110E	1 3				2		ĀĊĸ	ę
ST	AD6 to AD0 ▲1: IICSn regis	R/W ter = 10 ter = 01	00X110E 10X010E	1 3 3 (Example: W				2		ĀĊĸ	
ST	AD6 to AD0 ▲1: IICSn regis ▲2: IICSn regis IICCn.LRELn bi	R/\overline{W} ter = 10 ter = 01 t is set to	00X110E 10X010E 5 1 by so	1 3 3 (Example: Woftware				2		ĀĊĸ	(
ST	AD6 to AD0 ▲1: IICSn regis ▲2: IICSn regis	R/\overline{W} ter = 10 ter = 01 t is set to	00X110E 10X010E 5 1 by so	1 3 3 (Example: Woftware				2		ĀĊĸ	ţ
ST	AD6 to AD0 ▲1: IICSn regis ▲2: IICSn regis IICCn.LRELn bi	R/\overline{W} ter = 10 ter = 01 t is set to ter = 000	00X1108 10X0108 0 1 by so 0000018	1 3 3 (Example: W oftware				2		ĀĊĸ	:
ST	AD6 to AD0 ▲1: IICSn regis ▲2: IICSn regis IICCn.LRELn bi ∆ 3: IICSn regis	R/\overline{W} $ter = 10$ $ter = 01$ $t is set to$ $ter = 000$ $A: All$	00X110E 10X010E 0 1 by so 000001E ways g	1 3 3 (Example: W oftware	/hen AL	Dn bit is read d		2		ĀĊĸ	(
ST	AD6 to AD0 ▲1: IICSn regis ▲2: IICSn regis IICCn.LRELn bi ∆ 3: IICSn regis	R/\overline{W} $ter = 10$ $ter = 01$ $t is set to ter = 000 $	00X110E 10X010E 0 1 by so 000001E ways g	1 3 3 (Example: W oftware 3 enerated d only when	/hen AL	Dn bit is read d		2		ĀĊĸ	
ST	AD6 to AD0 ▲1: IICSn regis ▲2: IICSn regis IICCn.LRELn bi ∆ 3: IICSn regis Remarks 1.	R/\overline{W} $ter = 10$ $ter = 01$ $t is set to$ $ter = 000$ $A: AI$ $\Delta: Gi$ $X: do$	00X1108 10X0108 0 1 by so 000001E ways g enerate	1 3 3 (Example: Wo oftware 3 enerated d only when	/hen AL	Dn bit is read d		2		ĀĊĸ	્


(5) When arbitration loss occurs due to stop condition during data transfer


(6) When arbitration loss occurs due to low level of SDA0n pin when attempting to generate a restart condition

(7) When arbitration loss occurs due to a stop condition when attempting to generate a restart condition

(8) When arbitration loss occurs due to low level of SDA0n pin when attempting to generate a stop condition

17.8 Interrupt Request Signal (INTIICn) Generation Timing and Wait Control

The setting of the IICCn.WTIMn bit determines the timing by which the INTIICn register is generated and the corresponding wait control, as shown below (n = 0 to 2).

WTIMn Bit	Durin	g Slave Device Ope	eration	During	Master Device Op	eration
	Address	Data Reception	Data Transmission	Address	Data Reception	Data Transmission
0	9 ^{Notes 1, 2}	8 ^{Note 2}	8 ^{Note 2}	9	8	8
1	9 ^{Notes 1, 2}	9 ^{Note 2}	9 ^{Note 2}	9	9	9

Table 17-3. INTIICn Generation Timing and Wait Control

At this point, the \overline{ACK} is generated regardless of the value set to the IICCn.ACKEn bit. For a slave device that has received an extension code, the INTIICn signal occurs at the falling edge of the eighth clock.

When the address does not match after restart, the INTIICn signal is generated at the falling edge of the ninth clock, but no wait occurs.

- 2. If the received address does not match the contents of the SVAn register and an extension code is not received, neither the INTIICn signal nor a wait occurs.
- **Remarks 1.** The numbers in the table indicate the number of the serial clock's clock signals. Interrupt requests and wait control are both synchronized with the falling edge of these clock signals.
 - **2.** n = 0 to 2

(1) During address transmission/reception

- Slave device operation: Interrupt and wait timing are determined regardless of the WTIMn bit.
- Master device operation: Interrupt and wait timing occur at the falling edge of the ninth clock regardless of the WTIMn bit.

(2) During data reception

• Master/slave device operation: Interrupt and wait timing is determined according to the WTIMn bit.

(3) During data transmission

• Master/slave device operation: Interrupt and wait timing is determined according to the WTIMn bit.

Notes 1. The slave device's INTIICn signal and wait period occur at the falling edge of the ninth clock only when there is a match with the address set to the SVAn register.

(4) Wait cancellation method

The four wait cancellation methods are as follows.

- By setting the IICCn.WRELn bit to 1
- By writing to the IICn register
- By start condition setting $(IICCn.STTn bit = 1)^{Note}$
- By stop condition setting (IICCn.SPTn bit = 1)^{Note}

Note Master only

When an 8-clock wait has been selected (WTIMn bit = 0), whether or not the \overline{ACK} has been generated must be determined prior to wait cancellation.

Remark n = 0 to 2

(5) Stop condition detection

The INTIICn signal is generated when a stop condition is detected.

Remark n = 0 to 2

17.9 Address Match Detection Method

In I²C bus mode, the master device can select a particular slave device by transmitting the corresponding slave address.

Address match detection is performed automatically by hardware. The INTIICn signal occurs when a local address has been set to the SVAn register and when the address set to the SVAn register matches the slave address sent by the master device, or when an extension code has been received (n = 0 to 2).

17.10 Error Detection

In I^2C bus mode, the status of the serial data bus pin (SDA0n) during data transmission is captured by the IICn register of the transmitting device, so the data of the IICn register prior to transmission can be compared with the transmitted IICn data to enable detection of transmission errors. A transmission error is judged as having occurred when the compared data values do not match (n = 0 to 2).

17.11 Extension Code

(1) When the higher 4 bits of the receive address are either 0000 or 1111, the extension code flag (IICSn.EXCn bit) is set for extension code reception and an interrupt request signal (INTIICn) is issued at the falling edge of the eighth clock (n = 0 to 2).

The local address stored in the SVAn register is not affected.

- (2) If 11110xx0 is set to the SVAn register by a 10-bit address transfer and 11110xx0 is transferred from the master device, the results are as follows. Note that the INTIICn signal occurs at the falling edge of the eighth clock (n = 0 to 2)
 - Higher four bits of data match: EXCn bit = 1
 - Seven bits of data match: IICSn.COIn bit = 1
- (3) Since the processing after the interrupt request signal occurs differs according to the data that follows the extension code, such processing is performed by software.

For example, when operation as a slave is not desired after the extension code is received, set the IICCn.LRELn bit to 1 and the CPU will enter the next communication wait state.

Slave Address	R/W Bit	Description
0000 000	0	General call address
0000 000	1	Start byte
0000 001	х	CBUS address
0000 010	Х	Address that is reserved for different bus format
1111 0xx	х	10-bit slave address specification

Table 17-4. Extension Code E	Bit Definitions
------------------------------	-----------------

17.12 Arbitration

When several master devices simultaneously generate a start condition (when the IICCn.STTn bit is set to 1 before the IICSn.STDn bit is set to 1), communication between the master devices is performed while the number of clocks is adjusted until the data differs. This kind of operation is called arbitration (n = 0 to 2).

When one of the master devices loses in arbitration, an arbitration loss flag (IICSn.ALDn bit) is set to 1 via the timing by which the arbitration loss occurred, and the SCL0n and SDA0n lines are both set to high impedance, which releases the bus (n = 0 to 2).

Arbitration loss is detected based on the timing of the next interrupt request signal (INTIICn) (the eighth or ninth clock, when a stop condition is detected, etc.) and the setting of the ALDn bit to 1, which is made by software (n = 0 to 2).

For details of interrupt request timing, see 17.7 I²C Interrupt Request Signals (INTIICn).

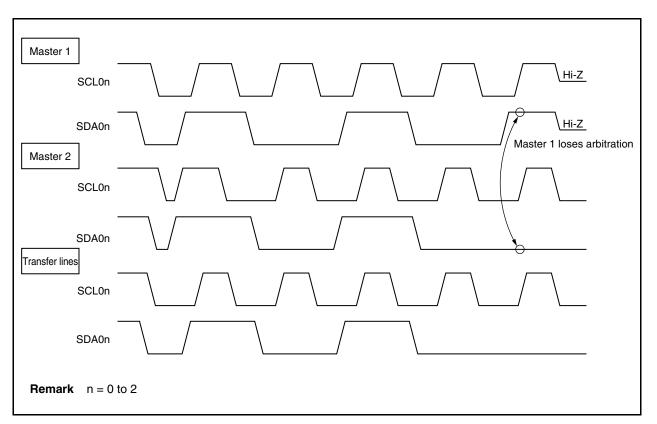


Figure 17-14. Arbitration Timing Example

Status During Arbitration	Interrupt Request Generation Timing
Transmitting address transmission	At falling edge of eighth or ninth clock following byte transfer ^{Note 1}
Read/write data after address transmission	
Transmitting extension code	
Read/write data after extension code transmission	
Transmitting data	
ACK transfer period after data reception	
When restart condition is detected during data transfer	
When stop condition is detected during data transfer	When stop condition is generated (when IICCn.SPIEn bit = 1) ^{Note 2}
When SDA0n pin is low level while attempting to generate restart condition	At falling edge of eighth or ninth clock following byte transfer ^{Note 1}
When stop condition is detected while attempting to generate restart condition	When stop condition is generated (when IICCn.SPIEn bit = 1) ^{Note 2}
When DSA0n pin is low level while attempting to generate stop condition	At falling edge of eighth or ninth clock following byte transfer ^{Note 1}
When SCL0n pin is low level while attempting to generate restart condition	

Table 17-5. Status During Arbitration and Interrupt Request Signal Generation Timing

- **Notes 1.** When the IICCn.WTIMn bit = 1, an INTIICn signal occurs at the falling edge of the ninth clock. When the WTIMn bit = 0 and the extension code's slave address is received, an INTIICn signal occurs at the falling edge of the eighth clock (n = 0 to 2).
 - When there is a possibility that arbitration will occur, set the SPIEn bit to 1 for master device operation (n = 0 to 2).

17.13 Wakeup Function

The I²C bus slave function is a function that generates an interrupt request signal (INTIICn) when a local address and extension code have been received.

This function makes processing more efficient by preventing unnecessary the INTIICn signal from occurring when addresses do not match.

When a start condition is detected, wakeup standby mode is set. This wakeup standby mode is in effect while addresses are transmitted due to the possibility that an arbitration loss may change the master device (which has generated a start condition) to a slave device.

However, when a stop condition is detected, the IICCn.SPIEn bit is set regardless of the wakeup function, and this determines whether INTIICn signal is enabled or disabled (n = 0 to 2).

17.14 Communication Reservation

17.14.1 When communication reservation function is enabled (IICFn.IICRSVn bit = 0)

To start master device communications when not currently using the bus, a communication reservation can be made to enable transmission of a start condition when the bus is released. There are two modes in which the bus is not used.

- When arbitration results in neither master nor slave operation
- When an extension code is received and slave operation is disabled (ACK is not returned and the bus was released when the IICCn.LRELn bit was set to 1) (n = 0 to 2).

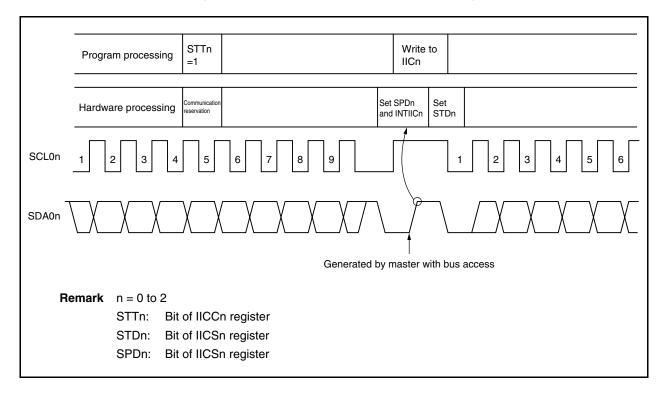
If the IICCn.STTn bit is set to 1 while the bus is not used, a start condition is automatically generated and a wait status is set after the bus is released (after a stop condition is detected).

When the bus release is detected (when a stop condition is detected), writing to the IICn register causes master address transfer to start. At this point, the IICCn.SPIEn bit should be set to 1 (n = 0 to 2).

When STTn has been set to 1, the operation mode (as start condition or as communication reservation) is determined according to the bus status (n = 0 to 2).

If the bus has been releasedA start condition is generated If the bus has not been released (standby mode)Communication reservation

To detect which operation mode has been determined for the STTn bit, set the STTn bit to 1, wait for the wait period, then check the IICSn.MSTSn bit (n = 0 to 2).


The wait periods, which should be set via software, are listed in Table 17-6. These wait periods can be set by the SMCn, CLn1, and CLn0 bits of the IICCLn register and the IICXn.CLXn bit (n = 0 to 2).

	Clock Selection	CLXn	SMCn	CLn1	CLn0	Wait Period
	fxx (when OCKSm = 18H set)	0	0	0	0	26 clocks
	fxx/2 (when OCKSm = 10H set)	0	0	0	0	52 clocks
	fxx/3 (when OCKSm = 11H set)	0	0	0	0	78 clocks
	fxx/4 (when OCKSm = 12H set)	0	0	0	0	104 clocks
	fxx/5 (when OCKSm = 13H set)	0	0	0	0	130 clocks
	fxx (when OCKSm = 18H set)	0	0	0	1	47 clocks
	fxx/2 (when OCKSm = 10H set)	0	0	0	1	94 clocks
	fxx/3 (when OCKSm = 11H set)	0	0	0	1	141 clocks
	fxx/4 (when OCKSm = 12H set)	0	0	0	1	188 clocks
	fxx	0	0	1	0	47 clocks
<r></r>	fxx (when OCKSm = 18H set)	0	0	1	1	37 clocks
<r></r>	fxx/2 (when OCKSm = 10H set)	0	0	1	1	74 clocks
<r></r>	fxx/3 (when OCKSm = 11H set)	0	0	1	1	111 clocks
	fxx (when OCKSm = 18H set)	0	1	0	×	16 clocks
	fxx/2 (when OCKSm = 10H set)	0	1	0	×	32 clocks
	fxx/3 (when OCKSm = 11H set)	0	1	0	×	48 clocks
	fxx/4 (when OCKSm = 12H set)	0	1	0	×	64 clocks
	fxx	0	1	1	0	16 clocks
<r></r>	fxx (when OCKSm = 18H set)	0	1	1	1	13 clocks
<r></r>	fxx/2 (when OCKSm = 10H set)	0	1	1	1	26 clocks
<r></r>	fxx/3 (when OCKSm = 11H set)	0	1	1	1	39 clocks
	fxx (when OCKSm = 18H set)	1	1	0	×	10 clocks
	fxx/2 (when OCKSm = 10H set)	1	1	0	×	20 clocks
	fxx/3 (when OCKSm = 11H set)	1	1	0	×	30 clocks
	fxx/4 (when OCKSm = 12H set)	1	1	0	×	40 clocks
<r></r>	fxx/5 (when OCKSm = 13H set)	1	1	0	×	50 clocks
	fxx	1	1	1	0	10 clocks

Table 17-6.	Wait Periods
	Wait I Chous

Remarks 1. n = 0 to 2 m = 0, 1 **2.** $\times =$ don't care

The communication reservation timing is shown below.

Figure 17-15. Communication Reservation Timing

Communication reservations are accepted via the following timing. After the IICSn.STDn bit is set to 1, a communication reservation can be made by setting the IICCn.STTn bit to 1 before a stop condition is detected (n = 0 to 2).

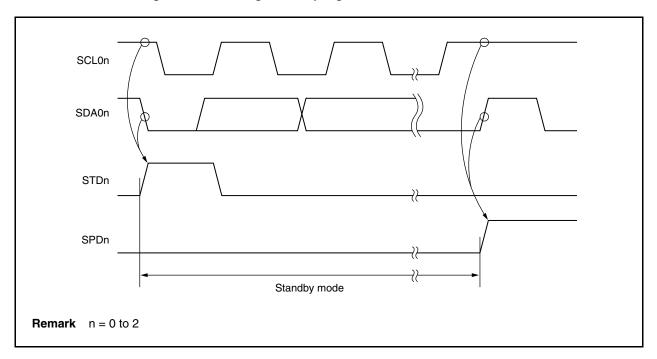


Figure 17-16. Timing for Accepting Communication Reservations

The communication reservation flowchart is illustrated below.

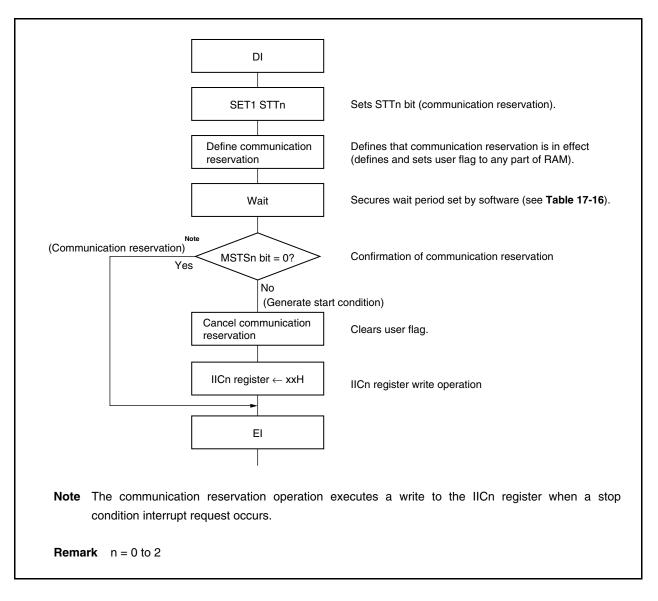


Figure 17-17. Communication Reservation Flowchart

17.14.2 When communication reservation function is disabled (IICFn.IICRSVn bit = 1)

When the IICCn.STTn bit is set when the bus is not used in a communication during bus communication, this request is rejected and a start condition is not generated. There are two modes in which the bus is not used

- When arbitration results in neither master nor slave operation
- When an extension code is received and slave operation is disabled (ACK is not returned and the bus was released when the IICCn.LRELn bit was set to 1) (n = 0 to 2).

To confirm whether the start condition was generated or request was rejected, check the IICFn.STCFn flag. The time shown in Table 17-7 is required until the STCFn flag is set after setting the STTn bit to 1. Therefore, secure the time by software.

OCKSENm	OCKSm1	OCKSm0	CLn1	CLn0	Wait Period
1	0	0	0	×	10 clocks
1	0	1	0	×	15 clocks
1	1	0	0	×	20 clocks
1	1	1	0	×	25 clocks
0	0	0	1	0	5 clocks

Table 17-7. Wait Periods

Remarks 1. X: don't care

2. n = 0 to 2 m = 0, 1

<R>

17.15 Cautions

(1) When IICFn.STCENn bit = 0

Immediately after the l^2 COn operation is enabled, the bus communication status (IICFn.IICBSYn bit = 1) is recognized regardless of the actual bus status. To execute master communication in the status where a stop condition has not been detected, generate a stop condition and then release the bus before starting the master communication.

Use the following sequence for generating a stop condition.

<1> Set the IICCLn register. <2> Set the IICCn.IICEn bit. <3> Set the IICCn.SPTn bit.

(2) When IICFn.STCENn bit = 1

Immediately after I^2COn operation is enabled, the bus released status (IICBSYn bit = 0) is recognized regardless of the actual bus status. To generate the first start condition (IICCn.STTn bit = 1), it is necessary to confirm that the bus has been released, so as to not disturb other communications.

- (3) When the IICCn.IICEn bit of the V850ES/JG2 is set to 1 while communications with other devices are in progress, the start condition may be detected depending on the status of the communication line. Be sure to set the IICCn.IICEn bit to 1 when the SCL0n and SDA0n lines are high level.
- (4) Determine the operation clock frequency by the IICCLn, IICXn, and OCKSm registers before enabling the operation (IICCn.IICEn bit = 1). To change the operation clock frequency, clear the IICCn.IICEn bit to 0 once.
- (5) After the IICCn.STTn and IICCn.SPTn bits have been set to 1, they must not be re-set without being cleared to 0 first.
- (6) If transmission has been reserved, set the IICCN.SPIEn bit to 1 so that an interrupt request is generated by the detection of a stop condition. After an interrupt request has been generated, the wait status will be released by writing communication data to I²Cn, then transferring will begin. If an interrupt is not generated by the detection of a stop condition, transmission will halt in the wait status because an interrupt request was not generated. However, it is not necessary to set the SPIEn bit to 1 for the software to detect the IICSn.MSTSn bit.

Remark n = 0 to 2 m = 0, 1

17.16 Communication Operations

The following shows three operation procedures with the flowchart.

(1) Master operation in single master system

The flowchart when using the V850ES/JG2 as the master in a single master system is shown below. This flowchart is broadly divided into the initial settings and communication processing. Execute the initial settings at startup. If communication with the slave is required, prepare the communication and then execute communication processing.

(2) Master operation in multimaster system

In the I²C0n bus multimaster system, whether the bus is released or used cannot be judged by the I²C bus specifications when the bus takes part in a communication. Here, when data and clock are at a high level for a certain period (1 frame), the V850ES/JG2 takes part in a communication with bus released state.

This flowchart is broadly divided into the initial settings, communication waiting, and communication processing. The processing when the V850ES/JG2 loses in arbitration and is specified as the slave is omitted here, and only the processing as the master is shown. Execute the initial settings at startup to take part in a communication. Then, wait for the communication request as the master or wait for the specification as the slave. The actual communication is performed in the communication processing, and it supports the transmission/reception with the slave and the arbitration with other masters.

(3) Slave operation

An example of when the V850ES/JG2 is used as the slave of the I²C0n bus is shown below.

When used as the slave, operation is started by an interrupt. Execute the initial settings at startup, then wait for the INTIICn interrupt occurrence (communication waiting). When the INTIICn interrupt occurs, the communication status is judged and its result is passed as a flag over to the main processing. By checking the flags, necessary communication processing is performed.

Remark n = 0 to 2

17.16.1 Master operation in single master system

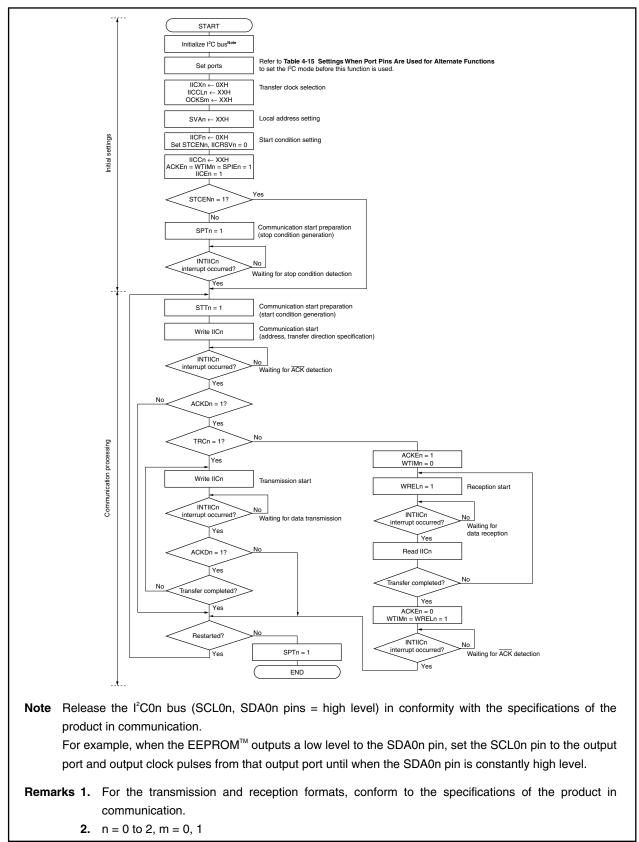


Figure 17-18. Master Operation in Single Master System

17.16.2 Master operation in multimaster system

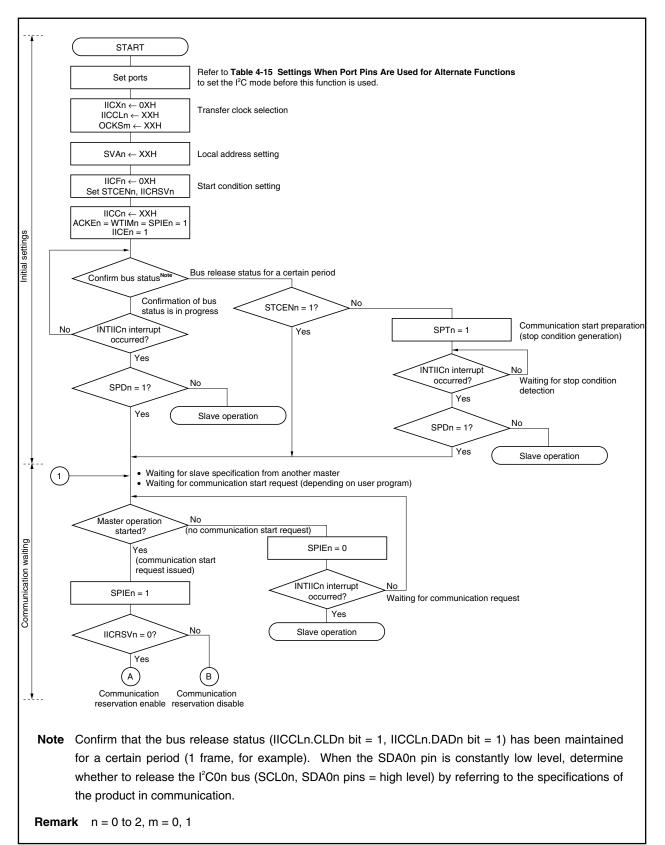
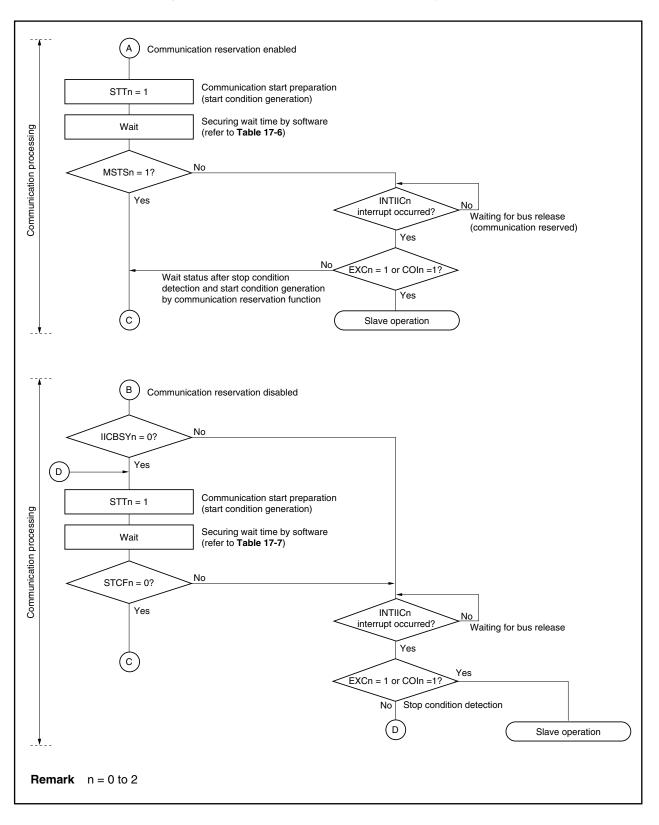



Figure 17-19. Master Operation in Multimaster System (1/3)

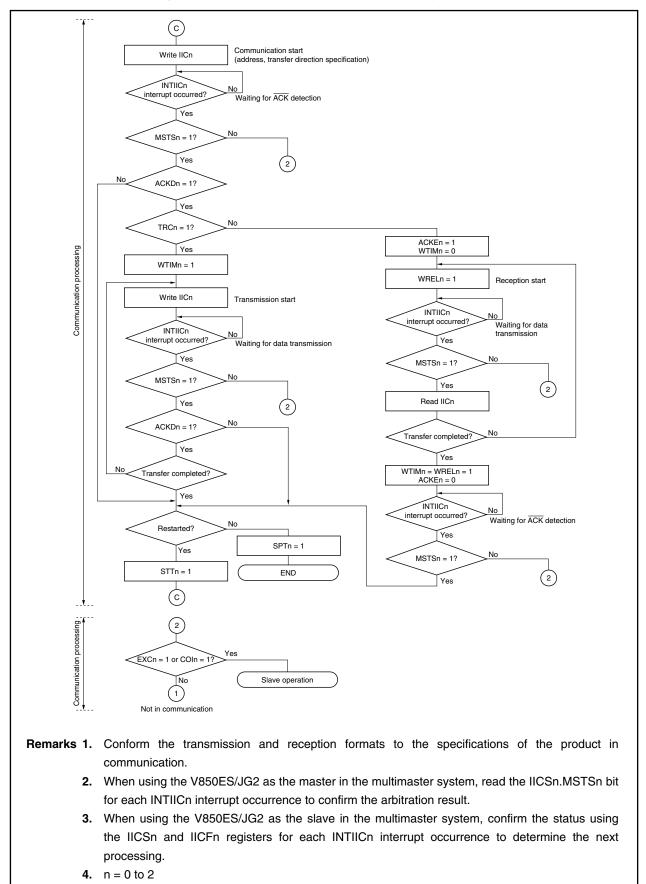
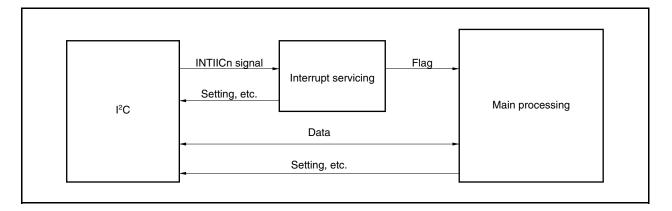


Figure 17-19. Master Operation in Multimaster System (3/3)


17.16.3 Slave operation

The following shows the processing procedure of the slave operation.

Basically, the operation of the slave device is event-driven. Therefore, processing by an INTIICn interrupt (processing requiring a significant change of the operation status, such as stop condition detection during communication) is necessary.

The following description assumes that data communication does not support extension codes. Also, it is assumed that the INTIICn interrupt servicing performs only status change processing and that the actual data communication is performed during the main processing.

Figure 17-20. Software Outline During Slave Operation

Therefore, the following three flags are prepared so that the data transfer processing can be performed by transmitting these flags to the main processing instead of INTIICn signal.

(1) Communication mode flag

This flag indicates the following communication statuses.

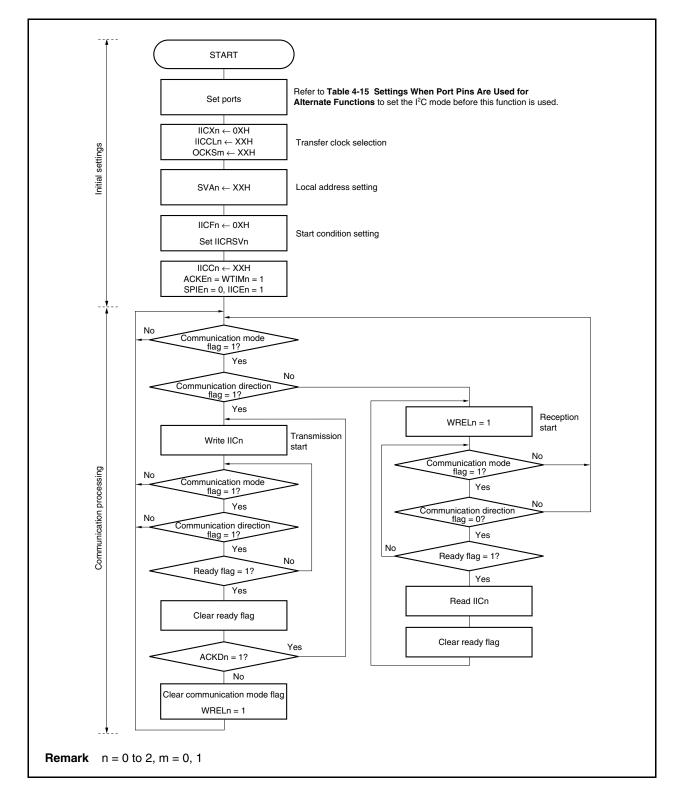
Clear mode: Data communication not in progress

Communication mode: Data communication in progress (valid address detection stop condition detection, ACK from master not detected, address mismatch)

(2) Ready flag

This flag indicates that data communication is enabled. This is the same status as an INTIICn interrupt during normal data transfer. This flag is set in the interrupt processing block and cleared in the main processing block. The ready flag for the first data for transmission is not set in the interrupt processing block, so the first data is transmitted without clear processing (the address match is regarded as a request for the next data).

(3) Communication direction flag


This flag indicates the direction of communication and is the same as the value of IICSn.TRCn bit.

The following shows the operation of the main processing block during slave operation.

Start l²COn and wait for the communication enabled status. When communication is enabled, perform transfer using the communication mode flag and ready flag (the processing of the stop condition and start condition is performed by interrupts, conditions are confirmed by flags).

For transmission, repeat the transmission operation until the master device stops returning \overline{ACK} . When the master device stops returning \overline{ACK} , transfer is complete.

For reception, receive the required number of data and do not return \overline{ACK} for the next data immediately after transfer is complete. After that, the master device generates the stop condition or restart condition. This causes exit from communications.

The following shows an example of the processing of the slave device by an INTIICn interrupt (it is assumed that no extension codes are used here). During an INTIICn interrupt, the status is confirmed and the following steps are executed.

- <1> When a stop condition is detected, communication is terminated.
- <2> When a start condition is detected, the address is confirmed. If the address does not match, communication is terminated. If the address matches, the communication mode is set and wait is released, and operation returns from the interrupt (the ready flag is cleared).
- <3> For data transmission/reception, when the ready flag is set, operation returns from the interrupt while the l²C0n bus remains in the wait status.

Remark <1> to <3> in the above correspond to <1> to <3> in Figure 17-22 Slave Operation Flowchart (2).

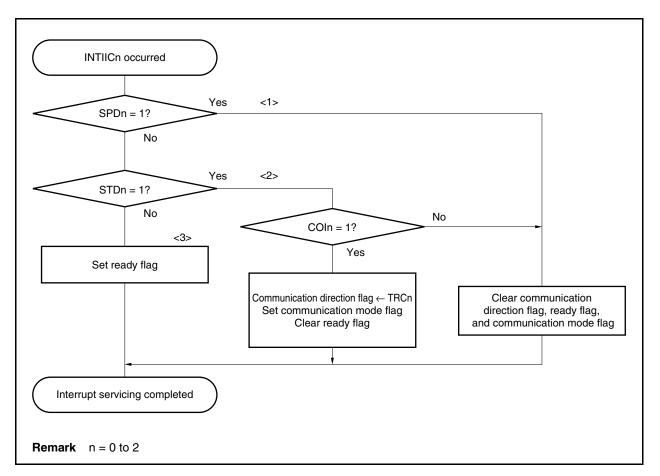
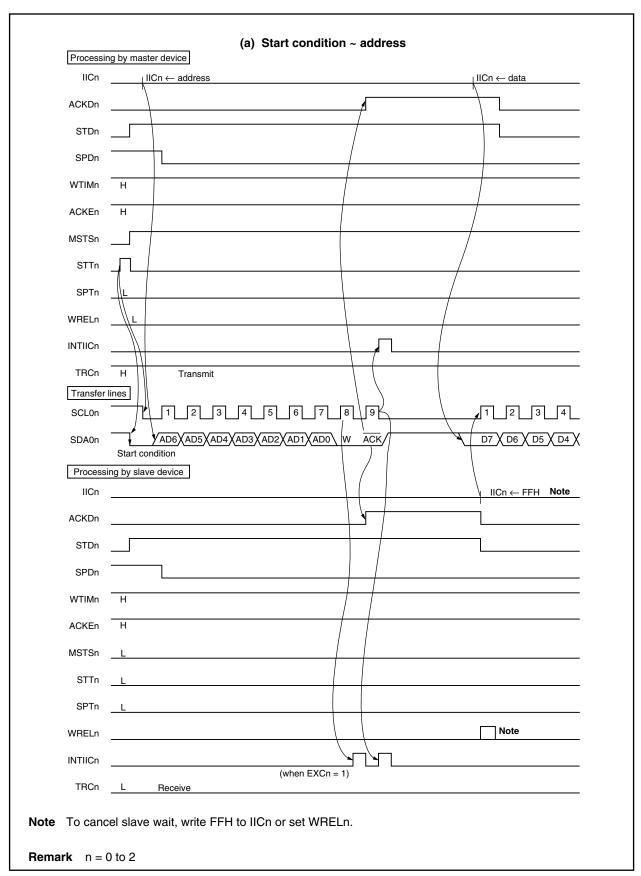
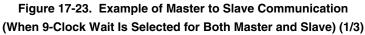


Figure 17-22. Slave Operation Flowchart (2)

17.17 Timing of Data Communication

When using I²C bus mode, the master device outputs an address via the serial bus to select one of several slave devices as its communication partner.


After outputting the slave address, the master device transmits the IICSn.TRCn bit, which specifies the data transfer direction, and then starts serial communication with the slave device.


The shift operation of the IICn register is synchronized with the falling edge of the serial clock pin (SCL0n). The transmit data is transferred to the SO latch and is output (MSB first) via the SDA0n pin.

Data input via the SDA0n pin is captured by the IICn register at the rising edge of the SCL0n pin.

The data communication timing is shown below.

Remark n = 0 to 2

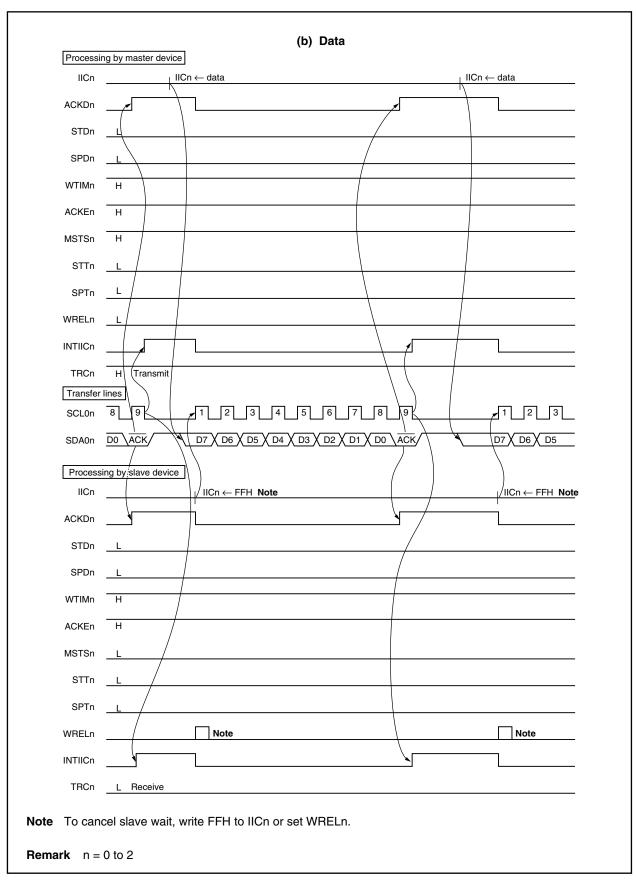


Figure 17-23. Example of Master to Slave Communication (When 9-Clock Wait Is Selected for Both Master and Slave) (2/3)

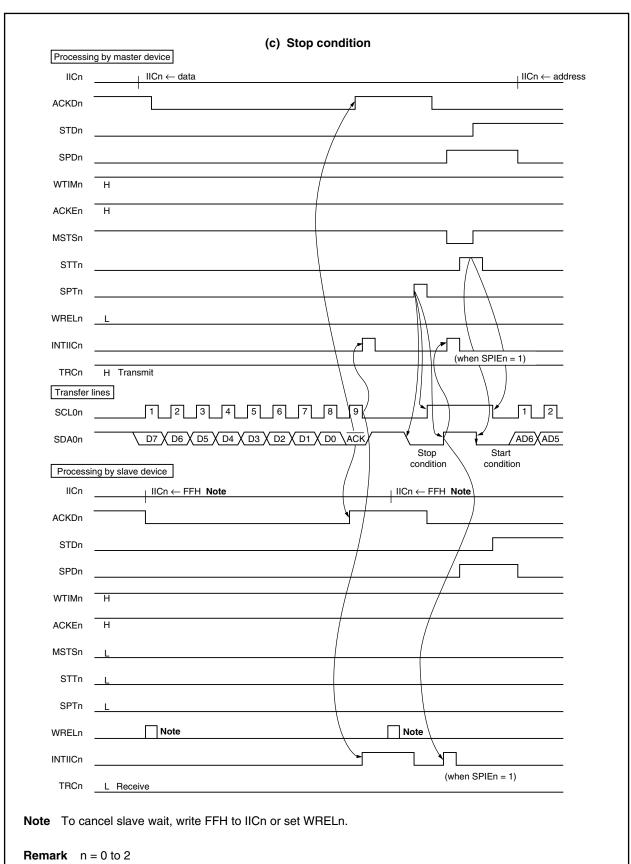
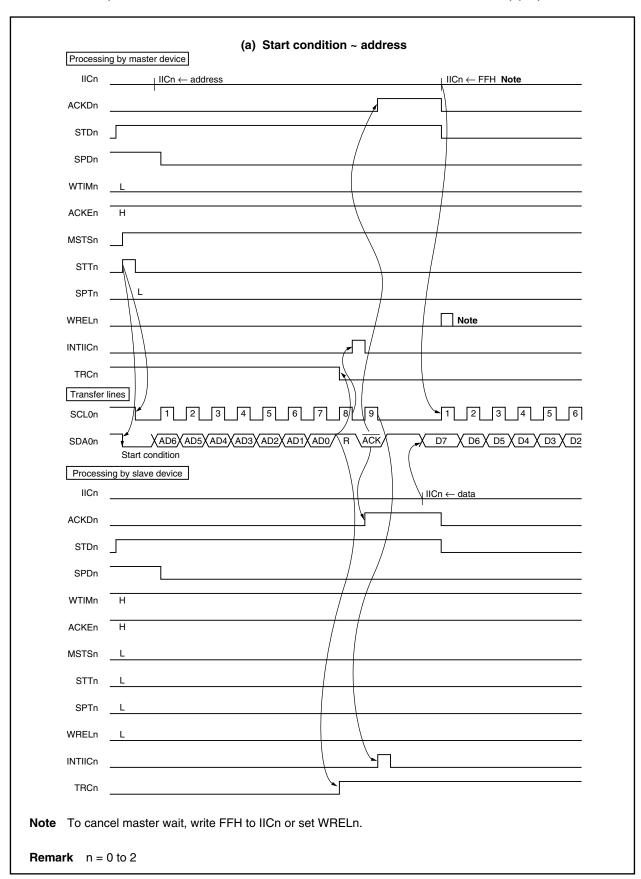
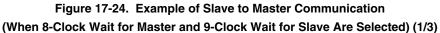




Figure 17-23. Example of Master to Slave Communication (When 9-Clock Wait Is Selected for Both Master and Slave) (3/3)

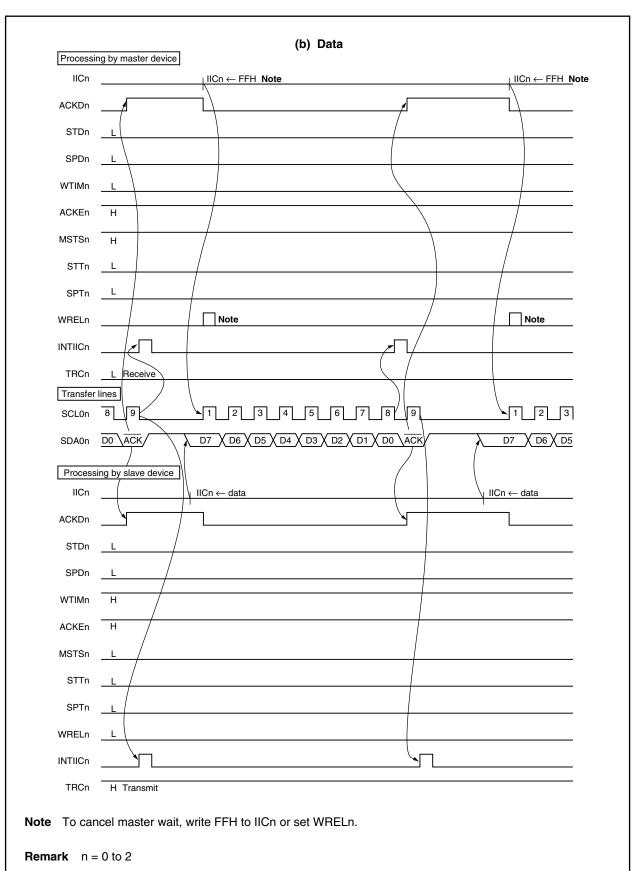
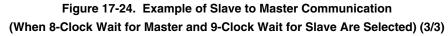
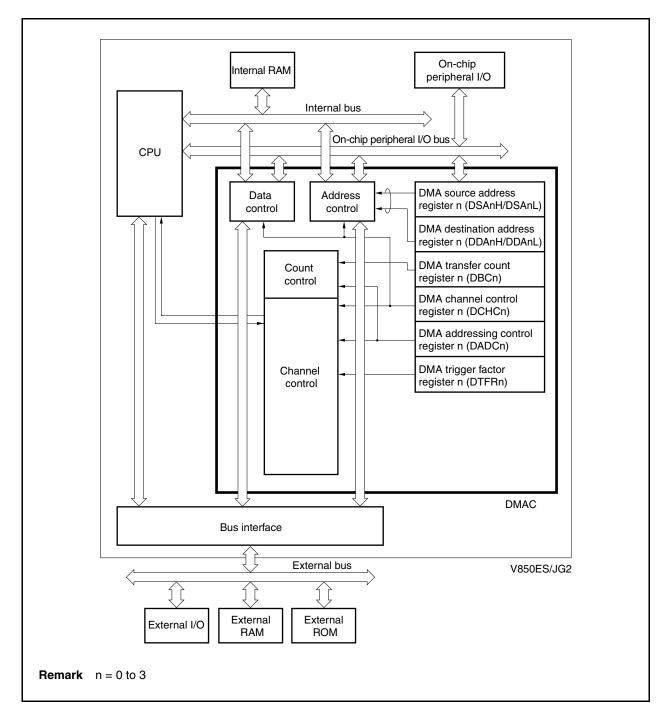



Figure 17-24. Example of Slave to Master Communication (When 8-Clock Wait for Master and 9-Clock Wait for Slave Are Selected) (2/3)

Processing by ma			$IICn \gets addres$
IICn	IICn ← FFH Note		
ACKDn			
STDn			
SPDn		<u>}</u>	
WTIMn			
ACKEn		7_55	
MSTSn			
STTn			
SPTn			
WRELn	Note		
INTIICn		,, _,, _	
TRCn			(when SPIEn = 1)
Transfer lines			
SCL0n	1 2 3 4 5	6_7_8/9 <u>_</u>	
SDA0n	D7 X D6 X D5 X D4 X D3 X I		AD6
Processing by sl	ave device		Stop Start ondition condition
	$ $ IICn \leftarrow data	(
ACKDn		····	
STDn			
SPDn			
WTIMn H			
ACKEn H		······	
MSTSn L			
STTn L			
SPTn L			
WRELn			
INTIICn			
			(when SPIEn = 1)
TRCn			

CHAPTER 18 DMA FUNCTION (DMA CONTROLLER)


The V850ES/JG2 includes a direct memory access (DMA) controller (DMAC) that executes and controls DMA transfer.

The DMAC controls data transfer between memory and I/O, between memories, or between I/Os based on DMA requests issued by the on-chip peripheral I/O (serial interface, timer/counter, and A/D converter), interrupts from external input pins, or software triggers (memory refers to internal RAM or external memory).

18.1 Features

- 4 independent DMA channels
- Transfer unit: 8/16 bits
- Maximum transfer count: 65,536 (2¹⁶)
- Transfer type: Two-cycle transfer
- Transfer mode: Single transfer mode
- Transfer requests
 - Request by interrupts from on-chip peripheral I/O (serial interface, timer/counter, A/D converter) or interrupts from external input pin
 - Requests by software trigger
- Transfer targets
 - Internal RAM \leftrightarrow Peripheral I/O
 - Peripheral I/O \leftrightarrow Peripheral I/O
 - Internal RAM \leftrightarrow External memory
 - External memory \leftrightarrow Peripheral I/O
 - External memory ↔ External memory

18.2 Configuration

18.3 Registers

Г

(1) DMA source address registers 0 to 3 (DSA0 to DSA3)

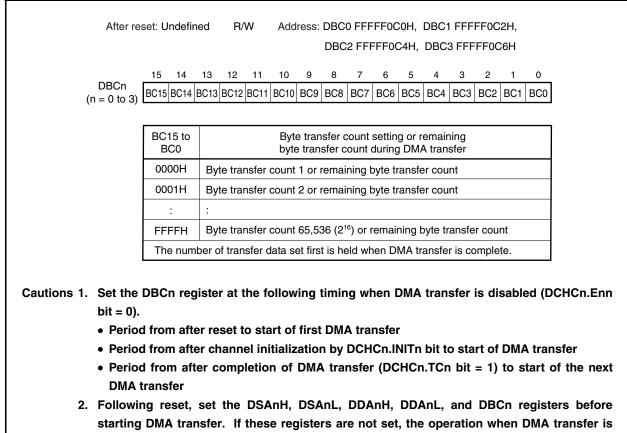
The DSA0 to DSA3 registers set the DMA source addresses (26 bits each) for DMA channel n (n = 0 to 3). These registers are divided into two 16-bit registers, DSAnH and DSAnL.

These registers can be read or written in 16-bit units.

After res	set: Undefir	ned R/W	Address:	DSA0H	I FFFFF0	82H, C	SA1H	H FFF	FF08	BAH,		
				DSA2H	I FFFFF0	92H, C)SA3F	H FFF	FF09	AH,		
				DSA0L	FFFFF08	80H, D	SA1L	. FFF	FF08	8H,		
				DSA2L	FFFFF0	90H, D	SA3L	. FFF	FF09	8H		
		10 10				-			•			
DSAnH	15 14		11 10 9	8	7 6	5	4	3	2	1	0	
(n = 0 to 3)	IR 0	0 0	0 0 SA	25 SA24 S	SA23 SA22	SA21	SA20	SA19	SA18	SA17	SA16	
	15 14	13 12	11 10 9	8	76	5	4	3	2	1	0	
DSAnL (n = 0 to 3)	SA15 SA14	SA13 SA12 S	SA11 SA10 SA	9 SA8	SA7 SA6	SA5	SA4	SA3	SA2	SA1	SA0	
	IR		Spec	ification	of DMA tr	ansfer	sour	ce				
	0	External m	emory or on-									
	1	Internal RA	-									
	SA25 to SA16	Set the add	Iress (A25 to	A16) of	the DMA	transfe	er sou	rce				
	(default value is undefined). During DMA transfer, the next DMA transfer source address is held.											
		-	A transfer, th A transfer is c									
					-,							
	SA15 to SAC	Sot the add	Iress (A15 to	AO) of th		ancfor	COUR	20				
	3A13 10 3A0		ue is undefin			ansiei	Sound	Je				
			A transfer, th									
		when DIVIA	transfer is c	ompleted	a, the DM	A addi	ress s	et firs	st is n	eia.		
Cautions 1. Be sure	to clear b	oits 14 to 1	0 of the DS	AnH re	gister to	o 0.						
2. Set the I	DSAnH ai	nd DSAnL	registers a	t the fol	llowing	timing	g wh	en D	MA t	rans	sfer is	disabled
(DCHCn	.Enn bit =	= 0).										
Perio	d from af	ter reset to	start of fir	st DMA	transfe	r						
Perio	d from af	ter channe	l initializati	on by D	OCHCn.I	NITn	bit to	o sta	rt of	DMA	A tran	sfer
		ter comple	etion of DN	IA trans	sfer (DC	HCn.	TCn	bit =	= 1) 1	to st	art of	f the next
	transfer			_								
3. When th												
	Ŭ	and updat	ing conflic	t, the v	alue be	eing u	ipdat	ed r	nay	be r	ead (see 18.13
Caution: 4. Followir	•	cot the D		Ani D		۰۸ חח	al a	nd	ספר	n ra	aista	rs boforo
	•		ese regist		-		-				-	
-		aranteed.	ese regist		101 301	,	Shell					

(2) DMA destination address registers 0 to 3 (DDA0 to DDA3)

The DDA0 to DDA3 registers set the DMA destination address (26 bits each) for DMA channel n (n = 0 to 3). These registers are divided into two 16-bit registers, DDAnH and DDAnL. These registers can be read or written in 16-bit units.


After reset: Undefir	ned R/W	Address:	DDA0H FFFFF086H, DDA1H FFFFF08EH,						
			DDA2H F	FFFF09	96H, DD	A3H F	FFFF	09EH,	
			DDA0L FI	FFFF08	84H, DD	A1L FI	FFF()8CH,	
			DDA2L FI	FFFF09	94H, DD	A3L FI	FFF(9CH	
15 14 DDAnH	13 12 11	10 9	8 7	6	5 4	3	2	1 0	
(n = 0 to 3) IF 14	0 0 0		DA24 DA23						16
DDAnL DA15 DA14	13 12 11		8 7	6	5 4	3	2		0
$(n = 0 \text{ to } 3) \qquad \Box A I 5 \Box A I 2$	DA13 DA12 DA1		DA8 DA7	DA6 D	DA5 DA4	1 DA3	DA2	DA1 DA	0
		0		A					-
	IR Specification of DMA transfer destination 0 External memory or on-chip peripheral I/O						-		
0	Internal RAM	ory or on-cr	ip peripher						-
DA25 to DA10	Set an addres	s (A25 to A	(6) of DMA	transfe	er destin	ation			7
	(default value			lanoie		auon			
	During DMA tr								
	When DMA tra first is held.	ansfer is cor	npleted, the	e DMA i	transfer	source	e addi	ess set	
	mot lo noid.								
DA15 to DA0	Set an addres	s (A15 to A)) of DMA t	ransfer	destina	tion			7
	(default value		,						
	During DMA tr								
	When DMA tra first is held.		npieteu, tri		liansier	Source	auu	655 561	
					_				
Cautions 1. Be sure to clear b			-			(hon		tranafa	r ia diaablad
2. Set the DDAnH a (DCHCn.Enn bit =		gisters at		ving u	ining v	men	DIVIA	transie	i is uisableu
Period from af	•	tart of firs	t DMA tra	nsfer					
Period from af					ITn bit	to sta	art of	DMA tr	ansfer
Period from a	iter completion	on of DM	A transfe	r (DCH	ICn.TC	n bit	= 1)	to star	t of the next
DMA transfer									
3. When the value of		-			-				
read. If reading	and updatin	ig conflic	t, a value	e bein	g upd	ated	may	be read	d (see 18.13
Cautions).						.	004		atova kafaw
4. Following reset,				-	-			-	
-	starting DMA transfer. If these registers are not set, the operation when DMA transfer is started is not guaranteed.								

(3) DMA byte count registers 0 to 3 (DBC0 to DBC3)

The DBC0 to DBC3 registers are 16-bit registers that set the byte transfer count for DMA channel n (n = 0 to 3). These registers hold the remaining transfer count during DMA transfer.

These registers are decremented by 1 per one transfer regardless of the transfer data unit (8/16 bits), and the transfer is terminated if a borrow occurs.

These registers can be read or written in 16-bit units.

started is not guaranteed.

(4) DMA addressing control registers 0 to 3 (DADC0 to DADC3)

The DADC0 to DADC3 registers are 16-bit registers that control the DMA transfer mode for DMA channel n (n = 0 to 3).

These registers can be read or written in 16-bit units.

Reset sets these registers to 0000H.

				DADC2 F	FFFF0D4	H, DADC3	FFFFF0D	6H		
	15	14	13	12	11	10	9	8		
DADCn	0	DS0	0	0	0	0	0	0		
(n = 0 to 3)										
	7 SAD1	6 SAD0	5 DAD1	4 DAD0	3 0	2	1	0		
		UADU	DADT	DADU	0	0	0	0		
	DS0		Setting of transfer data size							
	0	8 bits								
	1	16 bits								
	SAD1	SAD0	Settin	g of count d	irection of	the transfe	er source ad	ddress		
	0 0 Increment									
	0	1	Decreme	nt						
	1	0	Fixed							
1			Setting p	rohibited						
	DAD1		DAD0 Setting of count direction of the destination address							
	0	0	Incremen Decreme	-						
	1	0	Fixed	m						
	1	1	Setting pr	rohibited						
		1	Setting pi	Torribited						
Period	DADCn re I from afte	gister at er reset to er channe	the follov o start of el initializa	ving timin first DMA ation by D	g when transfer CHCn.II	DMA tran NITn bit to	sfer is di	DMA trans		
	l from aft ransfer	er comp	letion of	DMA tran	sfer (DC	HCn.TCn	bit = 1)	to start o		
3. The DS0	-									
•		-	-	he lower c			•			
	the transfer data size is set to 16 bits (DS0 bit = 1), transfer cannot be started from an dd address. Transfer is always started from an address with the first bit of the lower ddress aligned to 0 .									

execute DMA transfer on an 8-bit register, be sure to specify 8-bit transfer.

(5) DMA channel control registers 0 to 3 (DCHC0 to DCHC3)

The DCHC0 to DCHC3 registers are 8-bit registers that control the DMA transfer operating mode for DMA channel n.

These registers can be read or written in 8-bit or 1-bit units. (However, bit 7 is read-only and bits 1 and 2 are write-only. If bit 1 or 2 is read, the read value is always 0.)

Reset sets these registers to 00H.

	<7>	6	5	4	3	<2>	<1>	<0>
DCHCn	TCn ^{Note 1}	0	0	0	0	INITn ^{Not}	^{e 2} STGn ^{Note 2}	Enn
(n = 0 to 3)								
	TCn ^{Note 1}	ote 1 Status flag indicates whether DMA transfer through DMA channel n has completed or not						
		DMA I				as comple	ted or not	
	0			ot complete	d.			
	1		nsfer had c	ransfer and	alaarad t		ia road	
			iasi divia li			5 0 when h	is reau.	
	INITn ^{Note 2}	If the INI	Tn bit is se	t to 1 with D	MA trans	fer disable	d (Enn bit = 0	D), the
				can be init		(ro ootting		DDAnl
			-				the DDAnH, pre DMA tran	
		DSAnH, DSAnL, DBCn, and DADCn registers) before DMA transfer is completed (before the TCn bit is set to 1), be sure to initialize the DMA						
		channel.		D 110				
			-	d in 18.13			sure to observ	/e the
	STGn ^{Note 2}			tartup trigge				
				in the DMA er is startec		enable stat	e (TCn bit = 0), Enn
		bit = 1), i			-			
	Enn			tting of whe			-	
			DMA	A channel n	is to be e	enabled or	disabled	
	0		nsfer disab					
	1		nsfer enabl					
				the Enn bi			enerated), thi	s hit is
		cally cleare			literininai	count is g		5 DIL 15
	To abort	DMA trans	sfer, clear t	he Enn bit t	o 0 by so	ftware. To	resume, set	the Enn
	bit to 1 again.							
	When aborting or resuming DMA transfer, however, be sure to observe the procedure described in 18.13 Cautions .							
lotes 1. The TCn bit is	s read-only	/.						
2. The INITn an	d STCn hi	to oro w	ita anlu					

cleared to 0 and then the TCn bit is set to 1. If the DCHCn register is read while its bits are being updated, a value indicating "transfer not completed and transfer is disabled" (TCn bit = 0 and Enn bit = 0) may be read.

(6) DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3)

The DTFR0 to DTFR3 registers are 8-bit registers that control the DMA transfer start trigger via interrupt request signals from on-chip peripheral I/O.

The interrupt request signals set by these registers serve as DMA transfer start factors.

These registers can be read or written in 8-bit units. However, DFn bit can be read or written in 1-bit units. Reset sets these registers to 00H.

	.7.		R/W Address: DTFR0 FFFF810H, DTFR1 FFFF812H, DTFR2 FFFF814H, DTFR3 FFFF816H							
	<7>	6	5	4	3	2	1	0		
DTFRn	DFn	0	IFCn5	IFCn4	IFCn3	IFCn2	IFCn1	IFCn0		
(n = 0 to 3)	(n = 0 to 3)									
Γ	DFn ^{Note} DMA transfer request status flag									
	0	No DMA t	ransfer req	uest						
-	1	DMA trans	sfer reques	t						
 Note Write 0 to this bit to clear a DMA transfer request if an interrupt that is specified as the cause of starting DMA transfer occurs while DMA transfer is disabled. Cautions 1. Set the IFCn5 to IFCn0 bits at the following timing when DMA transfer is disabled (DCHCn.Enn bit = 0). Period from after reset to start of first DMA transfer Period from after channel initialization by DCHCn.INITn bit to start of DMA transfer Period from after completion of DMA transfer (DCHCn.TCn bit = 1) to start of the next DMA transfer 2. An interrupt request that is generated in the standby mode (IDEL1, IDLE2, STOP, or sub-IDLE mode) does not start the DMA transfer cycle (nor is the DFn bit set to 1). 3. If a DMA start factor is selected by the IFCn5 to IFCn0 bits, the DFn bit is set to 1 when an interrupt occurs from the selected on-chip peripheral I/O, regardless of whether the DMA transfer is enabled or disabled. If DMA is enabled in this status, DMA transfer is immediately started. 										

<R>

IFCn5	IFCn4	IFCn3	IFCn2	IFCn1	IFCn0	Interrupt Source
0	0	0	0	0	0	DMA request by interrupt disabled
0	0	0	0	0	1	INTP0
0	0	0	0	1	0	INTP1
0	0	0	0	1	1	INTP2
0	0	0	1	0	0	INTP3
0	0	0	1	0	1	INTP4
0	0	0	1	1	0	INTP5
0	0	0	1	1	1	INTP6
0	0	1	0	0	0	INTP7
0	0	1	0	0	1	INTTQ0OV
0	0	1	0	1	0	INTTQ0CC0
0	0	1	0	1	1	INTTQ0CC1
0	0	1	1	0	0	INTTQ0CC2
0	0	1	1	0	1	INTTQ0CC3
0	0	1	1	1	0	INTTPOOV
0	0	1	1	1	1	INTTP0CC0
0	1	0	0	0	0	INTTP0CC1
0	1	0	0	0	1	INTTP10V
0	1	0	0	1	0	INTTP1CC0
0	1	0	0	1	1	INTTP1CC1
0	1	0	1	0	0	INTTP2OV
0	1	0	1	0	1	INTTP2CC0
0	1	0	1	1	0	INTTP2CC1
0	1	0	1	1	1	INTTP3CC0
0	1	1	0	0	0	INTTP3CC1
0	1	1	0	0	1	INTTP4CC0
0	1	1	0	1	0	INTTP4CC1
0	1	1	0	1	1	INTTP5CC0
0	1	1	1	0	0	INTTP5CC1
0	1	1	1	0	1	INTTM0EQ0
0	1	1	1	1	0	INTCB0R/INTIIC1
0	1	1	1	1	1	INTCB0T
1	0	0	0	0	0	INTCB1R
1	0	0	0	0	1	INTCB1T
1	0	0	0	1	0	INTCB2R
1	0	0	0	1	1	INTCB2T
1	0	0	1	0	0	INTCB3R
1	0	0	1	0	1	INTCB3T
1	0	0	1	1	0	INTUA0R/INTCB4R
1	0	0	1	1	1	INTUA0T/INTCB4T
1	0	1	0	0	0	INTUA1R/INTIIC2
1	0	1	0	0	1	INTUA1T
1	0	1	0	1	0	INTUA2R/INTIIC0
1	0	1	0	1	1	INTUA2T
1	0	1	1	0	0	INTAD
1	0	1	1	0	1	INTKR
		Other the	an above			Setting prohibited

Table 18-1. DMA Start Factors

Remark n = 0 to 3

18.4 Transfer Targets

Table 18-2 shows the relationship between the transfer targets ($\sqrt{:}$ Transfer enabled, \times : Transfer disabled).

			Transfer D	estination	
		Internal ROM	On-Chip Peripheral I/O	Internal RAM	External Memory
	On-chip peripheral I/O	×	\checkmark	\checkmark	\checkmark
Source	Internal RAM	×	\checkmark	×	\checkmark
Sou	External memory	×	\checkmark	\checkmark	\checkmark
	Internal ROM	×	×	×	×

Table 18-2. Relationship Between Transfer Targets

Caution The operation is not guaranteed for combinations of transfer destination and source marked with "×" in Table 18-2.

18.5 Transfer Modes

Single transfer is supported as the transfer mode.

In single transfer mode, the bus is released at each byte/halfword transfer. If there is a subsequent DMA transfer request, transfer is performed again once. This operation continues until a terminal count occurs.

When the DMAC has released the bus, if another higher priority DMA transfer request is issued, the higher priority DMA request always takes precedence.

If a new transfer request of the same channel and a transfer request of another channel with a lower priority are generated in a transfer cycle, DMA transfer of the channel with the lower priority is executed after the bus is released to the CPU (the new transfer request of the same channel is ignored in the transfer cycle).

18.6 Transfer Types

As a transfer type, the 2-cycle transfer is supported.

In two-cycle transfer, data transfer is performed in two cycles, a read cycle and a write cycle.

In the read cycle, the transfer source address is output and reading is performed from the source to the DMAC. In the write cycle, the transfer destination address is output and writing is performed from the DMAC to the destination.

An idle cycle of one clock is always inserted between a read cycle and a write cycle. If the data bus width differs between the transfer source and destination for DMA transfer of two cycles, the operation is performed as follows.

<16-bit data transfer>

<1> Transfer from 32-bit bus \rightarrow 16-bit bus

A read cycle (the higher 16 bits are in a high-impedance state) is generated, followed by generation of a write cycle (16 bits).

- <2> Transfer from 16-/32-bit bus to 8-bit bus
 - A 16-bit read cycle is generated once, and then an 8-bit write cycle is generated twice.
- <3> Transfer from 8-bit bus to 16-/32-bit bus An 8-bit read cycle is generated twice, and then a 16-bit write cycle is generated once.
- <4> Transfer between 16-bit bus and 32-bit bus A 16-bit read cycle is generated once, and then a 16-bit write cycle is generated once.

For DMA transfer executed to an on-chip peripheral I/O register (transfer source/destination), be sure to specify the same transfer size as the register size. For example, for DMA transfer to an 8-bit register, be sure to specify byte (8-bit) transfer.

Remark The bus width of each transfer target (transfer source/destination) is as follows.

- On-chip peripheral I/O: 16-bit bus width
- Internal RAM: 32-bit bus width
- External memory: 8-bit or 16-bit bus width

18.7 DMA Channel Priorities

The DMA channel priorities are fixed as follows.

DMA channel 0 > DMA channel 1 > DMA channel 2 > DMA channel 3

The priorities are checked for every transfer cycle.

18.8 Time Related to DMA Transfer

The time required to respond to a DMA request, and the minimum number of clocks required for DMA transfer are shown below.

Single transfer: DMA response time (<1>) + Transfer source memory access (<2>) + 1^{Note 1} + Transfer destination memory access (<2>)

DM	IA Cycle	Minimum Number of Execution Clocks					
<1> DMA request response	e time	4 clocks (MIN.) + Noise elimination time ^{Note 2}					
<2> Memory access	External memory access	Depends on connected memory.					
	Internal RAM access	2 clocks ^{Note 3}					
	Peripheral I/O register access	3 clocks + Number of wait cycles specified by VSWC register ^{Note 4}					

Notes 1. One clock is always inserted between a read cycle and a write cycle in DMA transfer.

- If an external interrupt (INTPn) is specified as the trigger to start DMA transfer, noise elimination time is added (n = 0 to 7).
- 3. Two clocks are required for a DMA cycle.
- 4. More wait cycles are necessary for accessing a specific peripheral I/O register (for details, see 3.4.8 (2)).

18.9 DMA Transfer Start Factors

There are two types of DMA transfer start factors, as shown below.

(1) Request by software

If the STGn bit is set to 1 while the DCHCn.TCn bit = 1 and Enn bit = 1 (DMA transfer enabled), DMA transfer is started.

To request the next DMA transfer cycle immediately after that, confirm, by using the DBCn register, that the preceding DMA transfer cycle has been completed, and set the STGn bit to 1 again (n = 0 to 3).

```
TCn bit = 0, Enn bit = 1

\downarrow

STGn bit = 1 ... Starts the first DMA transfer.

\downarrow

Confirm that the contents of the DBCn register have been updated.

STGn bit = 1 ... Starts the second DMA transfer.

\downarrow

:

\downarrow
```

Generation of terminal count ... Enn bit = 0, TCn bit = 1, and INTDMAn signal is generated.

(2) Request by on-chip peripheral I/O

If an interrupt request is generated from the on-chip peripheral I/O set by the DTFRn register when the DCHCn.TCn bit = 0 and Enn bit = 1 (DMA transfer enabled), DMA transfer is started.

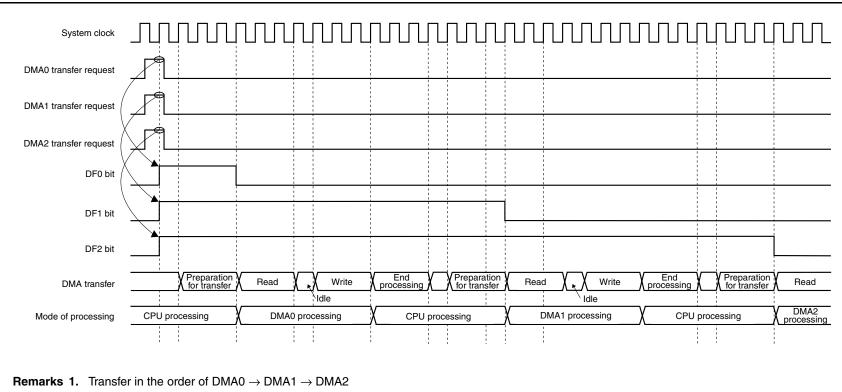
- Cautions 1. Two start factors (software trigger and hardware trigger) cannot be used for one DMA channel. If two start factors are simultaneously generated for one DMA channel, only one of them is valid. The start factor that is valid cannot be identified.
 - 2. A new transfer request that is generated after the preceding DMA transfer request was generated or in the preceding DMA transfer cycle is ignored (cleared).
 - 3. The transfer request interval of the same DMA channel varies depending on the setting of bus wait in the DMA transfer cycle, the start status of the other channels, or the external bus hold request. In particular, as described in Caution 2, a new transfer request that is generated for the same channel before the DMA transfer cycle or during the DMA transfer cycle is ignored. Therefore, the transfer request intervals for the same DMA channel must be sufficiently separated by the system. When the software trigger is used, completion of the DMA transfer cycle that was generated before can be checked by updating the DBCn register.

18.10 DMA Abort Factors

DMA transfer is aborted if a bus hold occurs.

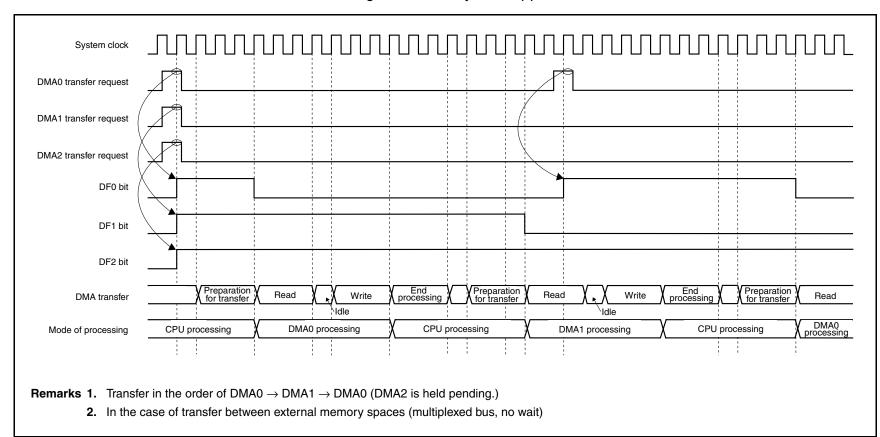
The same applies if transfer is executed between the internal memory/on-chip peripheral I/O and internal memory/on-chip peripheral I/O.

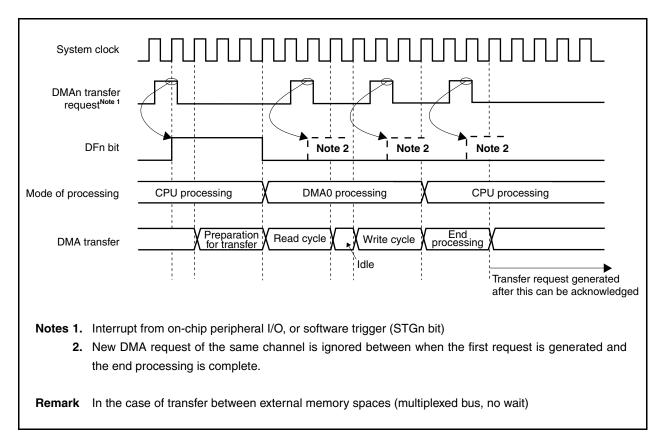
When the bus hold is cleared, DMA transfer is resumed.


18.11 End of DMA Transfer

When DMA transfer has been completed the number of times set to the DBCn register and when the DCHCn.Enn bit is cleared to 0 and TCn bit is set to 1, a DMA transfer end interrupt request signal (INTDMAn) is generated for the interrupt controller (INTC) (n = 0 to 3).

The V850ES/JG2 does not output a terminal count signal to an external device. Therefore, confirm completion of DMA transfer by using the DMA transfer end interrupt or polling the TCn bit.


18.12 Operation Timing


Figures 18-1 to 18-4 show DMA operation timing.

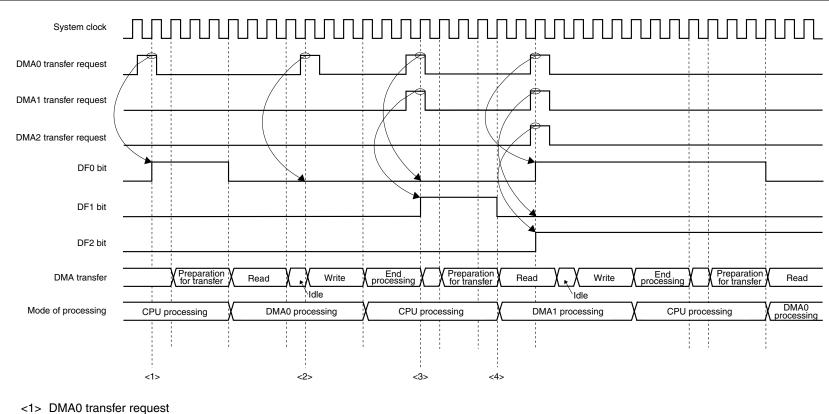

2. In the case of transfer between external memory spaces (multiplexed bus, no wait)

Figure 18-2. Priority of DMA (2)

Figure 18-3. Period in Which DMA Transfer Request Is Ignored (1)

Figure 18-4. Period in Which DMA Transfer Request Is Ignored (2)

- <2> New DMA0 transfer request is generated during DMA0 transfer.
 - \rightarrow A DMA transfer request of the same channel is ignored during DMA transfer.
- <3> Requests for DMA0 and DMA1 are generated at the same time.
 - \rightarrow DMA0 request is ignored (a DMA transfer request of the same channel during transfer is ignored).
 - \rightarrow DMA1 request is acknowledged.
- <4> Requests for DMA0, DMA1, and DMA2 are generated at the same time.
 - \rightarrow DMA1 request is ignored (a DMA transfer request of the same channel during transfer is ignored).
 - \rightarrow DMA0 request is acknowledged according to priority. DMA2 request is held pending (transfer of DMA2 occurs next).

User's Manual U17715EJ2V0UD

18.13 Cautions

(1) Caution for VSWC register

When using the DMAC, be sure to set an appropriate value, in accordance with the operating frequency, to the VSWC register.

When the default value (77H) of the VSWC register is used, or if an inappropriate value is set to the VSWC register, the operation is not correctly performed (for details of the VSWC register, see **3.4.8** (1) (a) System wait control register (VSWC)).

(2) Caution for DMA transfer executed on internal RAM

When executing the following instructions located in the internal RAM, do not execute a DMA transfer that transfers data to/from the internal RAM (transfer source/destination), because the CPU may not operate correctly afterward.

- Bit manipulation instruction located in internal RAM (SET1, CLR1, or NOT1)
- Data access instruction to misaligned address located in internal RAM

Conversely, when executing a DMA transfer to transfer data to/from the internal RAM (transfer source/destination), do not execute the above two instructions.

(3) Caution for reading DCHCn.TCn bit (n = 0 to 3)

The TCn bit is cleared to 0 when it is read, but it is not automatically cleared even if it is read at a specific timing. To accurately clear the TCn bit, add the following processing.

(a) When waiting for completion of DMA transfer by polling TCn bit

Confirm that the TCn bit has been set to 1 (after TCn bit = 1 is read), and then read the TCn bit three more times.

(b) When reading TCn bit in interrupt servicing routine

Execute reading the TCn bit three times.

(4) DMA transfer initialization procedure (setting DCHCn.INITn bit to 1)

Even if the INITn bit is set to 1 when the channel executing DMA transfer is to be initialized, the channel may not be initialized. To accurately initialize the channel, execute either of the following two procedures.

(a) Temporarily stop transfer of all DMA channels

Initialize the channel executing DMA transfer using the procedure in <1> to <7> below. Note, however, that TCn bit is cleared to 0 when step <5> is executed. Make sure that the other processing programs do not expect that the TCn bit is 1.

- <1> Disable interrupts (DI).
- <2> Read the DCHCn.Enn bit of DMA channels other than the one to be forcibly terminated, and transfer the value to a general-purpose register.
- <3> Clear the Enn bit of the DMA channels used (including the channel to be forcibly terminated) to 0. To clear the Enn bit of the last DMA channel, execute the clear instruction twice. If the target of DMA transfer (transfer source/destination) is the internal RAM, execute the instruction three times.
 - Example: Execute instructions in the following order if channels 0, 1, and 2 are used (if the target of transfer is not the internal RAM).
 - Clear DCHC0.E00 bit to 0.
 - Clear DCHC1.E11 bit to 0.
 - Clear DCHC2.E22 bit to 0.
 - Clear DCHC2.E22 bit to 0 again.
- <4> Set the INITn bit of the channel to be forcibly terminated to 1.
- <5> Read the TCn bit of each channel not to be forcibly terminated. If both the TCn bit and the Enn bit read in <2> are 1 (logical product (AND) is 1), clear the saved Enn bit to 0.
- <6> After the operation in <5>, write the Enn bit value to the DCHCn register.
- <7> Enable interrupts (EI).

Caution Be sure to execute step <5> above to prevent illegal setting of the Enn bit of the channels whose DMA transfer has been normally completed between <2> and <3>.

(b) Repeatedly execute setting INITn bit until transfer is forcibly terminated correctly

- <1> Suppress a request from the DMA request source of the channel to be forcibly terminated (stop operation of the on-chip peripheral I/O).
- <2> Check that the DMA transfer request of the channel to be forcibly terminated is not held pending, by using the DTFRn.DFn bit. If a DMA transfer request is held pending, wait until execution of the pending request is completed.
- <3> When it has been confirmed that the DMA request of the channel to be forcibly terminated is not held pending, clear the Enn bit to 0.
- <4> Again, clear the Enn bit of the channel to be forcibly terminated. If the target of transfer for the channel to be forcibly terminated (transfer source/destination) is the internal RAM, execute this operation once more.
- <5> Copy the initial number of transfers of the channel to be forcibly terminated to a general-purpose register.
- <6> Set the INITn bit of the channel to be forcibly terminated to 1.
- <7> Read the value of the DBCn register of the channel to be forcibly terminated, and compare it with the value copied in <5>. If the two values do not match, repeat operations <6> and <7>.
- Remarks 1. When the value of the DBCn register is read in <7>, the initial number of transfers is read if forced termination has been correctly completed. If not, the remaining number of transfers is read.
 - **2.** Note that method (b) may take a long time if the application frequently uses DMA transfer for a channel other than the DMA channel to be forcibly terminated.

(5) Procedure of temporarily stopping DMA transfer (clearing Enn bit)

Stop and resume the DMA transfer under execution using the following procedure.

- <1> Suppress a transfer request from the DMA request source (stop the operation of the on-chip peripheral I/O).
- <2> Check the DMA transfer request is not held pending, by using the DFn bit (check if the DFn bit = 0). If a request is pending, wait until execution of the pending DMA transfer request is completed.
- <3> If it has been confirmed that no DMA transfer request is held pending, clear the Enn bit to 0 (this operation stops DMA transfer).
- <4> Set the Enn bit to 1 to resume DMA transfer.
- <5> Resume the operation of the DMA request source that has been stopped (start the operation of the onchip peripheral I/O).

(6) Memory boundary

The operation is not guaranteed if the address of the transfer source or destination exceeds the area of the DMA target (external memory, internal RAM, or on-chip peripheral I/O) during DMA transfer.

(7) Transferring misaligned data

DMA transfer of misaligned data with a 16-bit bus width is not supported. If an odd address is specified as the transfer source or destination, the least significant bit of the address is forcibly assumed to be 0.

(8) Bus arbitration for CPU

Because the DMA controller has a higher priority bus mastership than the CPU, a CPU access that takes place during DMA transfer is held pending until the DMA transfer cycle is completed and the bus is released to the CPU.

However, the CPU can access the external memory, on-chip peripheral I/O, and internal RAM to/from which DMA transfer is not being executed.

- The CPU can access the internal RAM when DMA transfer is being executed between the external memory and on-chip peripheral I/O.
- The CPU can access the internal RAM and on-chip peripheral I/O when DMA transfer is being executed between the external memory and external memory.

(9) Registers/bits that must not be rewritten during DMA operation

Set the following registers at the following timing when a DMA operation is not under execution. [Registers]

- DSAnH, DSAnL, DDAnH, DDAnL, DBCn, and DADCn registers
- DTFRn.IFCn5 to DTFRn.IFCn0 bits

[Timing of setting]

- Period from after reset to start of the first DMA transfer
- Time after channel initialization to start of DMA transfer
- Period from after completion of DMA transfer (TCn bit = 1) to start of the next DMA transfer

(10) Be sure to set the following register bits to 0.

- Bits 14 to 10 of DSAnH register
- Bits 14 to 10 of DDAnH register
- Bits 15, 13 to 8, and 3 to 0 of DADCn register
- Bits 6 to 3 of DCHCn register

<R> (11) DMA start factor

Do not start two or more DMA channels with the same start factor. If two or more channels are started with the same factor, DMA for which a channel has already been set may be started or a DMA channel with a lower priority may be acknowledged earlier than a DMA channel with a higher priority. The operation cannot be guaranteed.

(12) Read values of DSAn and DDAn registers

Values in the middle of updating may be read from the DSAn and DDAn registers during DMA transfer (n = 0 to 3).

For example, if the DSAnH register and then the DSAnL register are read when the DMA transfer source address (DSAn register) is 0000FFFFH and the count direction is incremental (DADCn.SAD1 and DADCn.SAD0 bits = 00), the value of the DSAn register differs as follows, depending on whether DMA transfer is executed immediately after the DSAnH register is read.

(a) If DMA transfer does not occur while DSAn register is read

- <1> Read value of DSAnH register: DSAnH = 0000H
- <2> Read value of DSAnL register: DSAnL = FFFFH

(b) If DMA transfer occurs while DSAn register is read

- <1> Read value of DSAnH register: DSAnH = 0000H
- <2> Occurrence of DMA transfer
- <3> Incrementing DSAn register: DSAn = 00100000H
- <4> Read value of DSAnL register: DSAnL = 0000H

CHAPTER 19 INTERRUPT/EXCEPTION PROCESSING FUNCTION

The V850ES/JG2 is provided with a dedicated interrupt controller (INTC) for interrupt servicing and can process a total of 57 interrupt requests.

An interrupt is an event that occurs independently of program execution, and an exception is an event whose occurrence is dependent on program execution.

The V850ES/JG2 can process interrupt request signals from the on-chip peripheral hardware and external sources. Moreover, exception processing can be started by the TRAP instruction (software exception) or by generation of an exception event (i.e. fetching of an illegal opcode) (exception trap).

19.1 Features

○ Interrupts

- Non-maskable interrupts: 2 sources
- Maskable interrupts: External: 8, Internal: 47 sources
- 8 levels of programmable priorities (maskable interrupts)
- Multiple interrupt control according to priority
- Masks can be specified for each maskable interrupt request.
- Noise elimination, edge detection, and valid edge specification for external interrupt request signals.

○ Exceptions

- Software exceptions: 32 sources
- Exception trap: 2 sources (illegal opcode exception)

Interrupt/exception sources are listed in Table 19-1.

Туре	Classification	Default Priority	Name	Trigger	Generating Unit	Exception Code	Handler Address	Restored PC	Interrupt Control
Reset	Interrupt	-	RESET	RESET pin input	RESET	0000H	00000000H	Undefined	Register –
				Reset input by internal source				120	
Non- I maskable	Interrupt	-	NMI	NMI pin valid edge input	Pin	0010H	00000010H	nextPC	-
		-	INTWDT2	WDT2 overflow	WDT2	0020H	00000020H	Note 1	-
Software I exception	Exception	-		TRAP instruction	-	004nH ^{Note 2}	00000040H	nextPC	-
	-	-	TRAP1n ^{Note 2}	TRAP instruction	-	005nH ^{Note 2}	00000050H	nextPC	-
Exception I trap	Exception	-	ILGOP/ DBG0	Illegal opcode/ DBTRAP instruction	-	0060H	00000060H	nextPC	-
Maskable	Interrupt	0	INTLVI	Low voltage detection	POCLVI	0080H	00000080H	nextPC	LVIIC
		1	INTP0	External interrupt pin input edge detection (INTP0)	Pin	0090H	00000090H	nextPC	PIC0
		2	INTP1	External interrupt pin input edge detection (INTP1)	Pin	00A0H	000000A0H	nextPC	PIC1
		3	INTP2	External interrupt pin input edge detection (INTP2)	Pin	00B0H	000000B0H	nextPC	PIC2
		4	INTP3	External interrupt pin input edge detection (INTP3)	Pin	00C0H	000000C0H	nextPC	PIC3
		5	INTP4	External interrupt pin input edge detection (INTP4)	Pin	00D0H	000000D0H	nextPC	PIC4
		6	INTP5	External interrupt pin input edge detection (INTP5)	Pin	00E0H	000000E0H	nextPC	PIC5
		7	INTP6	External interrupt pin input edge detection (INTP6)	Pin	00F0H	000000F0H	nextPC	PIC6
		8	INTP7	External interrupt pin input edge detection (INTP7)	Pin	0100H	00000100H	nextPC	PIC7
		9	INTTQ00V	TMQ0 overflow	TMQ0	0110H	00000110H	nextPC	TQ00VIC
		10	INTTQ0CC0	TMQ0 capture 0/compare 0 match	TMQ0	0120H	00000120H	nextPC	TQ0CCIC0
		11	INTTQ0CC1	TMQ0 capture 1/compare 1 match	TMQ0	0130H	00000130H	nextPC	TQ0CCIC1
		12	INTTQ0CC2	TMQ0 capture 2/compare 2 match	TMQ0	0140H	00000140H	nextPC	TQ0CCIC2
		13	INTTQ0CC3	TMQ0 capture 3/compare 3 match	TMQ0	0150H	00000150H	nextPC	TQ0CCIC3
		14	INTTP0OV	TMP0 overflow	ТМР0	0160H	00000160H	nextPC	TP00VIC
		15	INTTP0CC0	TMP0 capture 0/compare 0 match	ТМР0	0170H	00000170H	nextPC	TPOCCICO
		16	INTTP0CC1	TMP0 capture 1/compare 1 match	ТМР0	0180H	00000180H	nextPC	TP0CCIC1
		17	INTTP10V	TMP1 overflow	TMP1	0190H	00000190H	nextPC	TP1OVIC
		18	INTTP1CC0	TMP1 capture 0/compare 0 match	TMP1	01A0H	000001A0H	nextPC	TP1CCIC0
		19	INTTP1CC1	TMP1 capture 1/compare 1 match	TMP1	01B0H	000001B0H	nextPC	TP1CCIC1
		20	INTTP2OV	TMP2 overflow	TMP2	01C0H	000001C0H	nextPC	TP2OVIC
		21	INTTP2CC0	TMP2 capture 0/compare 0 match	TMP2	01D0H	000001D0H	nextPC	TP2CCIC0
		22	INTTP2CC1	TMP2 capture 1/compare 1 match	TMP2	01E0H	000001E0H	nextPC	TP2CCIC1

 Table 19-1. Interrupt Source List (1/3)

Notes 1. For the restoring in the case of INTWDT2, see 19.2.2 (2) From INTWDT2 signal.

2. n = 0 to FH

Туре	Classification	Default Priority	Name	Trigger	Generating Unit	Exception Code	Handler Address	Restored PC	Interrupt Control
									Register
Maskable	Interrupt	23	INTTP3OV	TMP3 overflow	TMP3	01F0H	000001F0H	nextPC	TP3OVIC
		24	INTTP3CC0	TMP3 capture 0/compare 0 match	ТМР3	0200H	00000200H	nextPC	TP3CCIC0
		25	INTTP3CC1	TMP3 capture 1/compare 1 match	ТМР3	0210H	00000210H	nextPC	TP3CCIC1
		26	INTTP4OV	TMP4 overflow	TMP4	0220H	00000220H	nextPC	TP4OVIC
		27	INTTP4CC0	TMP4 capture 0/compare 0 match	TMP4	0230H	00000230H	nextPC	TP4CCICC
		28	INTTP4CC1	TMP4 capture 1/compare 1 match	TMP4	0240H	00000240H	nextPC	TP4CCIC1
		29	INTTP5OV	TMP5 overflow	TMP5	0250H	00000250H	nextPC	TP5OVIC
		30	INTTP5CC0	TMP5 capture 0/compare 0 match	TMP5	0260H	00000260H	nextPC	TP5CCICC
		31	INTTP5CC1	TMP5 capture 1/compare 1 match	TMP5	0270H	00000270H	nextPC	TP5CCIC1
		32	INTTM0EQ0	TMM0 compare match	тммо	0280H	00000280H	nextPC	TM0EQIC0
		33	INTCB0R/ INTIIC1	CSIB0 reception completion/ CSIB0 reception error/ IIC1 transfer completion	CSIB0/ IIC1	0290H	00000290H	nextPC	CB0RIC/ IICIC1
		34	INTCB0T	CSIB0 consecutive transmission write enable	CSIB0	02A0H	000002A0H	nextPC	CB0TIC
		35	INTCB1R	CSIB1 reception completion/ CSIB1 reception error	CSIB1	02B0H	000002B0H	nextPC	CB1RIC
		36	INTCB1T	CSIB1 consecutive transmission write enable	CSIB1	02C0H	000002C0H	nextPC	CB1TIC
		37	INTCB2R	CSIB2 reception completion/ CSIB2 reception error	CSIB2	02D0H	000002D0H	nextPC	CB2RIC
		38	INTCB2T	CSIB2 consecutive transmission write enable	CSIB2	02E0H	000002E0H	nextPC	CB2TIC
		39	INTCB3R	CSIB3 reception completion/ CSIB3 reception error	CSIB3	02F0H	000002F0H	nextPC	CB3RIC
		40	INTCB3T	CSIB3 consecutive transmission write enable	CSIB3	0300H	00000300H	nextPC	CB3TIC
		41	INTUA0R/ INTCB4R	UARTA0 reception completion/ CSIB4 reception completion/ CSIB4 reception error	UARTA0/ CSIB4	0310H	00000310H	nextPC	UA0RIC/C B4RIC
		42	INTUA0T/ INTCB4T	UARTA0 consecutive transmission enable/CSIB4 consecutive transmission write enable	UARTA0/ CSIB4	0320H	00000320H	nextPC	UA0TIC/ CB4TIC
		43	INTUA1R/ INTIIC2	UARTA1 reception completion/ UARTA1 reception error/ IIC2 transfer completion	uarta1/ IIC2	0330H	00000330H	nextPC	UA1RIC/ IICIC2
		44	INTUA1T	UARTA1 consecutive transmission enable	UARTA1	0340H	00000340H	nextPC	UA1TIC
		45	INTUA2R/ INTIIC0	UARTA2 reception completion/ IIC0 transfer completion	UARTA/ IIC0	0350H	00000350H	nextPC	UA2RIC/ IICIC0
		46	INTUA2T	UARTA2 consecutive transmission enable	UARTA2	0360H	00000360H	nextPC	UA2TIC
		47	INTAD	A/D conversion completion	A/D	0370H	00000370H	nextPC	ADIC

 Table 19-1. Interrupt Source List (2/3)

Туре	Classification	Default Priority	Name	Trigger	Generating Unit	Exception Code	Handler Address	Restored PC	Interrupt Control Register
Maskable	Interrupt	48	INTDMA0	DMA0 transfer completion	DMA	0380H	00000380H	nextPC	DMAIC0
		49	INTDMA1	DMA1 transfer completion	DMA	0390H	00000390H	nextPC	DMAIC1
		50	INTDMA2	DMA2 transfer completion	DMA	03A0H	000003A0H	nextPC	DMAIC2
		51	INTDMA3	DMA3 transfer completion	DMA	03B0H	000003B0H	nextPC	DMAIC3
		52	INTKR	Key return interrupt	KR	03C0H	000003C0H	nextPC	KRIC
		53	ΙΝΤΨΤΙ	Watch timer interval	wт	03D0H	000003D0H	nextPC	WTIIC
		54	INTWT	Watch timer reference time	wт	03E0H	000003E0H	nextPC	WTIC

Table 19-1. Interrupt Source List (3/3)

Remarks 1. Default Priority: The priority order when two or more maskable interrupt requests occur at the same time. The highest priority is 0.

The priority order of non-maskable interrupt is INTWDT2 > NMI.

- Restored PC: The value of the program counter (PC) saved to EIPC, FEPC, or DBPC when interrupt servicing is started. Note, however, that the restored PC when a non-maskable or maskable interrupt is acknowledged while one of the following instructions is being executed does not become the nextPC (if an interrupt is acknowledged during interrupt execution, execution stops, and then resumes after the interrupt servicing has finished).
 - Load instructions (SLD.B, SLD.BU, SLD.H, SLD.HU, SLD.W)
 - Division instructions (DIV, DIVH, DIVU, DIVHU)
 - PREPARE, DISPOSE instructions (only if an interrupt is generated before the stack pointer is updated)

nextPC: The PC value that starts the processing following interrupt/exception processing.

 The execution address of the illegal instruction when an illegal opcode exception occurs is calculated by (Restored PC – 4).

19.2 Non-Maskable Interrupts

A non-maskable interrupt request signal is acknowledged unconditionally, even when interrupts are in the interrupt disabled (DI) status. An NMI is not subject to priority control and takes precedence over all the other interrupt request signals.

This product has the following two non-maskable interrupt request signals.

- NMI pin input (NMI)
- Non-maskable interrupt request signal generated by overflow of watchdog timer (INTWDT2)

The valid edge of the NMI pin can be selected from four types: "rising edge", "falling edge", "both edges", and "no edge detection".

The non-maskable interrupt request signal generated by overflow of watchdog timer 2 (INTWDT2) functions when the WDTM2.WDM21 and WDTM2.WDM20 bits are set to "01".

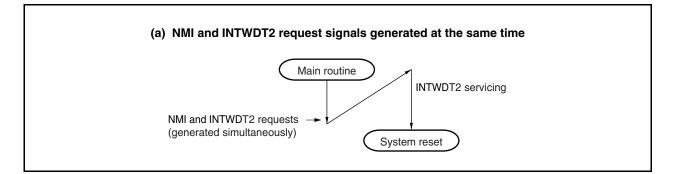
If two or more non-maskable interrupt request signals occur at the same time, the interrupt with the higher priority is serviced, as follows (the interrupt request signal with the lower priority is ignored).

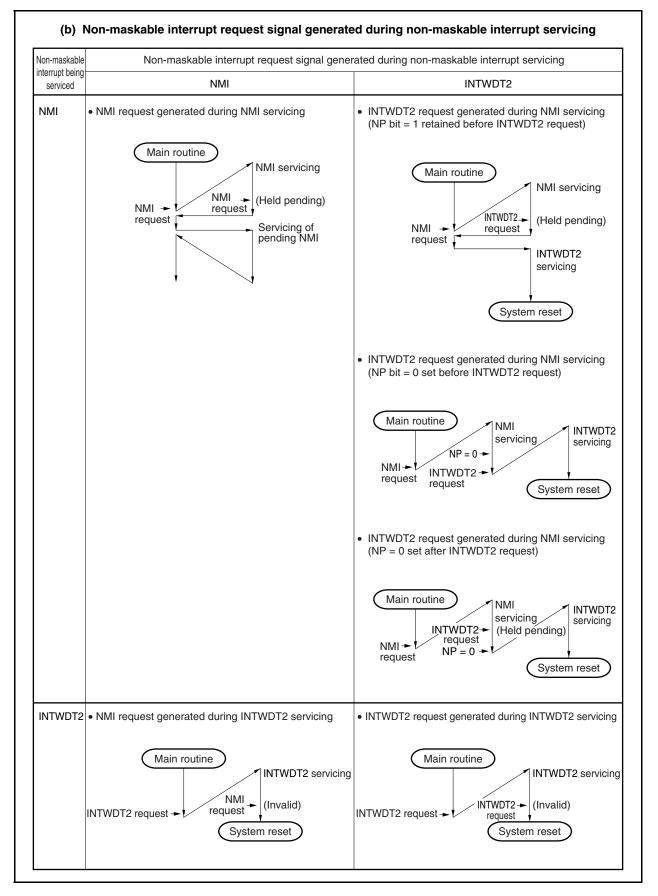
INTWDT2 > NMI

If a new NMI or INTWDT2 request signal is issued while an NMI is being serviced, it is serviced as follows.

(1) If new NMI request signal is issued while NMI is being serviced

The new NMI request signal is held pending, regardless of the value of the PSW.NP bit. The pending NMI request signal is acknowledged after the NMI currently under execution has been serviced (after the RETI instruction has been executed).

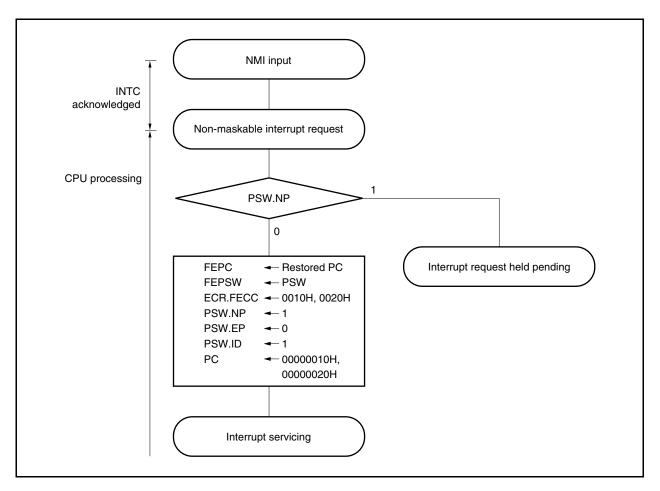

(2) If INTWDT2 request signal is issued while NMI is being serviced

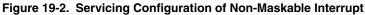

The INTWDT2 request signal is held pending if the NP bit remains set (1) while the NMI is being serviced. The pending INTWDT2 request signal is acknowledged after the NMI currently under execution has been serviced (after the RETI instruction has been executed).


If the NP bit is cleared (0) while the NMI is being serviced, the newly generated INTWDT2 request signal is executed (the NMI servicing is stopped).

Caution For the non-maskable interrupt servicing executed by the non-maskable interrupt request signal (INTWDT2), see 19.2.2 (2) From INTWDT2 signal.

Figure 19-1. Non-Maskable Interrupt Request Signal Acknowledgment Operation (1/2)



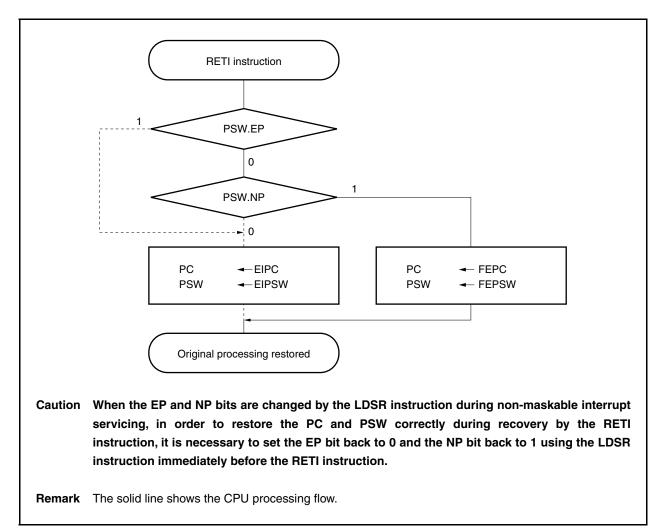

19.2.1 Operation

If a non-maskable interrupt request signal is generated, the CPU performs the following processing, and transfers control to the handler routine.

- <1> Saves the restored PC to FEPC.
- <2> Saves the current PSW to FEPSW.
- <3> Writes exception code (0010H, 0020H) to the higher halfword (FECC) of ECR.
- <4> Sets the PSW.NP and PSW.ID bits to 1 and clears the PSW.EP bit to 0.
- <5> Sets the handler address (00000010H, 0000020H) corresponding to the non-maskable interrupt to the PC, and transfers control.

The servicing configuration of a non-maskable interrupt is shown below.

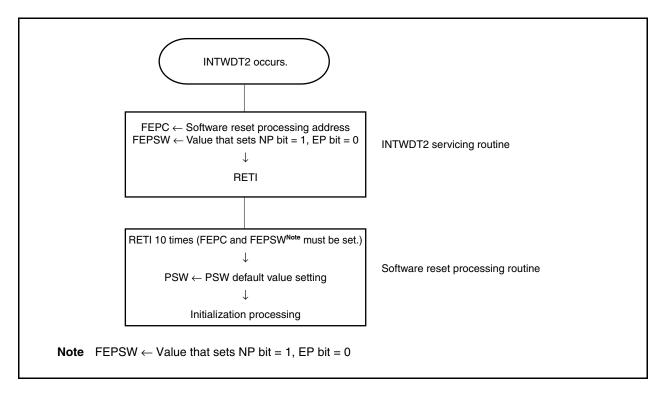
19.2.2 Restore

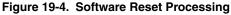

(1) From NMI pin input

Execution is restored from the NMI servicing by the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing, and transfers control to the address of the restored PC.

- <1> Loads the restored PC and PSW from FEPC and FEPSW, respectively, because the PSW.EP bit is 0 and the PSW.NP bit is 1.
- <2> Transfers control back to the address of the restored PC and PSW.


The processing of the RETI instruction is shown below.



(2) From INTWDT2 signal

Restoring from non-maskable interrupt servicing executed by the non-maskable interrupt request (INTWDT2) by using the RETI instruction is disabled. Execute the following software reset processing.

19.2.3 NP flag

The NP flag is a status flag that indicates that non-maskable interrupt servicing is under execution.

This flag is set when a non-maskable interrupt request signal has been acknowledged, and masks non-maskable interrupt requests to prohibit multiple interrupts from being acknowledged.

After rese	et: 00000020I	4									
3	31		8	7	6	5	4	3	2	1	0
PSW		0		NP	ΕP	ID	SAT	CY	OV	S	Z
-											
Γ	NP	NMI inter	rupt ser	vicing	statu	s					
	0	No NMI interrupt servicing									
Γ	1	NMI interrupt currently being serviced									

19.3 Maskable Interrupts

Maskable interrupt request signals can be masked by interrupt control registers. The V850ES/JG2 has 55 maskable interrupt sources.

If two or more maskable interrupt request signals are generated at the same time, they are acknowledged according to the default priority. In addition to the default priority, eight levels of priorities can be specified by using the interrupt control registers (programmable priority control).

When an interrupt request signal has been acknowledged, the acknowledgment of other maskable interrupt request signals is disabled and the interrupt disabled (DI) status is set.

When the EI instruction is executed in an interrupt service routine, the interrupt enabled (EI) status is set, which enables servicing of interrupts having a higher priority than the interrupt request signal in progress (specified by the interrupt control register). Note that only interrupts with a higher priority will have this capability; interrupts with the same priority level cannot be nested.

To enable multiple interrupts, however, save EIPC and EIPSW to memory or general-purpose registers before executing the EI instruction, and execute the DI instruction before the RETI instruction to restore the original values of EIPC and EIPSW.

19.3.1 Operation

If a maskable interrupt occurs, the CPU performs the following processing, and transfers control to a handler routine.

- <1> Saves the restored PC to EIPC.
- <2> Saves the current PSW to EIPSW.
- <3> Writes an exception code to the lower halfword of ECR (EICC).
- <4> Sets the PSW. ID bit to 1 and clears the PSW. EP bit to 0.
- <5> Sets the handler address corresponding to each interrupt to the PC, and transfers control.

The maskable interrupt request signal masked by INTC and the maskable interrupt request signal generated while another interrupt is being serviced (while the PSW.NP bit = 1 or the PSW.ID bit = 1) are held pending inside INTC. In this case, servicing a new maskable interrupt is started in accordance with the priority of the pending maskable interrupt request signal if either the maskable interrupt is unmasked or the NP and ID bits are cleared to 0 by using the RETI or LDSR instruction.

How maskable interrupts are serviced is illustrated below.

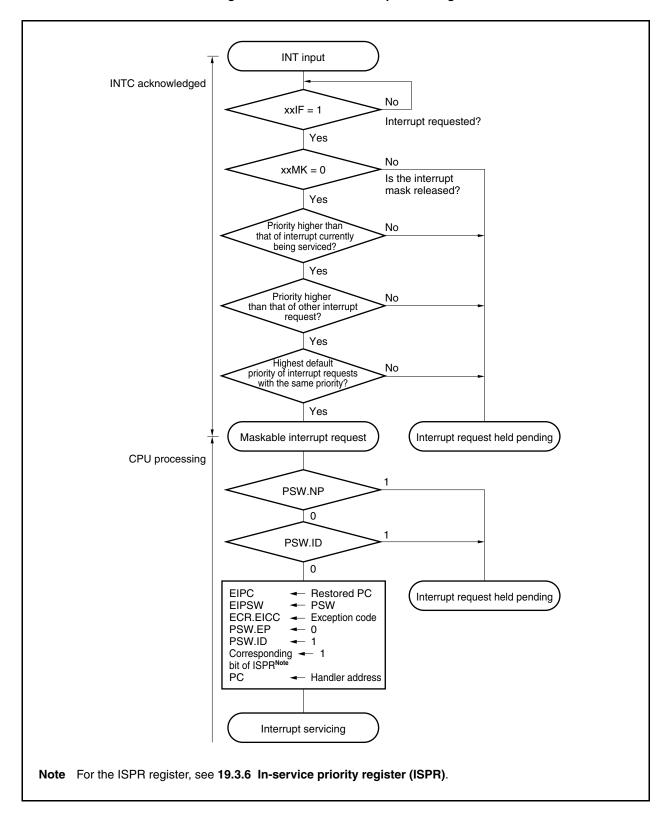
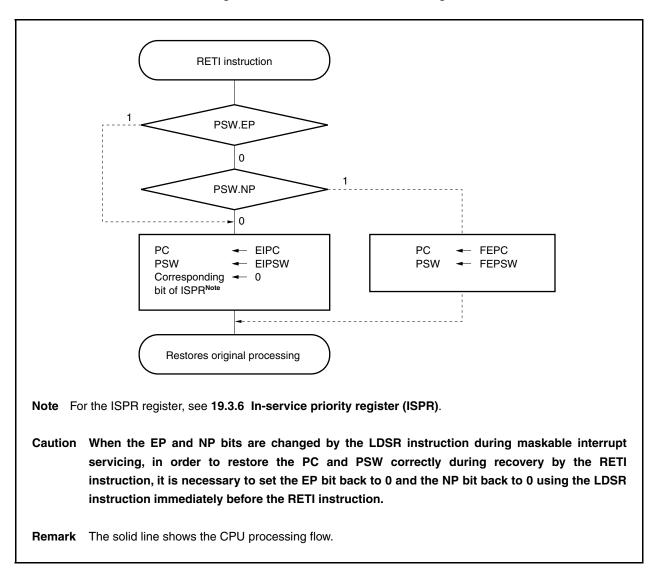


Figure 19-5. Maskable Interrupt Servicing


19.3.2 Restore

Recovery from maskable interrupt servicing is carried out by the RETI instruction.

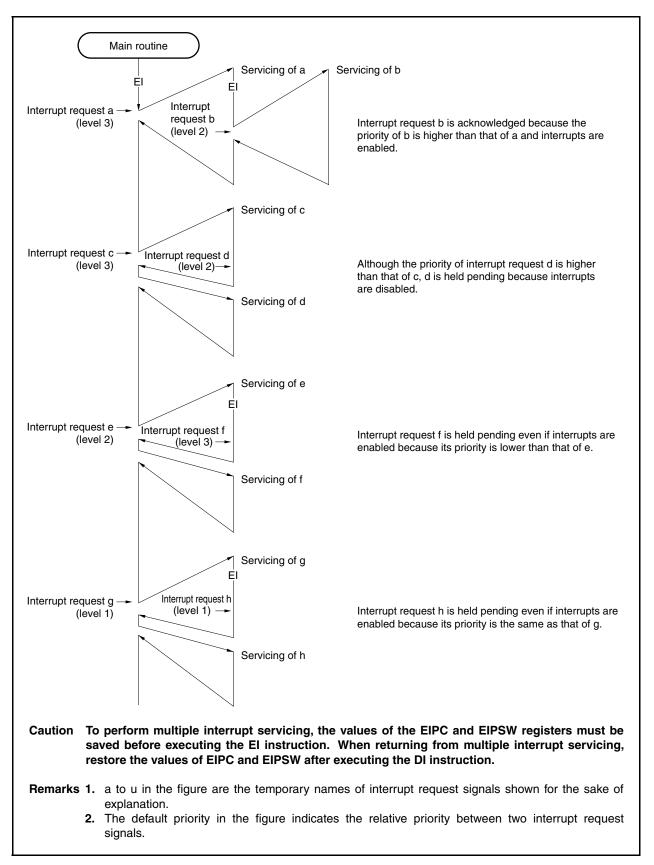
When the RETI instruction is executed, the CPU performs the following processing, and transfers control to the address of the restored PC.

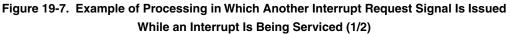
- <1> Loads the restored PC and PSW from EIPC and EIPSW because the PSW.EP bit is 0 and the PSW.NP bit is 0.
- <2> Transfers control back to the address of the restored PC and PSW.

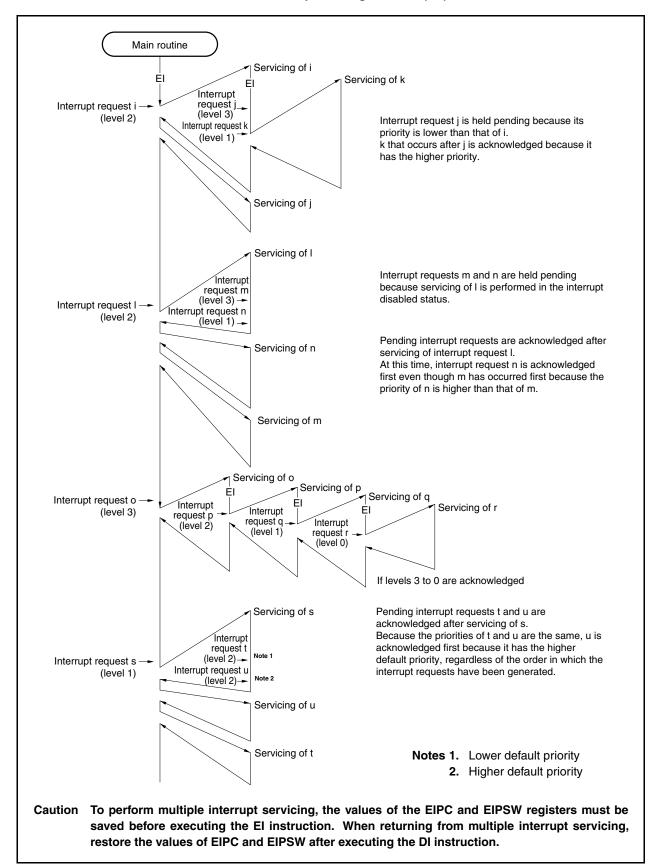
The processing of the RETI instruction is shown below.

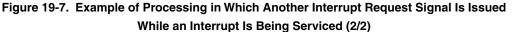
Figure 19-6. RETI Instruction Processing

19.3.3 Priorities of maskable interrupts


The INTC performs multiple interrupt servicing in which an interrupt is acknowledged while another interrupt is being serviced. Multiple interrupts can be controlled by priority levels.


There are two types of priority level control: control based on the default priority levels, and control based on the programmable priority levels that are specified by the interrupt priority level specification bit (xxPRn) of the interrupt control register (xxICn). When two or more interrupts having the same priority level specified by the xxPRn bit are generated at the same time, interrupt request signals are serviced in order depending on the priority level allocated to each interrupt request type (default priority level) beforehand. For more information, see **Table 19-1 Interrupt Source List**. The programmable priority control customizes interrupt request signals into eight levels by setting the priority level specification flag.


Note that when an interrupt request signal is acknowledged, the PSW.ID flag is automatically set to 1. Therefore, when multiple interrupts are to be used, clear the ID flag to 0 beforehand (for example, by placing the EI instruction in the interrupt service program) to set the interrupt enable mode.


Remark xx: Identification name of each peripheral unit (see Table 19-2 Interrupt Control Register (xxICn))

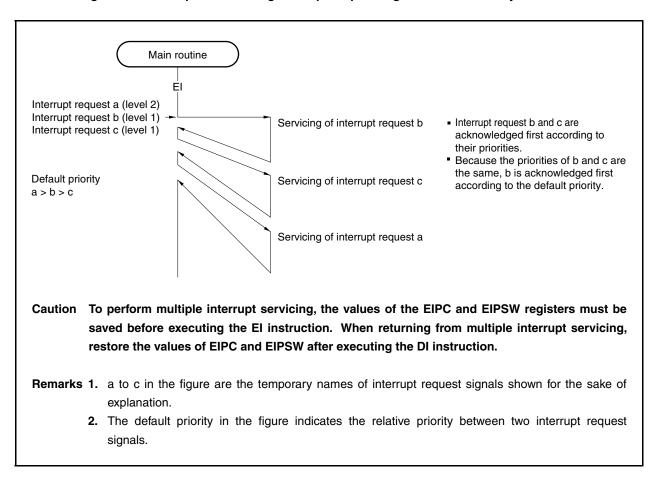

n: Peripheral unit number (see Table 19-2 Interrupt Control Register (xxICn)).

Figure 19-8. Example of Servicing Interrupt Request Signals Simultaneously Generated

19.3.4 Interrupt control register (xxICn)

The xxICn register is assigned to each interrupt request signal (maskable interrupt) and sets the control conditions for each maskable interrupt request.

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 47H.

Caution Disable interrupts (DI) or mask the interrupt to read the xxICn.xxIFn bit. If the xxIFn bit is read while interrupts are enabled (EI) or while the interrupt is unmasked, the correct value may not be read when acknowledging an interrupt and reading the bit conflict.

	<7>	<6>	5	4	3	2	1	0	
xxICn	xxlFn	xxMKn	0	0	0	xxPRn2	xxPRn1	xxPRn0	
	xxlFn			Interru	pt request	t flag ^{Note}			
	0	Interrupt r	equest not	issued					
	1	Interrupt r	equest issu	led					
	xxMKn				errupt mas	k flag			
	0		pt servicing enabled						
	1	Interrupt s	upt servicing disabled (pending)						
	xxPRn2	xxPRn1	xxPRn0		Interrupt	priority spec	ification bit		
	0	0	0	Specifies					
	0	0	1	Specifies	level 1.	<u> </u>			
	0	1	0	Specifies	level 2.				
	0	1	1	Specifies	level 3.				
	1	0	0	Specifies	level 4.				
	1	0	1	Specifies	level 5.				
	1	1	0	Specifies	level 6.				
	1	1	1	Specifies	level 7 (lo	west).			

The addresses and bits of the interrupt control registers are as follows.

Address	Register				В	Bit			
		<7>	<6>	5	4	3	2	1	0
FFFFF110H	LVIIC	LVIIF	LVIMK	0	0	0	LVIPR2	LVIPR1	LVIPR0
FFFFF112H	PIC0	PIF0	PMK0	0	0	0	PPR02	PPR01	PPR00
FFFFF114H	PIC1	PIF1	PMK1	0	0	0	PPR12	PPR11	PPR10
FFFFF116H	PIC2	PIF2	PMK2	0	0	0	PPR22	PPR21	PPR20
FFFFF118H	PIC3	PIF3	PMK3	0	0	0	PPR32	PPR31	PPR30
FFFFF11AH	PIC4	PIF4	PMK4	0	0	0	PPR42	PPR41	PPR40
FFFFF11CH	PIC5	PIF5	PMK5	0	0	0	PPR52	PPR51	PPR50
FFFFF11EH	PIC6	PIF6	PMK6	0	0	0	PPR62	PPR61	PPR60
FFFFF120H	PIC7	PIF7	PMK7	0	0	0	PPR72	PPR71	PPR70
FFFFF122H	TQ0OVIC	TQ00VIF	TQ0OVMK	0	0	0	TQ0OVPR2	TQ0OVPR1	TQ0OVPR0
FFFFF124H	TQ0CCIC0	TQ0CCIF0	TQ0CCMK0	0	0	0	TQ0CCPR02	TQ0CCPR01	TQ0CCPR00
FFFFF126H	TQ0CCIC1	TQ0CCIF1	TQ0CCMK1	0	0	0	TQ0CCPR12	TQ0CCPR11	TQ0CCPR10
FFFFF128H	TQ0CCIC2	TQ0CCIF2	TQ0CCMK2	0	0	0	TQ0CCPR22	TQ0CCPR21	TQ0CCPR20
FFFFF12AH	TQ0CCIC3	TQ0CCIF3	TQ0CCMK3	0	0	0	TQ0CCPR32	TQ0CCPR31	TQ0CCPR30
FFFFF12CH	TP0OVIC	TP00VIF	TP0OVMK	0	0	0	TP0OVPR2	TP0OVPR1	TP0OVPR0
FFFFF12EH	TP0CCIC0	TP0CCIF0	TP0CCMK0	0	0	0	TP0CCPR02	TP0CCPR01	TP0CCPR00
FFFFF130H	TP0CCIC1	TP0CCIF1	TP0CCMK1	0	0	0	TP0CCPR12	TP0CCPR11	TP0CCPR10
FFFFF132H	TP1OVIC	TP10VIF	TP10VMK	0	0	0	TP10VPR2	TP10VPR1	TP1OVPR0
FFFFF134H	TP1CCIC0	TP1CCIF0	TP1CCMK0	0	0	0	TP1CCPR02	TP1CCPR01	TP1CCPR00
FFFFF136H	TP1CCIC1	TP1CCIF1	TP1CCMK1	0	0	0	TP1CCPR12	TP1CCPR11	TP1CCPR10
FFFFF138H	TP2OVIC	TP2OVIF	TP2OVMK	0	0	0	TP2OVPR2	TP2OVPR1	TP2OVPR0
FFFFF13AH	TP2CCIC0	TP2CCIF0	TP2CCMK0	0	0	0	TP2CCPR02	TP2CCPR01	TP2CCPR00
FFFFF13CH	TP2CCIC1	TP2CCIF1	TP2CCMK1	0	0	0	TP2CCPR12	TP2CCPR11	TP2CCPR10
FFFFF13EH	TP3OVIC	TP3OVIF	TP3OVMK	0	0	0	TP3OVPR2	TP3OVPR1	TP3OVPR0
FFFFF140H	TP3CCIC0	TP3CCIF0	TP3CCMK0	0	0	0	TP3CCPR02	TP3CCPR01	TP3CCPR00
FFFFF142H	TP3CCIC1	TP3CCIF1	TP3CCMK1	0	0	0	TP3CCPR12	TP3CCPR11	TP3CCPR10
FFFFF144H	TP4OVIC	TP4OVIF	TP4OVMK	0	0	0	TP40VPR2	TP40VPR1	TP4OVPR0
FFFFF146H	TP4CCIC0	TP4CCIF0	TP4CCMK0	0	0	0	TP4CCPR02	TP4CCPR01	TP4CCPR00
FFFFF148H	TP4CCIC1	TP4CCIF1	TP4CCMK1	0	0	0	TP4CCPR12	TP4CCPR11	TP4CCPR10
FFFFF14AH	TP5OVIC	TP5OVIF	TP5OVMK	0	0	0	TP5OVPR2	TP5OVPR1	TP5OVPR0
FFFFF14CH	TP5CCIC0	TP5CCIF0	TP5CCMK0	0	0	0	TP5CCPR02	TP5CCPR01	TP5CCPR00
FFFFF14EH	TP5CCIC1	TP5CCIF1	TP5CCMK1	0	0	0	TP5CCPR12	TP5CCPR11	TP5CCPR10
FFFFF150H	TM0EQIC0	TM0EQIF0	TM0EQMK0	0	0	0	TM0EQPR02	TM0EQPR01	TM0EQPR00
FFFFF152H	CB0RIC/	CB0RIF/	CB0RMK/	0	0	0	CB0RPR2/	CB0RPR1/	CB0RPR0/
	IICIC1	IICIF1	IICMK1				IICPR12	IICPR11	IICPR10
FFFFF154H	CB0TIC	CB0TIF	CB0TMK	0	0	0	CB0TPR2	CB0TPR1	CB0TPR0
FFFFF156H	CB1RIC	CB1RIF	CB1RMK	0	0	0	CB1RPR2	CB1RPR1	CB1RPR0
FFFFF158H	CB1TIC	CB1TIF	CB1TMK	0	0	0	CB1TPR2	CB1TPR1	CB1TPR0
FFFFF15AH	CB2RIC	CB2RIF	CB2RMK	0	0	0	CB2RPR2	CB2RPR1	CB2RPR0
FFFFF15CH	CB2TIC	CB2TIF	CB2TMK	0	0	0	CB2TPR2	CB2TPR1	CB2TPR0
FFFFF15EH	CB3RIC	CB3RIF	CB3RMK	0	0	0	CB3RPR2	CB3RPR1	CB3RPR0
FFFFF160H	CB3TIC	CB3TIF	CB3TMK	0	0	0	CB3TPR2	CB3TPR1	CB3TPR0

 Table 19-2. Interrupt Control Register (xxICn) (1/2)

Address	Register				Е	Bit			
		<7>	<6>	5	4	3	2	1	0
FFFF162H	UA0RIC/ CB4RIC	UA0RIF/ CB4RIF	UA0RMK/ CB4RMK	0	0	0	UA0RPR2/ CB4RPR2	UA0RPR1/ CB4RPR1	UA0RPR0/ CB4RPR0
FFFF164H	UA0TIC/ CB4TIC	UA0TIF/ CB4TIF	UA0TMK/ CB4TMK	0	0	0	UA0TPR2/ CB4TPR2	UA0TPR1/ CB4TPR1	UA0TPR0/ CB4TPR0
FFFF166H	UA1RIC/ IICIC2	UA1RIF/ IICIF2	UA1RMK/ IICMK2	0	0	0	UA1RPR2/ IICPR22	UA1RPR1/ IICPR21	UA1RPR0/ IICPR20
FFFFF168H	UA1TIC	UA1TIF	UA1TMK	0	0	0	UA1TPR2	UA1TPR1	UA1TPR0
FFFF16AH	UA2RIC/ IICIC0	UA2RIF/ IICIF0	UA2RMK/ IICMK0	0	0	0	UA2RPR2/ IICPR02	UA2RPR1/ IICPR01	UA2RPR0/ IICPR00
FFFFF16CH	UA2TIC	UA2TIF	UA2TMK	0	0	0	UA2TPR2	UA2TPR1	UA2TPR0
FFFFF16EH	ADIC	ADIF	ADMK	0	0	0	ADPR2	ADPR1	ADPR0
FFFFF170H	DMAIC0	DMAIF0	DMAMK0	0	0	0	DMAPR02	DMAPR01	DMAPR00
FFFFF172H	DMAIC1	DMAIF1	DMAMK1	0	0	0	DMAPR12	DMAPR11	DMAPR10
FFFFF174H	DMAIC2	DMAIF2	DMAMK2	0	0	0	DMAPR22	DMAPR21	DMAPR20
FFFFF176H	DMAIC3	DMAIF3	DMAMK3	0	0	0	DMAPR32	DMAPR31	DMAPR30
FFFFF178H	KRIC	KRIF	KRMK	0	0	0	KRPR2	KRPR1	KRPR0
FFFFF17AH	WTIIC	WTIIF	WTIMK	0	0	0	WTIPR2	WTIPR1	WTIPR0
FFFFF17CH	WTIC	WTIF	WTMK	0	0	0	WTPR2	WTPR1	WTPR0

 Table 19-2. Interrupt Control Register (xxICn) (2/2)

19.3.5 Interrupt mask registers 0 to 3 (IMR0 to IMR3)

The IMR0 to IMR3 registers set the interrupt mask state for the maskable interrupts. The xxMKn bit of the IMR0 to IMR3 registers is equivalent to the xxICn.xxMKn bit.

The IMRm register can be read or written in 16-bit units (m = 0 to 3).

If the higher 8 bits of the IMRm register are used as an IMRmH register and the lower 8 bits as an IMRmL register, these registers can be read or written in 8-bit or 1-bit units (m = 0 to 3).

Reset sets these registers to FFFFH.

Caution The device file defines the xxICn.xxMKn bit as a reserved word. If a bit is manipulated using the name of xxMKn, the contents of the xxICn register, instead of the IMRm register, are rewritten (as a result, the contents of the IMRm register are also rewritten).

Aller			Addro					
	eset: FFFF	H R/W	Addres	s: IMR3 I IMR3L		ч, SH, IMR3H	FFFFF107	7H
	15	14	13	12	11	10	9	8
IMR3 (IMR3H ^{Note})	1	1	1	1	1	1	1	1
	7	6	5	4	3	2	1	0
IMR3L	1	WTMK	WTIMK	KRMK	DMAMK3	DMAMK2	DMAMK1	DMAMK0
After r	eset: FFFF	H R/W	Addres	ss: IMR2 IMR2L		H, 4H, IMR2H	FFFF10	5H
	15	14	13	12	11	10	9	8
IMR2 (IMR2H ^{Note})	ADMK	UA2TMK	UA2RMK/ IICMK0	UA1TMK	UA1RMK/ IIC2MK	UA0TMK/ CB4TMK	UA0RMK/ CB4RMK	СВЗТМК
	7	6	5	4	3	2	1	0
IMR2L	CB3RMK	CB2TMK	CB2RMK	CB1TMK	CB1RMK	CB0TMK	CB0RMK/ IICMK1	TM0EQMK0
After n	eset: FFFF	H R/W	Addres	s: IMR1 IMR1L		H, 2H, IMR1H	FFFFF10	3H
	15	14	13	12	11	10	9	8
IMR1 (IMR1H ^{Note})	TP5CCMK1	TP5CCMK0	TP50VMK	TP4CCMK1	TP4CCMK0	TP40VMK	TP3CCMK1	TP3CCMK0
	7	6	5	4	3	2	1	0
IMR1L	TP3OVMK	TP2CCMK1	TP2CCMK0	TP2OVMK	TP1CCMK1	TP1CCMK0	TP10VMK	TP0CCMK1
After n	eset: FFFF 15	H R/W	Addres	ss: IMR0 IMR0L 12		H, DH, IMROH 10	FFFFF10 9	1H 8
IMR0 (IMR0H ^{Note})	ТРОССМКО	TPOOVMK	TQ0CCMK3			TQOCCMKO		PMK7
	7	6	5	4	3	2	1	0
		PMK5	PMK4	РМКЗ	PMK2	PMK1	PMK0	
IMROL	PMK6							
IMR0L			Sett	ing of inter	rupt mask f	lan		
IMROL	xxMKn	Interrupt		ing of interi	rupt mask f	lag		
IMROL			Sett servicing e servicing d	nabled	rupt mask f	lag		

19.3.6 In-service priority register (ISPR)

The ISPR register holds the priority level of the maskable interrupt currently acknowledged. When an interrupt request signal is acknowledged, the bit of this register corresponding to the priority level of that interrupt request signal is set to 1 and remains set while the interrupt is serviced.

When the RETI instruction is executed, the bit corresponding to the interrupt request signal having the highest priority is automatically reset to 0 by hardware. However, it is not reset to 0 when execution is returned from non-maskable interrupt servicing or exception processing.

This register is read-only, in 8-bit or 1-bit units.

Reset sets this register to 00H.

Caution If an interrupt is acknowledged while the ISPR register is being read in the interrupt enabled (EI) status, the value of the ISPR register after the bits of the register have been set by acknowledging the interrupt may be read. To accurately read the value of the ISPR register before an interrupt is acknowledged, read the register while interrupts are disabled (DI).

	<7>						<0>			
ISPR	ISPR/	ISPR6	ISPR5	ISPR4	ISPR3	ISPR2	ISPR1	ISPR0		
		1								
	ISPRn	ISPRn Priority of interrupt currently acknowledged								
	0	Interrupt r	equest sigr	nal with pric	ority n not a	icknowledg	ed			
	1	Interrupt r	equest sigr	nal with pric	ority n ackn	owledged				
	L									

19.3.7 ID flag

This flag controls the maskable interrupt's operating state, and stores control information regarding enabling or disabling of interrupt request signals. An interrupt disable flag (ID) is assigned to the PSW.

Reset sets this flag to 0000020H.

	31		8	7	6	5	4	3	2	1	0				
PSW		0		NP	EP	ID	SAT	СҮ	OV	S	Z				
		ID Specification of maskable interrupt servicing ^{Note}													
	ID		Specification of maskable	interr	upt se	rvicir	Ignole								
	0	Maskable interrupt re	laskable interrupt request signal acknowledgment enabled												
	1	Maskable interrupt request signal acknowledgment disabled (pending)													
This the F Non-	bit is set to RETI instruct maskable in	ion or LDSR instructio terrupt request signals	and cleared to 0 by the n when referencing the s and exceptions are ac acknowledged, the ID fla	PSW know ig is a	/. vledg autor	ed re natio	egarc ally s	dless set to	of th	nis fla	ag. V dwar				

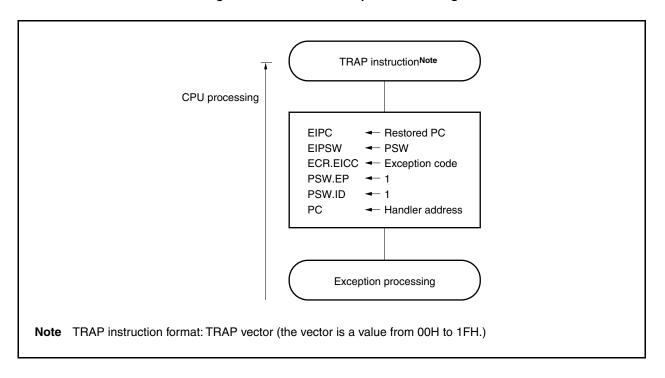
19.3.8 Watchdog timer mode register 2 (WDTM2)

This register can be read or written in 8-bit units (for details, see CHAPTER 11 FUNCTIONS OF WATCHDOG TIMER 2).

Reset sets this register to 67H.

After res	et: 67H	R/W	Address: F	FFFF6D0F	ł			
	7	6	5	4	3	2	1	0
WDTM2	0	WDM21	WDM20	0	0	0	0	0
	WDM21	WDM20	ę	Selection of	f watchdog	timer oper	ration mode	Э
	0	0	Stops ope	ration				
	0	1	Non-mask	able interru	upt request	mode		
	1	×	Reset mo	de (initial-va	alue)			

19.4 Software Exception


A software exception is generated when the CPU executes the TRAP instruction, and can always be acknowledged.

19.4.1 Operation

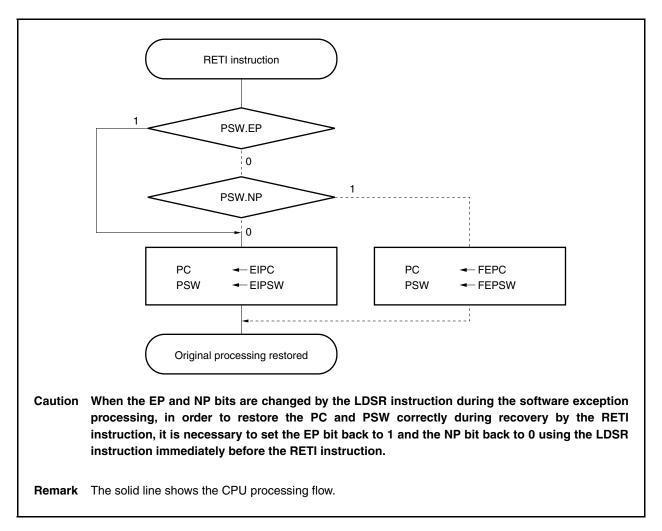
If a software exception occurs, the CPU performs the following processing, and transfers control to the handler routine.

- <1> Saves the restored PC to EIPC.
- <2> Saves the current PSW to EIPSW.
- <3> Writes an exception code to the lower 16 bits (EICC) of ECR (interrupt source).
- <4> Sets the PSW.EP and PSW.ID bits to 1.
- <5> Sets the handler address (00000040H or 00000050H) corresponding to the software exception to the PC, and transfers control.

The processing of a software exception is shown below.

Figure 19-9. Software Exception Processing

The handler address is determined by the TRAP instruction's operand (vector). If the vector is 00H to 0FH, it becomes 00000040H, and if the vector is 10H to 1FH, it becomes 00000050H.


19.4.2 Restore

Restoration from software exception processing is carried out by the RETI instruction.

By executing the RETI instruction, the CPU carries out the following processing and shifts control to the restored PC's address.

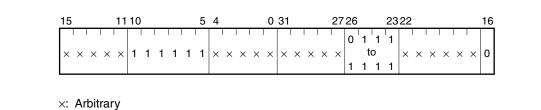
- <1> Loads the restored PC and PSW from EIPC and EIPSW because the PSW.EP bit is 1.
- <2> Transfers control to the address of the restored PC and PSW.

The processing of the RETI instruction is shown below.

Figure 19-10. RETI Instruction Processing

19.4.3 EP flag

The EP flag is a status flag used to indicate that exception processing is in progress. It is set when an exception occurs.


	31		8	7	6	5	4	3	2	1	0
PSW		0		NP	EP	ID	SAT	CY	OV	S	Z
	EP	Exception p	roces	ssing	status	6					
	0	Exception processing not in progress.									
	1	Exception processing in progress.									

19.5 Exception Trap

An exception trap is an interrupt that is requested when the illegal execution of an instruction takes place. In the V850ES/JG2, an illegal opcode exception (ILGOP: Illegal Opcode Trap) is considered as an exception trap.

19.5.1 Illegal opcode

An illegal opcode is defined as an instruction with instruction opcode (bits 10 to 5) = 111111B, sub-opcode (bits 26 to 23) = 0111B to 1111B, and sub-opcode (bit 16) = 0B. When such an instruction is executed, an exception trap is generated.

Caution It is recommended not to use an illegal opcode because instructions may newly be assigned in the future.

(1) Operation

If an exception trap occurs, the CPU performs the following processing, and transfers control to the handler routine.

- <1> Saves the restored PC to DBPC.
- <2> Saves the current PSW to DBPSW.
- <3> Sets the PSW.NP, PSW.EP, and PSW.ID bits to 1.
- <4> Sets the handler address (00000060H) corresponding to the exception trap to the PC, and transfers control.

The processing of the exception trap is shown below.

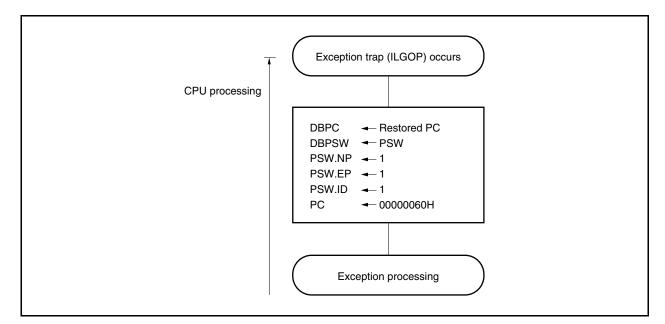
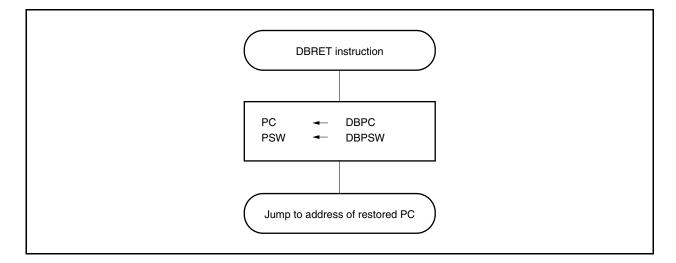


Figure 19-11. Exception Trap Processing

(2) Restoration

Restoration from an exception trap is carried out by the DBRET instruction. By executing the DBRET instruction, the CPU carries out the following processing and controls the address of the restored PC.

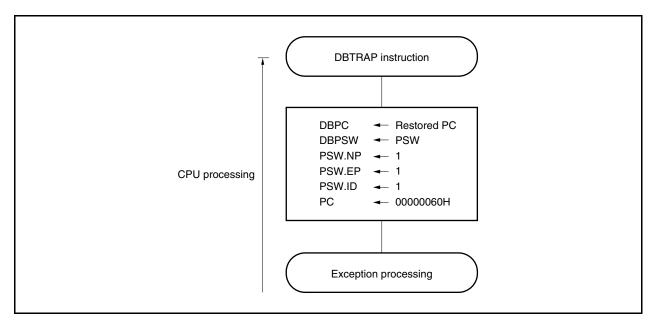

<1> Loads the restored PC and PSW from DBPC and DBPSW.

<2> Transfers control to the address indicated by the restored PC and PSW.

Caution DBPC and DBPSW can be accessed only during the interval between the execution of an illegal opcode and DBRET instruction.

Processing for restoring from an exception trap is shown below.

19.5.2 Debug trap


A debug trap is an exception that is generated when the DBTRAP instruction is executed and is always acknowledged.

(1) Operation

Upon occurrence of a debug trap, the CPU performs the following processing.

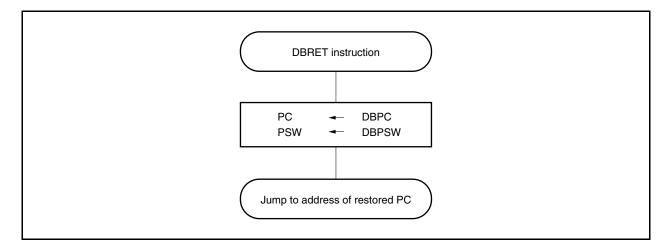
- <1> Saves restored PC to DBPC.
- <2> Saves current PSW to DBPSW.
- <3> Sets the PSW.NP, PSW.EP, and PSW.ID bits to 1.
- <4> Sets handler address (0000060H) for debug trap to PC and transfers control.

The debug trap processing format is shown below.

Figure 19-13. Debug Trap Processing Format

(2) Restoration

Restoration from a debug trap is executed with the DBRET instruction.


With the DBRET instruction, the CPU performs the following steps and transfers control to the address of the restored PC.

- <1> The restored PC and PSW are read from DBPC and DBPSW.
- <2> Control is transferred to the fetched address of the restored PC and PSW.

Caution DBPC and DBPSW can be accessed only during the interval between the execution of the DBTRAP instruction and DBRET instruction.

The processing format for restoration from a debug trap is shown below.

19.6 External Interrupt Request Input Pins (NMI and INTP0 to INTP7)

19.6.1 Noise elimination

(1) Eliminating noise on NMI pin

The NMI pin has an internal noise elimination circuit that uses analog delay. Therefore, the input level of the NMI pin is not detected as an edge unless it is maintained for a specific time or longer. Therefore, an edge is detected after specific time.

The NMI pin can be used to release the STOP mode. In the STOP mode, noise is not eliminated by using the system clock because the internal system clock is stopped.

(2) Eliminating noise on INTP0 to INTP7 pins

The INTP0 to INTP7 pins have an internal noise elimination circuit that uses analog delay. Therefore, the input level of the NMI pin is not detected as an edge unless it is maintained for a specific time or longer. Therefore, an edge is detected after specific time.

19.6.2 Edge detection

The valid edge of each of the NMI and INTPO to INTP7 pins can be selected from the following four.

- Rising edge
- Falling edge
- Both rising and falling edges
- No edge detected

The edge of the NMI pin is not detected after reset. Therefore, the interrupt request signal is not acknowledged unless a valid edge is enabled by using the INTF0 and INTR0 register (the NMI pin functions as a normal port pin).

(1) External interrupt falling, rising edge specification register 0 (INTF0, INTR0)

The INTFO and INTRO registers are 8-bit registers that specify detection of the falling and rising edges of the NMI pin via bit 2 and the external interrupt pins (INTPO to INTP3) via bits 3 to 6. These registers can be read or written in 8-bit or 1-bit units. Reset sets these registers to 00H.

Caution When the function is changed from the external interrupt function (alternate function) to the port function, an edge may be detected. Therefore, clear the INTF0n and INTR0n bits to 00, and then set the port mode.

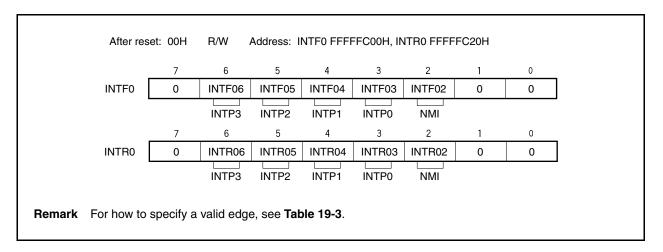


Table 19-3. Valid Edge Specification

INTF0n	INTR0n	Valid Edge Specification ($n = 2$ to 6)
0	0	No edge detected
0	1	Rising edge
1	0	Falling edge
1	1	Both rising and falling edges

Caution Be sure to clear the INTF0n and INTR0n bits to 00 when these registers are not used as the NMI or INTP0 to INTP3 pins.

Remark n = 2: Control of NMI pin

n = 3 to 6: Control of INTP0 to INTP3 pins

(2) External interrupt falling, rising edge specification register 3 (INTF3, INTR3)

The INTF3 and INTR3 registers are 8-bit registers that specify detection of the falling and rising edges of the external interrupt pin (INTP7).

These registers can be read or written in 8-bit or 1-bit units.

Reset sets these registers to 00H.

- Cautions 1. When the function is changed from the external interrupt function (alternate function) to the port function, an edge may be detected. Therefore, clear the INTF31 and INTR31 bits to 00, and then set the port mode.
 - 2. The INTP7 pin and RXDA0 pin are alternate-function pins. When using the pin as the RXDA0 pin, disable edge detection for the INTP7 alternate-function pin (clear the INTF3.INTF31 bit and the INRT3.INTR31 bit to 0). When using the pin as the INTP7 pin, stop UARTA0 reception (clear the UA0CTL0.UA0RXE bit to 0).

Table 19-4. Valid Edge Specification

INTF31	INTR31	Valid Edge Specification
0	0	No edge detected
0	1	Rising edge
1	0	Falling edge
1	1	Both rising and falling edges

Caution Be sure to clear the INTF31 and INTR31 bits to 00 when these registers are not used as INTP7 pin.

(3) External interrupt falling, rising edge specification register 9H (INTF9H, INTR9H)

The INTF9H and INTR9H registers are 8-bit registers that specify detection of the falling and rising edges of the external interrupt pins (INTP4 to INTP6).

These registers can be read or written in 8-bit or 1-bit units.

Reset sets these registers to 00H.

Caution When the function is changed from the external interrupt function (alternate function) to the port function, an edge may be detected. Therefore, clear the INTF9n and INTR9n bits to 0, and then set the port mode.

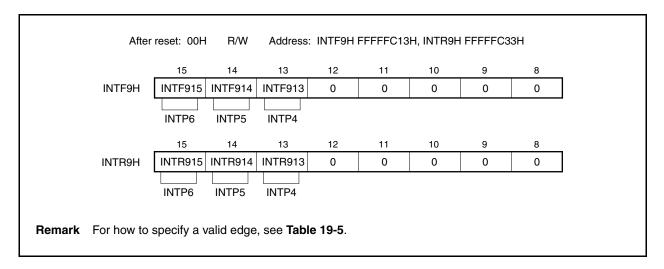


Table 19-5. Valid Edge Specification

INTF9n	INTR9n	Valid Edge Specification (n = 13 to 15)
0	0	No edge detected
0	1	Rising edge
1	0	Falling edge
1	1	Both rising and falling edges

Caution Be sure to clear the INTF9n and INTR9n bits to 00 when these registers are not used as INTP4 to INTP6 pins.

Remark n = 13 to 15: Control of INTP4 to INTP6 pins

(4) Noise elimination control register (NFC)

Digital noise elimination can be selected for the INTP3 pin. The noise elimination settings are performed using the NFC register.

When digital noise elimination is selected, the sampling clock for digital sampling can be selected from among fxx/64, fxx/128, fxx/256, fxx/512, fxx/1,024, and fxt. Sampling is performed 3 times.

Even when digital noise elimination is selected, using f_{XT} as the sampling clock makes it possible to use the INTP3 interrupt request signal to release the IDLE1, IDLE2, and STOP modes.

This register can be read or written in 8-bit units.

Reset sets this register to 00H.

- Caution After the sampling clock has been changed, it takes 3 sampling clocks to initialize the digital noise eliminator. Therefore, if an INTP3 valid edge is input within these 3 sampling clocks after the sampling clock has been changed, an interrupt request signal may be generated. Therefore, be careful about the following points when using the interrupt and DMA functions.
 - When using the interrupt function, after the 3 sampling clocks have elapsed, enable interrupts after the interrupt request flag (PIC3.PIF3 bit) has been cleared.
 - When using the DMA function (started by INTP3), enable DMA after 3 sampling clocks have elapsed.

At	fter rese	et: 00H	R/W	Address: I	FFFF318H				
		7	6	5	4	3	2	1	0
N	IFC	NFEN	0	0	0	0	NFC2	NFC1	NFC0
	[NFEN		Se	ttings of INT	P3 pin no	oise elimina	tion	
		0	Analog no	oise elimina	ation (60 ns ((TYP.))			
		1	Digital no	ise elimina	tion				
	г			1					
		NFC2	NFC1	NFC0		Digit	al sampling	clock	
		0	0	0	fxx/64				
		0	0	1	fxx/128				
		0	1	0	fxx/256				
		0	1	1	fxx/512				
		1	0	0	fxx/1,024				
		1	0	1	fxT (subcloo	ck)			
		Oth	ner than ab	ove	Setting pro	hibited			
Remarks 1. S 2. Ir			-		s, the relial maller tha	-			-

19.7 Interrupt Acknowledge Time of CPU

Except the following cases, the interrupt acknowledge time of the CPU is 4 clocks minimum. To input interrupt request signals successively, input the next interrupt request signal at least 5 clocks after the preceding interrupt.

- In IDLE1/IDLE2/STOP mode
- When the external bus is accessed
- When interrupt request non-sampling instructions are successively executed (see 19.8 Periods in Which Interrupts Are Not Acknowledged by CPU.)
- When the interrupt control register is accessed

Figure 19-15. Pipeline Operation at Interrupt Request Signal Acknowledgment (Outline)

(1) Minimum interrupt response time										
			4 system clocks							
		Internal cl								
		Interrupt requ	uest							
Instructio		Instructio Instructio knowledgment operati nterrupt servicing routi	on 2 IFX IDX ion INT1 INT2 INT3 INT4							
(2) Maximu	(2) Maximum interrupt response time									
		Internal clock								
		Interrupt reques								
	Interrupt ackno	Instruction 1 Instruction 2 pwledgment operation	P IFX IDX							
Instruction (rrupt servicing routine)								
IF	X: Invalid	pt acknowledgment instruction fetch instruction decode	t processing							
Interrupt a	cknowledge time (inte	ernal system clock)	Condition							
	Internal interrupt	External interrupt								
Minimum	4	4 + Analog delay time	The following cases are exceptions. In IDLE1/IDLE2/STOP mode							
Maximum	6	6 + Analog delay time	 External bus access Two or more interrupt request non-sample instructions are executed in succession Access to peripheral I/O register 							

19.8 Periods in Which Interrupts Are Not Acknowledged by CPU

An interrupt is acknowledged by the CPU while an instruction is being executed. However, no interrupt will be acknowledged between an interrupt request non-sample instruction and the next instruction (interrupt is held pending). The interrupt request non-sample instructions are as follows.

- El instruction
- DI instruction
- LDSR reg2, 0x5 instruction (for PSW)
- The store instruction for the PRCMD register
- The store, SET1, NOT1, or CLR1 instructions for the following registers.
 - Interrupt-related registers:
 - Interrupt control register (xxICn), interrupt mask registers 0 to 3 (IMR0 to IMR3)
 - Power save control register (PSC)
 - On-chip debug mode register (OCDM)

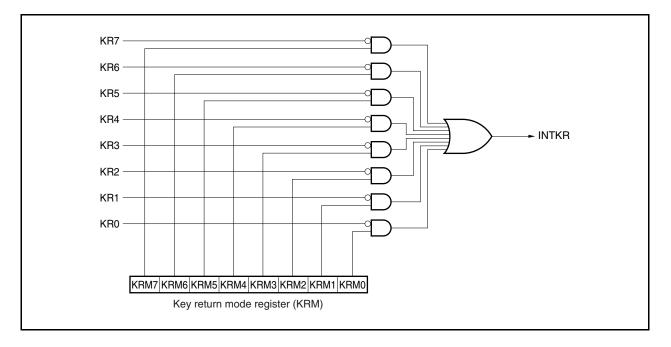
Remark xx: Identification name of each peripheral unit (see Table 19-2 Interrupt Control Register (xxICn))

n: Peripheral unit number (see Table 19-2 Interrupt Control Register (xxICn)).

19.9 Cautions

The NMI pin alternately functions as the P02 pin, and functions as a normal port pin after being reset. To enable the NMI pin, validate the NMI pin with the PMC0 register. The initial setting of the NMI pin is "No edge detected". Select the NMI pin valid edge using the INTF0 and INTR0 registers.

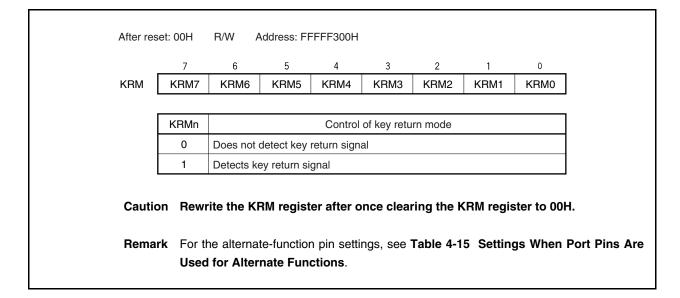
CHAPTER 20 KEY INTERRUPT FUNCTION


20.1 Function

A key interrupt request signal (INTKR) can be generated by inputting a falling edge to the eight key input pins (KR0 to KR7) by setting the KRM register.

Flag	Pin Description
KRM0	Controls KR0 signal in 1-bit units
KRM1	Controls KR1 signal in 1-bit units
KRM2	Controls KR2 signal in 1-bit units
KRM3	Controls KR3 signal in 1-bit units
KRM4	Controls KR4 signal in 1-bit units
KRM5	Controls KR5 signal in 1-bit units
KRM6	Controls KR6 signal in 1-bit units
KRM7	Controls KR7 signal in 1-bit units

Table 20-1.	Assignment of Ke	y Return Detection Pins
	Addigminione of No	y notani botootion i iio


Figure 20-1. Key Return Block Diagram

20.2 Register

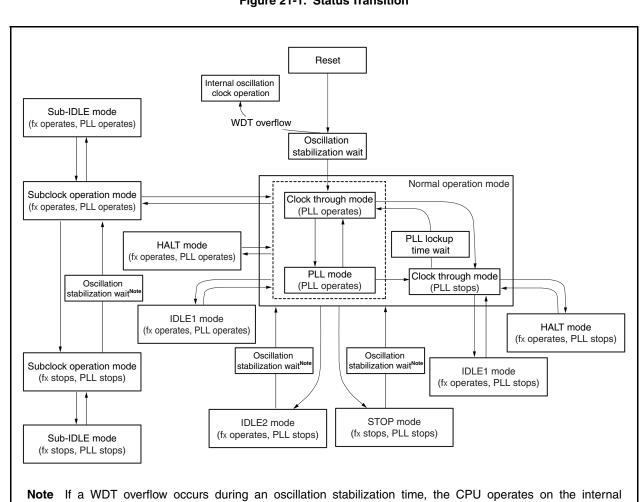
(1) Key return mode register (KRM)

The KRM register controls the KRM0 to KRM7 bits using the KR0 to KR7 signals. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

20.3 Cautions

- (1) If a low level is input to any of the KR0 to KR7 pins, the INTKR signal is not generated even if the falling edge of another pin is input.
- (2) The RXDA1 and KR7 pins must not be used at the same time. To use the RXDA1 pin, do not use the KR7 pin. To use the KR7 pin, do not use the RXDA1 pin (it is recommended to set the PFC91 bit to 1 and clear PFCE91 bit to 0).
- (3) If the KRM register is changed, an interrupt request signal (INTKR) may be generated. To prevent this, change the KRM register after disabling interrupts (DI) or masking, then clear the interrupt request flag (KRIC.KRIF bit) to 0, and enable interrupts (EI) or clear the mask.
- (4) To use the key interrupt function, be sure to set the port pin to the key return pin and then enable the operation with the KRM register. To switch from the key return pin to the port pin, disable the operation with the KRM register and then set the port pin.

CHAPTER 21 STANDBY FUNCTION


21.1 Overview

The power consumption of the system can be effectively reduced by using the standby modes in combination and selecting the appropriate mode for the application. The available standby modes are listed in Table 21-1.

Mode	Functional Outline
HALT mode	Mode in which only the operating clock of the CPU is stopped
IDLE1 mode	Mode in which all the operations of the internal circuits except the oscillator, PLL ^{Note} , and flash memory are stopped
IDLE2 mode	Mode in which all the operations of the internal circuits except the oscillator are stopped
STOP mode	Mode in which all the operations of the internal circuits except the subclock oscillator are stopped
Subclock operation mode	Mode in which the subclock is used as the internal system clock
Sub-IDLE mode	Mode in which all the operations of the internal circuits except the oscillator are stopped, in the subclock operation mode

Table 21-1. Standby Modes

Note The PLL holds the previous operating status.

Remark fx: Main clock oscillation frequency

oscillation clock.

21.2 Registers

(1) Power save control register (PSC)

The PSC register is an 8-bit register that controls the standby function. The STP bit of this register is used to specify the STOP mode. This register is a special register that can be written only by the special sequence combinations (see **3.4.7 Special registers**).

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

	7	<6>	<5>	<4>	3	2	<1>	0		
PSC	0	NMI1M	NMIOM	INTM	0	0	STP	0		
		Ctand	hu mada ra	10000 000t						
	NMI1M Standby mode release control upon occurrence of INTWDT2 signal 0 Standby mode release by INTWDT2 signal enabled									
	0	-	node releas		0					
		Standby	noue releas		DTZ SIGH					
	NMIOM		Standb	y mode rel	ease contr	ol by NMI	pin input			
	0	Standby I	node releas	se by NMI p	oin input ei	nabled				
	1	Standby I	node releas	se by NMI µ	oin input di	sabled				
	INTM	Standb	y mode rel	ease contro	ol via mask	able interr	upt reques	t signal		
	0	Standby I	node releas	se by mask	able interr	upt reques	t signal ena	abled		
	1	Standby I	node releas	se by mask	able interr	upt reques	t signal dis	abled		
				0	- No					
	STP	Nerroelm	Standby mode ^{Note} setting							
	0		Normal mode							
		Glandby	Standby mode							
	ns 1. Be and 2. Se rela 3. If t	fore settin d PSMR.F ttings of eased. he NMI1N	y STP bit: ng the IDI PSM0 bits the NMI11 1, NMI0M,	LE1, IDLE and then M, NMION or INTM	2, STOP, set the I, and IN bit is set	or sub-I STP bit. TM bits a to 1 at t	DLE mod are invalio he same	e, set t d whei time th		
	un IDL	masked _E1/IDLE2	ting of Ni interrupt 2/STOP m	t reques	st signa set, set t	al being the bit c	g held	pendi ding		

<R>

(2) Power save mode register (PSMR)

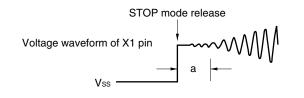
The PSMR register is an 8-bit register that controls the operation status in the power save mode and the clock operation.

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

	After res	set: 00H	R/W	Address:	FFFF820	Н					
		7	6	5	4	3	2	<1>	<0>		
	PSMR	0	0	0	0	0	0	PSM1	PSM0		
				1							
		PSM1	PSM0	Speci	fication of o	operation in	n software	standby m	ode		
		0	0	IDLE1, sub	o-IDLE mo	des					
		0	1	STOP mod	de						
		1	0	IDLE2, sub	o-IDLE mo	des					
		1	1	STOP mod	de						
Remark	IDLE1:	In this mode, all operations except the oscillator operation and some other circuits (flash memory and PLL) are stopped. After the IDLE1 mode is released, the normal operation mode is restored without needing to secure the oscillation stabilization time, like the HALT mode.									
		In this mode, all operations except the oscillator operation are stopped. After the IDLE2 mode is released, the normal operation mode is restored following the lapse of the setup time specified by the OSTS register (flash memory and PLL).									
	STOP:	After the	this mode, all operations except the subclock oscillator operation are stopped. ter the STOP mode is released, the normal operation mode is restored following th ose of the oscillation stabilization time specified by the OSTS register.								
	Sub-IDLE:	has bee	en releas	other operations are halted except for the oscillator. After the IDLE mo sed by the interrupt request signal, the subclock operation mode will cycles of the subclock have been secured.							

(3) Oscillation stabilization time select register (OSTS)


The wait time until the oscillation stabilizes after the STOP mode is released or the wait time until the on-chip flash memory stabilizes after the IDLE2 mode is released is controlled by the OSTS register. The OSTS register can be read or written 8-bit units.

Reset sets this register to 06H.

After res	set: 06H	R/W	Address: I	FFFF6C0H					
	7	6	5	4	3		2	1	0
OSTS	0	0	0	0	0	OS	STS2	OSTS1	OSTS0
		-							
	OSTS2	OSTS1	OSTS0	Selection o	f oscillatio	n sta	bilizatio	on time/se	tup time ^{Note}
								fx	
							4 M	Hz	5 MHz
	0	0	0	2 ¹⁰ /fx			0.256	ms (0.205 ms
	0	0	1	2 ¹¹ /fx			0.512	ms (0.410 ms
	0	1	0	2 ¹² /fx			1.024	ms (0.819 ms
	0	1	1	2 ¹³ /fx			2.048	ms	1.638 ms
	1	0	0	2 ¹⁴ /fx			4.096	ms :	3.277 ms
	1	0	1	2 ¹⁵ /fx			8.192	ms (6.554 ms
	1	1	0	2 ¹⁶ /fx			16.38	ms 1	3.107 ms
	1	1	1	Setting pro	phibited	i			

Note The oscillation stabilization time and setup time are required when the STOP mode and IDLE2 mode are released, respectively.

Cautions 1. The wait time following release of the STOP mode does not include the time until the clock oscillation starts ("a" in the figure below) following release of the STOP mode, regardless of whether the STOP mode is released by reset input or the occurrence of an interrupt request signal.

- 2. Be sure to clear bits 3 to 7 to "0".
- 3. The oscillation stabilization time following reset release is 2¹⁶/fx (because the initial value of the OSTS register = 06H).

Remark fx = Main clock oscillation frequency

21.3 HALT Mode

21.3.1 Setting and operation status

The HALT mode is set when a dedicated instruction (HALT) is executed in the normal operation mode.

In the HALT mode, the clock oscillator continues operating. Only clock supply to the CPU is stopped; clock supply to the other on-chip peripheral functions continues.

As a result, program execution is stopped, and the internal RAM retains the contents before the HALT mode was set. The on-chip peripheral functions that are independent of instruction processing by the CPU continue operating. Table 21-3 shows the operating status in the HALT mode.

The average current consumption of the system can be reduced by using the HALT mode in combination with the normal operation mode for intermittent operation.

Cautions 1. Insert five or more NOP instructions after the HALT instruction.

2. If the HALT instruction is executed while an unmasked interrupt request signal is being held pending, the status shifts to HALT mode, but the HALT mode is then released immediately by the pending interrupt request.

21.3.2 Releasing HALT mode

The HALT mode is released by a non-maskable interrupt request signal (NMI pin input, INTWDT2 signal), unmasked external interrupt request signal (INTP0 to INTP7 pin input), unmasked internal interrupt request signal from a peripheral function operable in the HALT mode, or reset signal (reset by RESET pin input, WDT2RES signal, low-voltage detector (LVI), or clock monitor (CLM)).

After the HALT mode has been released, the normal operation mode is restored.

(1) Releasing HALT mode by non-maskable interrupt request signal or unmasked maskable interrupt request signal

The HALT mode is released by a non-maskable interrupt request signal or an unmasked maskable interrupt request signal, regardless of the priority of the interrupt request signal. If the HALT mode is set in an interrupt servicing routine, however, an interrupt request signal that is issued later is serviced as follows.

- (a) If an interrupt request signal with a priority lower than that of the interrupt request currently being serviced is issued, the HALT mode is released, but that interrupt request signal is not acknowledged. The interrupt request signal itself is retained.
- (b) If an interrupt request signal with a priority higher than that of the interrupt request currently being serviced is issued (including a non-maskable interrupt request signal), the HALT mode is released and that interrupt request signal is acknowledged.

Release Source	Interrupt Enabled (EI) Status	Interrupt Disabled (DI) Status
Non-maskable interrupt request signal	Execution branches to the handler address.	
Maskable interrupt request signal	Execution branches to the handler address or the next instruction is executed.	The next instruction is executed.

Table 21-2. Operation After Releasing HALT Mode by Interrupt Request Signal

(2) Releasing HALT mode by reset

The same operation as the normal reset operation is performed.

Setting of HALT Mode		Operating Status		
Item		When Subclock Is Not Used	When Subclock Is Used	
Main clock oscillator		Oscillation enabled		
Subclock oscillato	r	_	Oscillation enabled	
Internal oscillator		Oscillation enabled		
PLL		Operable		
CPU		Stops operation		
DMA		Operable		
Interrupt controlle	r	Operable		
Timer P (TMP0 to TMP5)		Operable		
Timer Q (TMQ0)		Operable		
Timer M (TMM0)		Operable when a clock other than fxT is selected as the count clock	Operable	
Watch timer		Operable when fx (divided BRG) is selected as the count clock	Operable	
Watchdog timer 2		Operable when a clock other than fxT is selected as the count clock	Operable	
Serial interface	CSIB0 to CSIB4	Operable		
	l ² C00 to l ² C02	Operable		
	UARTA0 to UARTA2	Operable		
A/D converter		Operable		
D/A converter		Operable		
Real-time output f	unction (RTO)	Operable		
Key interrupt function (KR)		Operable		
External bus inter	face	See 2.2 Pin States.		
Port function		Retains status before HALT mode was set		
Internal data		The CPU registers, statuses, data, and all other internal data such as the contents of the internal RAM are retained as they were before the HALT mode was set.		

Table 21-3. Operating Status in HALT Mode

21.4 IDLE1 Mode

21.4.1 Setting and operation status

The IDLE1 mode is set by clearing the PSMR.PSM1 and PSMR.PSM0 bits to 00 and setting the PSC.STP bit to 1 in the normal operation mode.

In the IDLE1 mode, the clock oscillator, PLL, and flash memory continue operating but clock supply to the CPU and other on-chip peripheral functions stops.

As a result, program execution stops and the contents of the internal RAM before the IDLE1 mode was set are retained. The CPU and other on-chip peripheral functions stop operating. However, the on-chip peripheral functions that can operate with the subclock or an external clock continue operating.

Table 21-5 shows the operating status in the IDLE1 mode.

The IDLE1 mode can reduce the power consumption more than the HALT mode because it stops the operation of the on-chip peripheral functions. The main clock oscillator does not stop, so the normal operation mode can be restored without waiting for the oscillation stabilization time after the IDLE1 mode has been released, in the same manner as when the HALT mode is released.

Cautions 1, Insert five or more NOP instructions after the instruction that stores data in the PSC register to set the IDLE1 mode.

2. If the IDLE1 mode is set while an unmasked interrupt request signal is being held pending, the IDLE1 mode is released immediately by the pending interrupt request.

21.4.2 Releasing IDLE1 mode

The IDLE1 mode is released by a non-maskable interrupt request signal (NMI pin input, INTWDT2 signal), unmasked external interrupt request signal (INTP0 to INTP7 pin input), unmasked internal interrupt request signal from a peripheral function operable in the IDLE1 mode, or reset signal (reset by RESET pin input, WDT2RES signal, low-voltage detector (LVI), or clock monitor (CLM)).

After the IDLE1 mode has been released, the normal operation mode is restored.

(1) Releasing IDLE1 mode by non-maskable interrupt request signal or unmasked maskable interrupt request signal

The IDLE1 mode is released by a non-maskable interrupt request signal or an unmasked maskable interrupt request signal, regardless of the priority of the interrupt request signal. If the IDLE1 mode is set in an interrupt servicing routine, however, an interrupt request signal that is issued later is processed as follows.

- (a) If an interrupt request signal with a priority lower than that of the interrupt request currently being serviced is issued, the IDLE1 mode is released, but that interrupt request signal is not acknowledged. The interrupt request signal itself is retained.
- (b) If an interrupt request signal with a priority higher than that of the interrupt request currently being serviced is issued (including a non-maskable interrupt request signal), the IDLE1 mode is released and that interrupt request signal is acknowledged.
- Caution An interrupt request signal that is disabled by setting the PSC.NMI1M, PSC.NMI0M, and PSC.INTM bits to 1 becomes invalid and IDLE1 mode is not released.

Release Source	Interrupt Enabled (EI) Status	Interrupt Disabled (DI) Status
Non-maskable interrupt request signal	Execution branches to the handler address.	
Maskable interrupt request signal	Execution branches to the handler address or the next instruction is executed.	The next instruction is executed.

Table 21-4. Operation After Releasing IDLE1 Mode by Interrupt Request Signal

(2) Releasing IDLE1 mode by reset

The same operation as the normal reset operation is performed.

Table 21-5. Operating Status in IDLE1 Mode

Setting of IDLE1 Mode		Operating Status		
Item		When Subclock Is Not Used	When Subclock Is Used	
Main clock oscillator		Oscillation enabled		
Subclock oscillato	r	_	Oscillation enabled	
Internal oscillator		Oscillation enabled		
PLL		Operable		
CPU		Stops operation		
DMA		Stops operation		
Interrupt controlle	r	Stops operation (but standby mode release	e enabled)	
Timer P (TMP0 to TMP5)		Stops operation		
Timer Q (TMQ0)		Stops operation		
Timer M (TMM0)		Operable when fn/8 is selected as the count clock	Operable when fn/8 or fxT is selected as the count clock	
Watch timer		Operable when fx (divided BRG) is selected as the count clock	Operable	
Watchdog timer 2		Operable when fn is selected as the count clock	Operable when f_R or f_{XT} is selected as the count clock	
Serial interface	CSIB0 to CSIB4	Operable when the SCKBn input clock is s	elected as the count clock (n = 0 to 4)	
	l ² C00 to l ² C02	Stops operation		
	UARTA0 to UARTA2	Stops operation (but UARTA0 is operable when the ASCKA0 input clock is selected)		
A/D converter	·	Holds operation (conversion result held) ^{Note}		
D/A converter		Holds operation (output held ^{Note})		
Real-time output function (RTO)		Stops operation (output held)		
Key interrupt function (KR)		Operable		
External bus inter	face	See 2.2 Pin States.		
Port function		Retains status before IDLE1 mode was set		
Internal data		The CPU registers, statuses, data, and all other internal data such as the contents of the internal RAM are retained as they were before the IDLE1 mode was set.		

Note To realize low power consumption, stop the A/D converter and D/A converter before shifting to the IDLE1 mode.

21.5 IDLE2 Mode

21.5.1 Setting and operation status

The IDLE2 mode is set by setting the PSMR.PSM1 and PSMR.PSM0 bits to 10 and setting the PSC.STP bit to 1 in the normal operation mode.

In the IDLE2 mode, the clock oscillator continues operation but clock supply to the CPU, PLL, flash memory, and other on-chip peripheral functions stops.

As a result, program execution stops and the contents of the internal RAM before the IDLE2 mode was set are retained. The CPU, PLL, and other on-chip peripheral functions stop operating. However, the on-chip peripheral functions that can operate with the subclock or an external clock continue operating.

Table 21-7 shows the operating status in the IDLE2 mode.

The IDLE2 mode can reduce the power consumption more than the IDLE1 mode because it stops the operations of the on-chip peripheral functions, PLL, and flash memory. However, because the PLL and flash memory are stopped, a setup time for the PLL and flash memory is required when IDLE2 mode is released.

Cautions 1. Insert five or more NOP instructions after the instruction that stores data in the PSC register to set the IDLE2 mode.

2. If the IDLE2 mode is set while an unmasked interrupt request signal is being held pending, the IDLE2 mode is released immediately by the pending interrupt request.

21.5.2 Releasing IDLE2 mode

The IDLE2 mode is released by a non-maskable interrupt request signal (NMI pin input, INTWDT2 signal), unmasked external interrupt request signal (INTP0 to INTP7 pin input), unmasked internal interrupt request signal from the peripheral functions operable in the IDLE2 mode, or reset signal (reset by RESET pin input, WDT2RES signal, low-voltage detector (LVI), or clock monitor (CLM)). The PLL returns to the operating status it was in before the IDLE2 mode was set.

After the IDLE2 mode has been released, the normal operation mode is restored.

(1) Releasing IDLE2 mode by non-maskable interrupt request signal or unmasked maskable interrupt request signal

The IDLE2 mode is released by a non-maskable interrupt request signal or an unmasked maskable interrupt request signal, regardless of the priority of the interrupt request signal. If the IDLE2 mode is set in an interrupt servicing routine, however, an interrupt request signal that is issued later is processed as follows.

- (a) If an interrupt request signal with a priority lower than that of the interrupt request currently being serviced is issued, the IDLE2 mode is released, but that interrupt request signal is not acknowledged. The interrupt request signal itself is retained.
- (b) If an interrupt request signal with a priority higher than that of the interrupt request currently being serviced is issued (including a non-maskable interrupt request signal), the IDLE2 mode is released and that interrupt request signal is acknowledged.
- Caution The interrupt request signal that is disabled by setting the PSC.NMI1M, PSC.NMI0M, and PSC.INTM bits to 1 becomes invalid and IDLE2 mode is not released.

Release Source Interrupt Enabled (EI) Status		Interrupt Disabled (DI) Status
Non-maskable interrupt request signal	Execution branches to the handler address after securing the prescribed setup time.	
Maskable interrupt request signal	Execution branches to the handler address or the next instruction is executed after securing the prescribed setup time.	The next instruction is executed after securing the prescribed setup time.

Table 21-6. Operation After Releasing IDLE2 Mode by Interrupt Request Signal

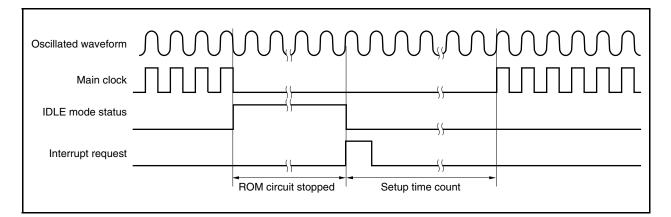
(2) Releasing IDLE2 mode by reset

The same operation as the normal reset operation is performed.

Table 21-7.	Operating	Status in	IDLE2 Mode
-------------	-----------	-----------	------------

Setting of IDLE2 Mode		Operating Status		
Item		When Subclock Is Not Used	When Subclock Is Used	
Main clock oscilla	tor	Oscillation enabled		
Subclock oscillato	r	_	Oscillation enabled	
Internal oscillator		Oscillation enabled		
PLL		Stops operation		
CPU		Stops operation		
DMA		Stops operation		
Interrupt controlle	r	Stops operation (but standby mode release	e is possible)	
Timer P (TMP0 to	TMP5)	Stops operation		
Timer Q (TMP0)		Stops operation		
Timer M (TMM0)		Operable when fr/8 is selected as the count clock	Operable when $f_{\text{R}}/8$ or f_{XT} is selected as the count clock	
Watch timer		Operable when fx (divided BRG) is selected as the count clock	Operable	
Watchdog timer 2		Operable when f_{R} is selected as the count clock	Operable when f_{R} or f_{XT} is selected as the count clock	
Serial interface	CSIB0 to CSIB4	Operable when the SCKBn input clock is s	elected as the count clock (n = 0 to 4)	
	l ² C00 to l ² C02	Stops operation		
	UARTA0 to UARTA2	Stops operation (but UARTA0 is operable when the ASCKA0 input clock is selected)		
A/D converter	-	Holds operation (conversion result held) ^{Note}		
D/A converter		Holds operation (output held ^{Note})		
Real-time output f	unction (RTO)	Stops operation (output held)		
Key interrupt function (KR)		Operable		
External bus inter	face	See 2.2 Pin States.		
Port function		Retains status before IDLE2 mode was set		
Internal data		The CPU registers, statuses, data, and all other internal data such as the contents of the internal RAM are retained as they were before the IDLE2 mode was set.		

Note To realize low power consumption, stop the A/D converter and D/A converter before shifting to the IDLE2 mode.


21.5.3 Securing setup time when releasing IDLE2 mode

Secure the setup time for the flash memory after releasing the IDLE2 mode because the operation of the blocks other than the main clock oscillator stops after the IDLE2 mode is set.

(1) Releasing IDLE2 mode by non-maskable interrupt request signal or unmasked maskable interrupt request signal

Secure the specified setup time by setting the OSTS register.

When the releasing source is generated, the dedicated internal timer starts counting according to the OSTS register setting. When it overflows, the normal operation mode is restored.

(2) Release by reset (RESET pin input, WDT2RES generation)

This operation is the same as that of a normal reset. The oscillation stabilization time is the initial value of the OSTS register, 2^{16} /fx.

21.6 STOP Mode

21.6.1 Setting and operation status

The STOP mode is set by setting the PSMR.PSM1 and PSMR.PSM0 bits to 01 or 11 and setting the PSC.STP bit to 1 in the normal operation mode.

In the STOP mode, the subclock oscillator continues operating but the main clock oscillator stops. Clock supply to the CPU and the on-chip peripheral functions is stopped.

As a result, program execution stops, and the contents of the internal RAM before the STOP mode was set are retained. The on-chip peripheral functions that operate with the clock oscillated by the subclock oscillator or an external clock continue operating.

Table 21-9 shows the operating status in the STOP mode.

Because the STOP mode stops operation of the main clock oscillator, it reduces the power consumption to a level lower than the IDLE2 mode. If the subclock oscillator, internal oscillator, and external clock are not used, the power consumption can be minimized with only leakage current flowing.

Cautions 1, Insert five or more NOP instructions after the instruction that stores data in the PSC register to set the STOP mode.

2. If the STOP mode is set while an unmasked interrupt request signal is being held pending, the STOP mode is released immediately by the pending interrupt request.

21.6.2 Releasing STOP mode

The STOP mode is released by a non-maskable interrupt request signal (NMI pin input, INTWDT2 signal), unmasked external interrupt request signal (INTP0 to INTP7 pin input), unmasked internal interrupt request signal from the peripheral functions operable in the STOP mode, or reset signal (reset by RESET pin input, WDT2RES signal, or low-voltage detector (LVI)).

After the STOP mode has been released, the normal operation mode is restored after the oscillation stabilization time has been secured.

(1) Releasing STOP mode by non-maskable interrupt request signal or unmasked maskable interrupt request signal

The STOP mode is released by a non-maskable interrupt request signal or an unmasked maskable interrupt request signal, regardless of the priority of the interrupt request signal. If the STOP mode is set in an interrupt servicing routine, however, an interrupt request signal that is issued later is serviced as follows.

- (a) If an interrupt request signal with a priority lower than that of the interrupt request currently being serviced is issued, the STOP mode is released, but that interrupt request signal is not acknowledged. The interrupt request signal itself is retained.
- (b) If an interrupt request signal with a priority higher than that of the interrupt request currently being serviced is issued (including a non-maskable interrupt request signal), the STOP mode is released and that interrupt request signal is acknowledged.

Caution The interrupt request that is disabled by setting the PSC.NMI1M, PSC.NMI0M, and PSC.INTM bits to 1 becomes invalid and STOP mode is not released.

Release Source	Interrupt Enabled (EI) Status	Interrupt Disabled (DI) Status
Non-maskable interrupt request signal	Execution branches to the handler address after securing the oscillation stabilization time.	
Maskable interrupt request signal	Execution branches to the handler address or the next instruction is executed after securing the oscillation stabilization time.	The next instruction is executed after securing the oscillation stabilization time.

Table 21-8. Operation After Releasing STOP Mode by Interrupt Request Signal

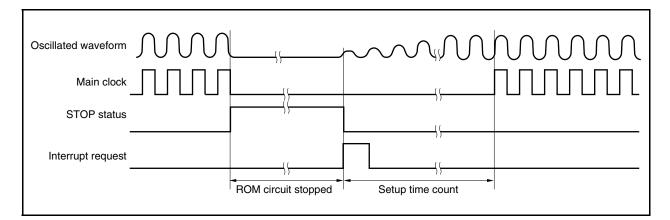
(2) Releasing STOP mode by reset

The same operation as the normal reset operation is performed.

Setting of STOP Mode		Operating Status		
Item		When Subclock Is Not Used	When Subclock Is Used	
Main clock oscillat	tor	Stops oscillation		
Subclock oscillato	r	_	Oscillation enabled	
Internal oscillator		Oscillation enabled		
PLL		Stops operation		
CPU		Stops operation		
DMA		Stops operation		
Interrupt controlle	r	Stops operation (but standby mode release	e is possible)	
Timer P (TMP0 to TMP5)		Stops operation		
Timer Q (TMP0)		Stops operation		
Timer M (TMM0)		Operable when fn/8 is selected as the count clock	Operable when $f_{\text{R}}/8$ or f_{XT} is selected as the count clock	
Watch timer		Stops operation	Operable when fxT is selected as the count clock	
Watchdog timer 2		Operable when fn is selected as the count clock	Operable when f_R or f_{XT} is selected as the count clock	
Serial interface	CSIB0 to CSIB4	Operable when the $\overline{\text{SCKBn}}$ input clock is selected as the count clock (n = 0 to 4)		
	I ² C00 to I ² C02	Stops operation		
	UARTA0 to UARTA2	Stops operation (but UARTA0 is operable when the ASCKA0 input clock is selected)		
A/D converter		Stops operation (conversion result undefined) ^{Notes 1, 2}		
D/A converter		Stops operation ^{Notes 3, 4} (high impedance is output)		
Real-time output f	unction (RTO)	Stops operation (output held)		
Key interrupt function (KR)		Operable		
External bus inter	face	See 2.2 Pin States.		
Port function		Retains status before STOP mode was set		
Internal data		The CPU registers, statuses, data, and all other internal data such as the contents of the internal RAM are retained as they were before the STOP mode was set.		

Table 21-9.	Operating	Status in	STOP	Mode
Table 21-3.	operating	Status III	JIOF	woue

- **Notes 1.** If the STOP mode is set while the A/D converter is operating, the A/D converter is automatically stopped and starts operating again after the STOP mode is released. However, in that case, the A/D conversion results after the STOP mode is released are invalid. All the A/D conversion results before the STOP mode is set are invalid.
 - 2. Even if the STOP mode is set while the A/D converter is operating, the power consumption is reduced equivalently to when the A/D converter is stopped before the STOP mode is set.
 - 3. If the STOP mode is set while the D/A converter is operating, the D/A converter is automatically stopped and the pin status becomes high impedance. After the STOP mode is released, D/A conversion resumes, the setting time elapses, and the status returns to the output level before the STOP mode was set.
 - **4.** Even if the STOP mode is set while the D/A converter is operating, the power consumption is reduced equivalently to when the D/A converter is stopped before the STOP mode is set.


21.6.3 Securing oscillation stabilization time when releasing STOP mode

Secure the oscillation stabilization time for the main clock oscillator after releasing the STOP mode because the operation of the main clock oscillator stops after STOP mode is set.

(1) Releasing STOP mode by non-maskable interrupt request signal or unmasked maskable interrupt request signal

Secure the oscillation stabilization time by setting the OSTS register.

When the releasing source is generated, the dedicated internal timer starts counting according to the OSTS register setting. When it overflows, the normal operation mode is restored.

(2) Release by reset

This operation is the same as that of a normal reset. The oscillation stabilization time is the initial value of the OSTS register, 2^{16} /fx.

21.7 Subclock Operation Mode

21.7.1 Setting and operation status

The subclock operation mode is set by setting the PCC.CK3 bit to 1 in the normal operation mode.

When the subclock operation mode is set, the internal system clock is changed from the main clock to the subclock. Check whether the clock has been switched by using the PCC.CLS bit.

When the PCC.MCK bit is set to 1, the operation of the main clock oscillator is stopped. As a result, the system operates only on the subclock.

In the subclock operation mode, the power consumption can be reduced to a level lower than in the normal operation mode because the subclock is used as the internal system clock. In addition, the power consumption can be further reduced to the level of the STOP mode by stopping the operation of the main clock oscillator.

Table 21-10 shows the operating status in subclock operation mode.

- Cautions 1. When manipulating the CK3 bit, do not change the set values of the PCC.CK2 to PCC.CK0 bits (using a bit manipulation instruction to manipulate the bit is recommended). For details of the PCC register, see 6.3 (1) Processor clock control register (PCC).
 - If the following conditions are not satisfied, change the CK2 to CK0 bits so that the conditions are satisfied and set the subclock operation mode. Internal system clock (fcLk) > Subclock (fxt = 32.768 kHz) × 4

Remark Internal system clock (fcLK): Clock generated from main clock (fxx) in accordance with the settings of the CK2 to CK0 bits

21.7.2 Releasing subclock operation mode

The subclock operation mode is released by a reset signal (reset by RESET pin input, WDT2RES signal, low-voltage detector (LVI), or clock monitor (CLM)) when the CK3 bit is cleared to 0.

If the main clock is stopped (MCK bit = 1), set the MCK bit to 1, secure the oscillation stabilization time of the main clock by software, and clear the CK3 bit to 0.

The normal operation mode is restored when the subclock operation mode is released.

Caution When manipulating the CK3 bit, do not change the set values of the CK2 to CK0 bits (using a bit manipulation instruction to manipulate the bit is recommended). For details of the PCC register, see 6.3 (1) Processor clock control register (PCC).

User's Manual U17715EJ2V0UD

When Main Clock Is Oscillating Oscillation enabled	When Main Clock Is Stopped	
Oscillation enabled		
	Oscillation enabled	
Oscillation enabled		
Operable Stops operation ^{Note}		
Operable	Stops operation	
Operable	Stops operation	
Operable	Operable when $f_{\text{R}}/8$ or f_{XT} is selected as the count clock	
Operable	Operable when f_{XT} is selected as the count clock	
Operable	Operable when fR or fxT is selected as the count clock	
Operable	Operable when the \overline{SCKBn} input clock is selected as the count clock (n = 0 to 4)	
Operable	Stops operation	
Operable	Stops operation (but UARTA0 is operable when the ASCKA0 input clock is selected)	
Operable	Stops operation	
Operable		
Operable	Stops operation (output held)	
Operable		
See 2.2 Pin States.		
Settable		
Settable		
	Operable See 2.2 Pin States. Settable	

Table 21-10	Operating	Status in	Subclock (Operation Mode
	operating	Status III	Subciock C	

Note Be sure to stop the PLL (PLLCTL.PLLON bit = 0) before stopping the main clock.

Caution When the CPU is operating on the subclock and main clock oscillation is stopped, accessing a register in which a wait occurs is disabled. If a wait is generated, it can be released only by reset (see 3.4.8 (2)).

21.8 Sub-IDLE Mode

21.8.1 Setting and operation status

The sub-IDLE mode is set by setting the PSMR.PSM1 and PSMR.PSM0 bits to 00 or 10 and setting the PSC.STP bit to 1 in the subclock operation mode.

In this mode, the clock oscillator continues operating but clock supply to the CPU, flash memory, and the other onchip peripheral functions is stopped.

As a result, program execution stops and the contents of the internal RAM before the sub-IDLE mode was set are retained. The CPU and the other on-chip peripheral functions are stopped. However, the on-chip peripheral functions that can operate with the subclock or an external clock continue operating.

Because the sub-IDLE mode stops operation of the CPU, flash memory, and other on-chip peripheral functions, it can reduce the power consumption more than the subclock operation mode. If the sub-IDLE mode is set after the main clock has been stopped, the current consumption can be reduced to a level as low as that in the STOP mode.

Table 21-12 shows the operating status in the sub-IDLE mode.

Cautions 1. Following the store instruction to the PSC register for setting the sub-IDLE mode, insert the five or more NOP instructions.

2. If the sub-IDLE mode is set while an unmasked interrupt request signal is being held pending, the sub-IDLE mode is then released immediately by the pending interrupt request.

21.8.2 Releasing sub-IDLE mode

The sub-IDLE mode is released by a non-maskable interrupt request signal (NMI pin input, INTWDT2 signal), unmasked external interrupt request signal (INTP0 to INTP7 pin input), unmasked internal interrupt request signal from the peripheral functions operable in the sub-IDLE mode, or reset signal (reset by RESET pin input, WDT2RES signal, low-voltage detector (LVI), or clock monitor (CLM)). The PLL returns to the operating status it was in before the sub-IDLE mode was set.

When the sub-IDLE mode is released by an interrupt request signal, the subclock operation mode is set.

(1) Releasing sub-IDLE mode by non-maskable interrupt request signal or unmasked maskable interrupt request signal

The sub-IDLE mode is released by a non-maskable interrupt request signal or an unmasked maskable interrupt request signal, regardless of the priority of the interrupt request signal.

If the sub-IDLE mode is set in an interrupt servicing routine, however, an interrupt request signal that is issued later is serviced as follows.

- (a) If an interrupt request signal with a priority lower than that of the interrupt request currently being serviced is issued, the sub-IDLE mode is released, but that interrupt request signal is not acknowledged. The interrupt request signal itself is retained.
- (b) If an interrupt request signal with a priority higher than that of the interrupt request currently being serviced is issued (including a non-maskable interrupt request signal), the sub-IDLE mode is released and that interrupt request signal is acknowledged.
- Cautions 1. The interrupt request signal that is disabled by setting the PSC.NMI1M, PSC.NMI0M, and PSC.INTM bits to 1 becomes invalid and sub-IDLE mode is not released.
 - 2. When the sub-IDLE mode is released, 12 cycles of the subclock (about 366 μ s) elapse from when the interrupt request signal that releases the sub-IDLE mode is generated to when the mode is released.

Release Source	Interrupt Enabled (EI) Status	Interrupt Disabled (DI) Status
Non-maskable interrupt request signal	Execution branches to the handler address.	
Maskable interrupt request signal	Execution branches to the handler address or the next instruction is executed.	The next instruction is executed.

Table 21-11. Operation After Releasing Sub-IDLE Mode by Interrupt Request Signal

(2) Releasing sub-IDLE mode by reset

The same operation as the normal reset operation is performed.

Setting of Sub-IDLE Mode		Operating Status			
Item		When Main Clock Is Oscillating	When Main Clock Is Stopped		
Subclock oscillator		Oscillation enabled			
Internal oscillator		Oscillation enabled			
PLL		Operable Stops operation ^{Note 1}			
CPU		Stops operation			
DMA		Stops operation			
Interrupt controller		Stops operation (but standby mode release is possible)			
Timer P (TMP0 to TMP5)		Stops operation			
Timer Q (TMP0)		Stops operation			
Timer M (TMM0)		Operable when $f_{\text{R}}/8$ or f_{XT} is selected as the count clock			
Watch timer		Stops operation	Operable when fxT is selected as the count clock		
Watchdog timer 2		Operable when f _R or f _{XT} is selected as the count clock			
Serial interface	CSIB0 to CSIB4	Operable when the $\overline{\text{SCKBn}}$ input clock is selected as the count clock (n = 0 to 4)			
	l ² C00 to l ² C02	Stops operation			
	UARTA0 to UARTA2	Stops operation (but UARTA0 is operable when the ASCKA0 input clock is selecte			
A/D converter		Holds operation (conversion result held) ^{Note 2}			
D/A converter		Holds operation (output held ^{Note 2})			
Real-time output	function (RTO)	Stops operation (output held)			
Key interrupt function (KR)		Operable			
External bus interface		See 2.2 Pin States (same operation status as IDLE1, IDLE2 mode).			
Port function		Retains status before sub-IDLE mode was set			
Internal data		The CPU registers, statuses, data, and all other internal data such as the contents of the internal RAM are retained as they were before the sub-IDLE mode was set.			

Notes 1. Be sure to stop the PLL (PLLCTL.PLLON bit = 0) before stopping the main clock.

2. To realize low power consumption, stop the A/D and D/A converters before shifting to the sub-IDLE mode.

CHAPTER 22 RESET FUNCTIONS

22.1 Overview

The following reset functions are available.

- (1) Four kinds of reset sources
 - External reset input via the RESET pin
 - Reset via the watchdog timer 2 (WDT2) overflow (WDT2RES)
 - System reset via the comparison of the low-voltage detector (LVI) supply voltage and detected voltage
 - System reset via the detecting clock monitor (CLM) oscillation stop

After a reset is released, the source of the reset can be confirmed with the reset source flag register (RESF).

(2) Emergency operation mode

If the WDT2 overflows during the main clock oscillation stabilization time inserted after reset, a main clock oscillation anomaly is judged and the CPU starts operating on the internal oscillation clock.

Caution When the CPU operates on the internal oscillation clock, access to the register in which a wait state is generated is prohibited. For the register in which a wait state is generated, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers.

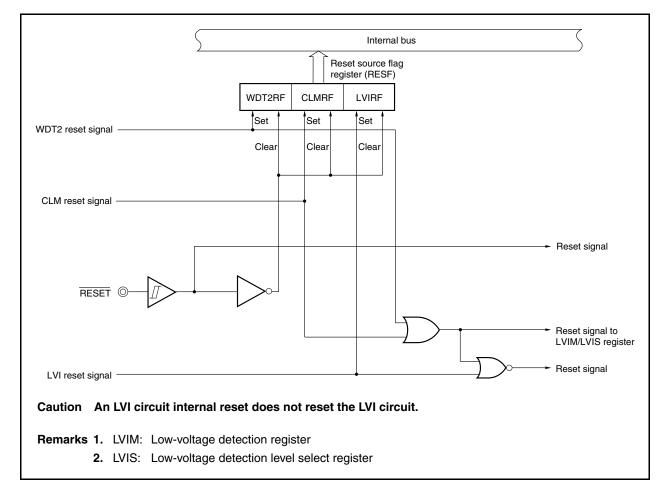


Figure 22-1. Block Diagram of Reset Function

22.2 Registers to Check Reset Source

The V850ES/JG2 has four kinds of reset sources. After a reset has been released, the source of the reset that occurred can be checked with the reset source flag register (RESF).

(1) Reset source flag register (RESF)

The RESF register is a special register that can be written only by a combination of specific sequences (see **3.4.7 Special registers**).

The RESF register indicates the source from which a reset signal is generated.

This register is read or written in 8-bit or 1-bit units.

RESET pin input clears this register to 00H. The default value differs if the source of reset is other than the RESET pin signal.

RESF	0	0		4	3	2	1	0	
г		Ŭ	0	WDT2RF	0	0	CLMRF	LVIRF	
	WDTODE								
<u> </u>	WDT2RF		Reset signal from WDT2						
-	0		Not generated						
L	1	Generate	Generated						
Γ	CLMRF		Reset signal from CLM						
Ē	0	Not gene	Not generated						
	1	Generate	Generated						
-		·							
	LVIRF	Reset signal from LVI							
	0	Not gene	Not generated						
	1	Generate	Generated						

22.3 Operation

22.3.1 Reset operation via RESET pin

When a low level is input to the $\overrightarrow{\text{RESET}}$ pin, the system is reset, and each hardware unit is initialized. When the level of the $\overrightarrow{\text{RESET}}$ pin is changed from low to high, the reset status is released.

Item	During Reset	After Reset		
Main clock oscillator (fx)	Oscillation stops	Oscillation starts		
Subclock oscillator (fxT)	Oscillation continues			
Internal oscillator	Oscillation stops	Oscillation starts		
Peripheral clock (fx to fx/1,024)	Operation stops	Operation starts after securing oscillation stabilization time		
Internal system clock (fcLk), CPU clock (fcPu)	Operation stops	Operation starts after securing oscillation stabilization time (initialized to fxx/8)		
CPU	Initialized	Program execution starts after securing oscillation stabilization time		
Watchdog timer 2	Operation stops (initialized to 0)	Counts up from 0 with internal oscillation clock as source clock.		
Internal RAM	Undefined if power-on reset or CPU access and reset input conflict (data is damaged). Otherwise value immediately after reset input is retained ^{Note 1} .			
I/O lines (ports/alternate-function pins)	High impedance ^{Note 2}			
On-chip peripheral I/O registers	Initialized to specified status, OCDM register is set (01H).			
Other on-chip peripheral functions	Operation stops Operation can be started after s oscillation stabilization time			

Table 22-1.	Hardware	Status on	RESET Pir	1 Input
-------------	----------	-----------	------------------	---------

- **Notes 1.** The firmware of the V850ES/JG2 uses a part of the internal RAM after the internal system reset status has been released because it supports a boot swap function. Therefore, the contents of some RAM areas are not retained after power-on reset. For details, see **22.3.4 Operation after reset release**.
 - 2. When the power is turned on, the following pins may output an undefined level temporarily even during reset.
 - P10/ANO0 pin
 - P11/ANO1 pin
 - P53/SIB2/KR3/TIQ00/TOQ00/RTP03/DDO pin
- Caution The OCDM register is initialized by the RESET pin input. Therefore, note with caution that, if a high level is input to the P05/DRST pin after a reset release before the OCDM.OCDM0 bit is cleared, the on-chip debug mode may be entered. For details, see CHAPTER 4 PORT FUNCTIONS.

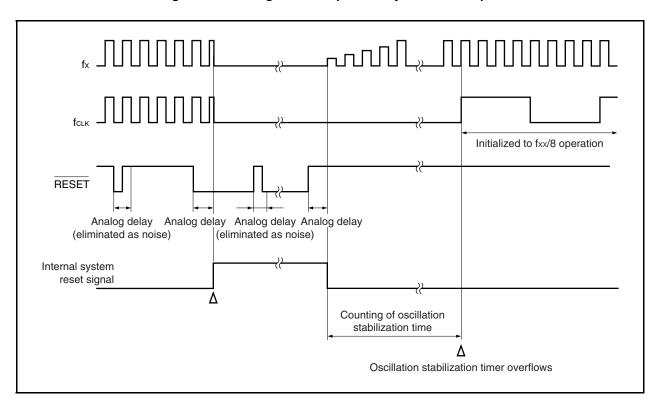



Figure 22-2. Timing of Reset Operation by RESET Pin Input

Figure 22-3. Timing of Power-on Reset Operation

22.3.2 Reset operation by watchdog timer 2

When watchdog timer 2 is set to the reset operation mode due to overflow, upon watchdog timer 2 overflow (WDT2RES signal generation), a system reset is executed and the hardware is initialized to the initial status.

Following watchdog timer 2 overflow, the reset status is entered and lasts the predetermined time (analog delay), and the reset status is then automatically released.

The main clock oscillator is stopped during the reset period.

Item	During Reset	After Reset		
Main clock oscillator (fx)	Oscillation stops	Oscillation starts		
Subclock oscillator (fxr)	Oscillation continues			
Internal oscillator	Oscillation stops	Oscillation starts		
Peripheral clock (fxx to fxx/1,024)	Operation stops	Operation starts after securing oscillation stabilization time		
Internal system clock (fxx), CPU clock (fcPu)	Operation stops	Operation starts after securing oscillation stabilization time (initialized to fxx/8)		
CPU	Initialized	Program execution after securing oscillation stabilization time		
Watchdog timer 2	Operation stops (initialized to 0)	Counts up from 0 with internal oscillation clock as source clock.		
Internal RAM	Undefined if power-on reset or CPU access and reset input conflict (data is Otherwise value immediately after reset input is retained.			
I/O lines (ports/alternate-function pins)	High impedance			
On-chip peripheral I/O register	Initialized to specified status, OCDM register retains its value.			
On-chip peripheral functions other than above	Operation stops Operation can be started after sectors oscillation stabilization time.			

Table 22-2. Hardware Status During Watchdog Timer 2 Reset Operation

Note The firmware of the V850ES/JG2 uses a part of the internal RAM after the internal system reset status has been released because it supports a boot swap function. Therefore, the contents of some RAM areas are not retained after power-on reset. For details, see **22.3.4 Operation after reset release**.

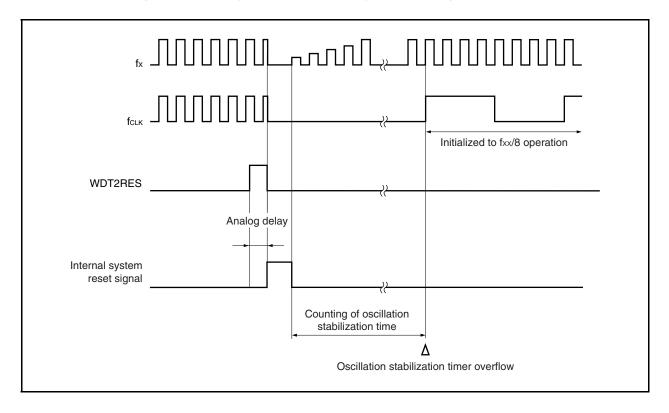


Figure 22-4. Timing of Reset Operation by WDT2RES Signal Generation

22.3.3 Reset operation by low-voltage detector

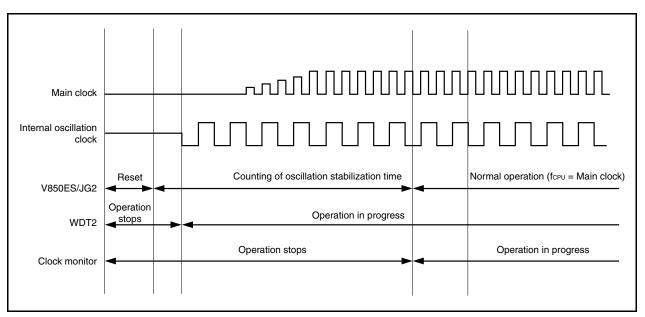
If the supply voltage falls below the voltage detected by the low-voltage detector when LVI operation is enabled, a system reset is executed (when the LVIM.LVIMD bit is set to 1), and the hardware is initialized to the initial status.

The reset status lasts from when a supply voltage drop has been detected until the supply voltage rises above the LVI detection voltage.

The main clock oscillator is stopped during the reset period.

When the LVIMD bit = 0, an interrupt request signal (INTLVI) is generated if a low voltage is detected.

Item	During Reset	After Reset				
Main clock oscillator (fx)	Oscillation stops	Oscillation starts				
Subclock oscillator (fxr)	Oscillation continues					
Internal oscillator	Oscillation stops	Oscillation starts				
Peripheral clock (fx to fx/1,024)	Operation stops	Operation starts after securing oscillation stabilization time				
Internal system clock (fxx), CPU clock (fcPu)	Operation stops	Operation starts after securing oscillation stabilization time (initialized to fxx/8)				
CPU	Initialized	Program execution starts after securing oscillation stabilization time				
Watchdog timer 2	Operation stops (initialized to 0)	Counts up from 0 with internal oscillation clock as source clock.				
Internal RAM	Undefined if power-on reset or CPU access a Otherwise value immediately after reset inpu					
I/O lines (ports/alternate-function pins)	High impedance					
On-chip peripheral I/O register	Initialized to specified status, OCDM register	retains its value.				
LVI	Operation stops					
On-chip peripheral functions other than above	Operation stops	Operation can be started after securing oscillation stabilization time.				


Note The firmware of the V850ES/JG2 uses a part of the internal RAM after the internal system reset status has been released because it supports a boot swap function. Therefore, the contents of some RAM areas are not retained after power-on reset. For details, see **22.3.4 Operation after reset release**.

Remark For the reset timing of the low-voltage detector, see CHAPTER 24 LOW-VOLTAGE DETECTOR (LVI).

22.3.4 Operation after reset release

After the reset is released, the main clock starts oscillation and oscillation stabilization time (OSTS register initial value: $2^{16}/fx$) is secured, and the CPU starts program execution.

WDT2 immediately begins to operate after a reset has been released using the internal oscillation clock as a source clock.

(1) Emergent operation mode

If an anomaly occurs in the main clock before oscillation stabilization time is secured, the WDT2 overflows before executing the CPU program. At this time, the CPU starts program execution by using the internal oscillation clock as the source clock.

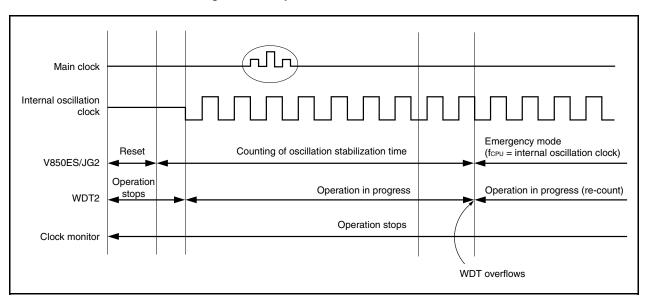
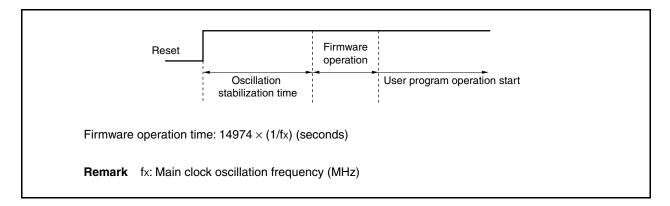
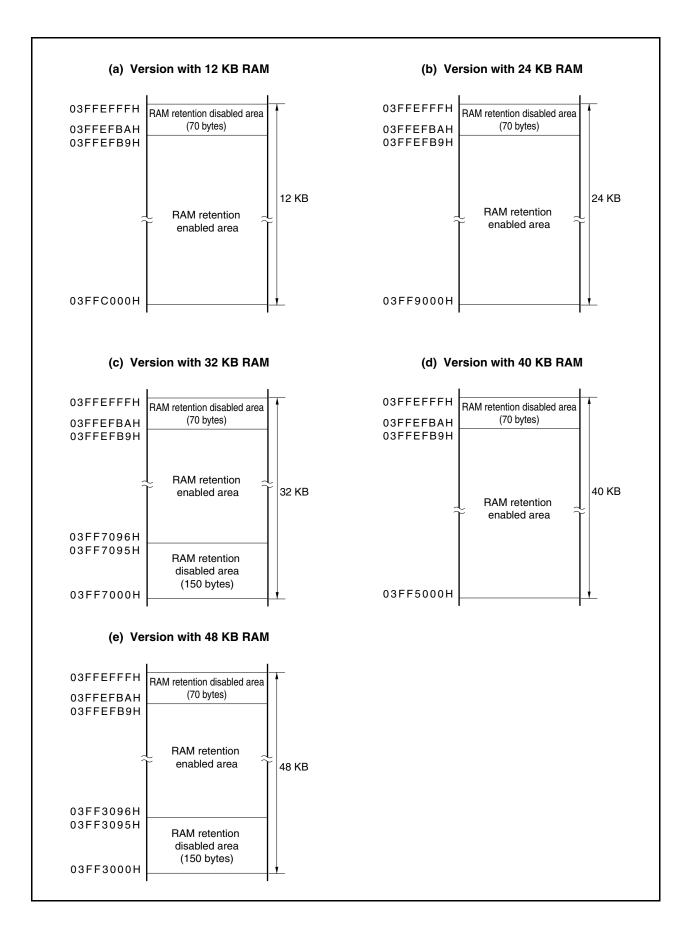
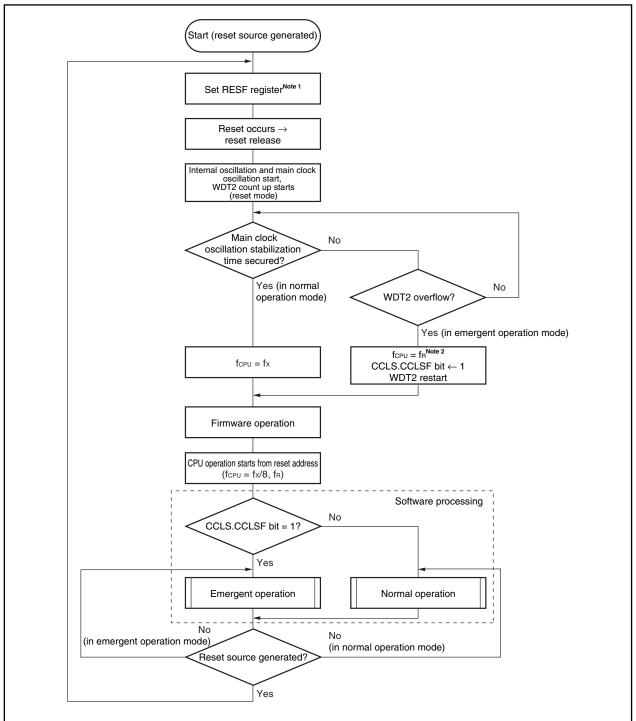



Figure 22-6. Operation After Reset Release

The CPU operation clock states can be checked with the CPU operation clock status register (CCLS).


(2) Firmware operation

In the V850ES/JG2, after the reset status is released, the internal firmware starts operation before the user program is started to support the boot swap function.



Since the firmware uses a part of the internal RAM, the contents of the following RAM areas are not retained after power-on reset.

- Version with 12 KB RAM: 03FFEFBAH to 03FFEFFFH
- Version with 24 KB RAM: 03FFEFBAH to 03FFEFFFH
- Version with 32 KB RAM: 03FF7000H to 03FF7095H, 03FFEFBAH to 03FFEFFFH
- Version with 40 KB RAM: 03FFEFBAH to 03FFEFFFH
- Version with 48 KB RAM: 03FF3000H to 03FF3095H, 03FFEFBAH to 03FFEFFFH

22.3.5 Reset function operation flow

Notes 1. Bit to be set differs depending on the reset source.

Reset Source	WDT2RF Bit	CRMRF Bit	LVIRF Bit
RESET pin	0	0	0
WDT2	1	Value before reset is retained.	Value before reset is retained.
CLM	Value before reset is retained.	1	Value before reset is retained.
LVI	Value before reset is retained.	Value before reset is retained.	1
T I ' I I			

2. The internal oscillator cannot be stopped.

CHAPTER 23 CLOCK MONITOR

23.1 Functions

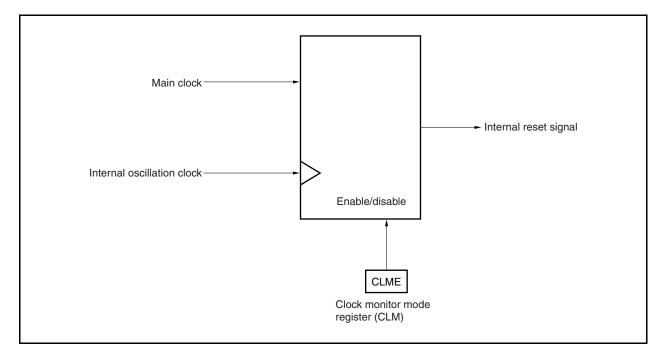
The clock monitor samples the main clock by using the internal oscillation clock and generates a reset request signal when oscillation of the main clock is stopped.

Once the operation of the clock monitor has been enabled by an operation enable flag, it cannot be cleared to 0 by any means other than reset.

When a reset by the clock monitor occurs, the RESF.CLMRF bit is set. For details on the RESF register, see **22.2 Registers to Check Reset Source**.

The clock monitor automatically stops under the following conditions.

- During oscillation stabilization time after STOP mode is released
- When the main clock is stopped (from when the PCC.MCK bit = 1 during subclock operation, until the PCC.CLS bit = 0 during main clock operation)
- When the sampling clock (internal oscillation clock) is stopped
- When the CPU operates with the internal oscillation clock


23.2 Configuration

The clock monitor includes the following hardware.

Table 23-1. Configuration of Clock Monitor

Item	Configuration		
Control register	Clock monitor mode register (CLM)		

23.3 Register

The clock monitor is controlled by the clock monitor mode register (CLM).

(1) Clock monitor mode register (CLM)

The CLM register is a special register. This can be written only in a special combination of sequences (see **3.4.7 Special registers**).

This register is used to set the operation mode of the clock monitor.

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

After	reset: 00H	R/W	Address: F	FFFF870H					
	7	6	5	4	3	2	1	<0>	
CLM	0	0	0	0	0	0	0	CLME	
-									
	CLME		Clock monitor operation enable or disable						
	0	Disable clo	Disable clock monitor operation.						
	1	Enable clo	Enable clock monitor operation.						
	 Cautions 1. Once the CLME bit has been set to 1, it cannot be cleared to 0 by any means other treset. 2. When a reset by the clock monitor occurs, the CLME bit is cleared to 0 and the RESF.CLMRF bit is set to 1. 								her than

23.4 Operation

This section explains the functions of the clock monitor. The start and stop conditions are as follows.

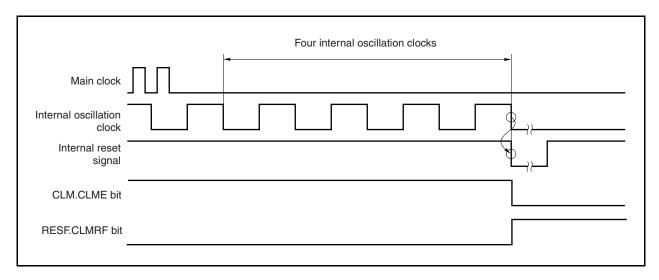
<Start condition>

Enabling operation by setting the CLM.CLME bit to 1

<Stop conditions>

- While oscillation stabilization time is being counted after STOP mode is released
- When the main clock is stopped (from when PCC.MCK bit = 1 during subclock operation to when PCC.CLS bit = 0 during main clock operation)
- When the sampling clock (internal oscillation clock) is stopped
- When the CPU operates with the internal oscillation clock

Table 23-2. Operation Status of Clock Monitor (When CLM.CLME Bit = 1, During Internal Oscillation Clock Operation)

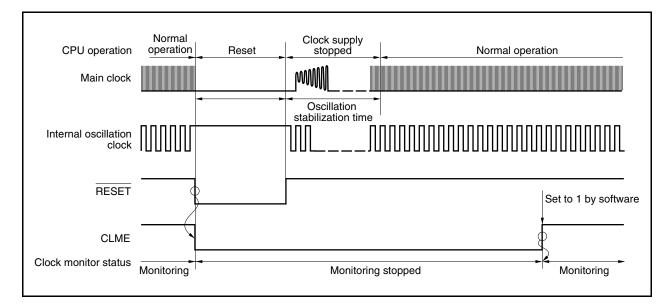

CPU Operating Clock	Operation Mode	Status of Main Clock	Status of Internal Oscillation Clock	Status of Clock Monitor
Main clock	HALT mode	Oscillates	Oscillates ^{Note 1}	Operates ^{Note 2}
	IDLE1, IDLE2 modes	Oscillates	Oscillates ^{Note 1}	Operates ^{Note 2}
	STOP mode	Stops	Oscillates ^{Note 1}	Stops
Subclock (MCK bit of PCC register = 0)	Sub-IDLE mode	Oscillates	Oscillates ^{Note 1}	Operates ^{Note 2}
Subclock (MCK bit of PCC register = 1)	Sub-IDLE mode	Stops	Oscillates ^{Note 1}	Stops
Internal oscillation clock	_	Stops	Oscillates ^{Note 3}	Stops
During reset	_	Stops	Stops	Stops


Notes 1. Internal oscillator can be stopped by setting the RCM.RSTOP bit to 1.

- 2. The clock monitor is stopped while internal oscillator is stopped.
- 3. Internal oscillator cannot be stopped by software.

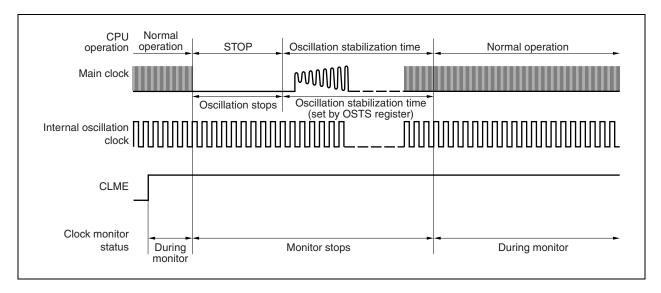
(1) Operation when main clock oscillation is stopped (CLME bit = 1)

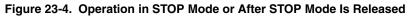
If oscillation of the main clock is stopped when the CLME bit = 1, an internal reset signal is generated as shown in Figure 23-2.



(2) Clock monitor status after RESET input

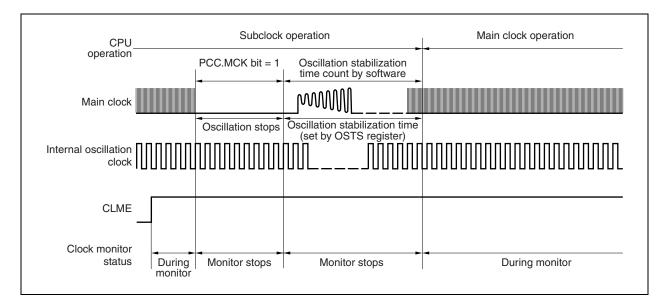
RESET input clears the CLM.CLME bit to 0 and stops the clock monitor operation. When CLME bit is set to 1 by software at the end of the oscillation stabilization time of the main clock, monitoring is started.


Figure 23-3. Clock Monitor Status After RESET Input


(CLM.CLME bit = 1 is set after RESET input and at the end of main clock oscillation stabilization time)

(3) Operation in STOP mode or after STOP mode is released

If the STOP mode is set with the CLM.CLME bit = 1, the monitor operation is stopped in the STOP mode and while the oscillation stabilization time is being counted. After the oscillation stabilization time, the monitor operation is automatically started.



(4) Operation when main clock is stopped (arbitrary)

During subclock operation (PCC.CLS bit = 1) or when the main clock is stopped by setting the PCC.MCK bit to 1, the monitor operation is stopped until the main clock operation is started (PCC.CLS bit = 0). The monitor operation is automatically started when the main clock operation is started.

(5) Operation while CPU is operating on internal oscillation clock (CCLS.CCLSF bit = 1) The monitor operation is not stopped when the CCLSF bit is 1, even if the CLME bit is set to 1.

CHAPTER 24 LOW-VOLTAGE DETECTOR (LVI)

24.1 Functions

The low-voltage detector (LVI) has the following functions.

- Compares the supply voltage (VDD) and detected voltage (VLVI) and generates an internal interrupt signal or internal reset signal when VDD < VLVI.
- The level of the supply voltage to be detected can be changed by software (in two steps).
- Interrupt or reset signal can be selected by software.
- Can operate in STOP mode.

If the low-voltage detector is used to generate a reset signal, the RESF.LVIRF bit is set to 1 when the reset signal is generated. For details of RESF register, see **22.2 Registers to Check Reset Source**.

24.2 Configuration

The block diagram of the low-voltage detector is shown below.

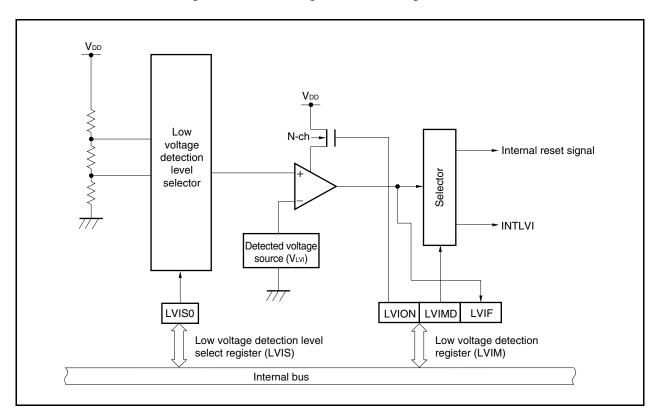
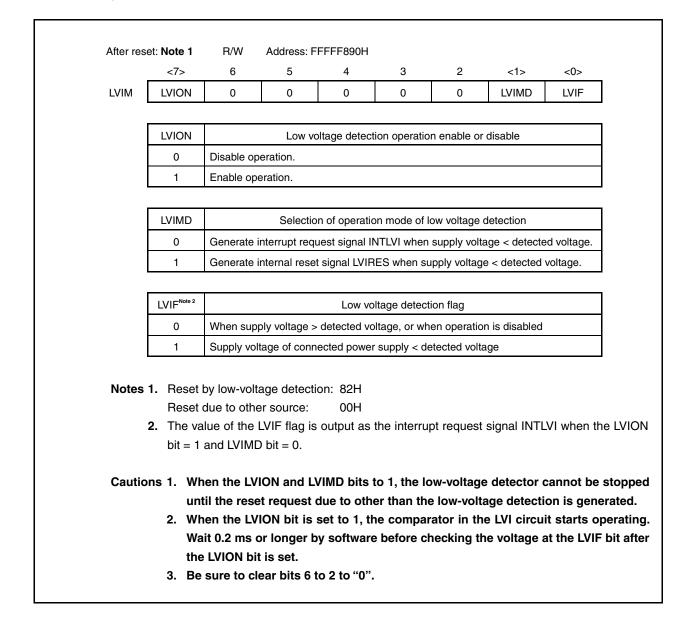


Figure 24-1. Block Diagram of Low-Voltage Detector

24.3 Registers


The low-voltage detector is controlled by the following registers.

- Low voltage detection register (LVIM)
- Low voltage detection level select register (LVIS)
- (1) Low voltage detection register (LVIM)

The LVIM register is a special register. This can be written only in the special combination of the sequences (see **3.4.7 Special registers**).

The LVIM register is used to enable or disable low voltage detection, and to set the operation mode of the lowvoltage detector.

This register can be read or written in 8-bit or 1-bit units. However, the LVIF bit is read-only.

(2) Low voltage detection level select register (LVIS)

The LVIS register is used to select the level of low voltage to be detected. This register can be read or written in 8-bit units.

	7	R/W 6	5	FFFF891H 4	3	2	1	0		
LVIS	0	0	0	0	0	0	0	LVISO		
	LVIS0		Detection level							
	0	3.0 V ±0.1	3.0 V ±0.15 V							
	1	2.85 V ±0	2.85 V ±0.15 V (setting prohibited)							
Note	te Reset by low-voltage detection: Retained Reset due to other source: 00H									
Cautions 1. This register cannot be written until a reset request due to something other low-voltage detection is generated after the LVIM.LVION and LVIM.LVIMD bits set to 1. 2. Be sure to clear bits 7 to 1 to "0".										

(3) Internal RAM data status register (RAMS)

The RAMS register is a special register. This can be written only in a special combination of sequences (see **3.4.7 Special registers**).

This register is a flag register that indicates whether the internal RAM is valid or not.

This register can be read or written in 8-bit or 1-bit units.

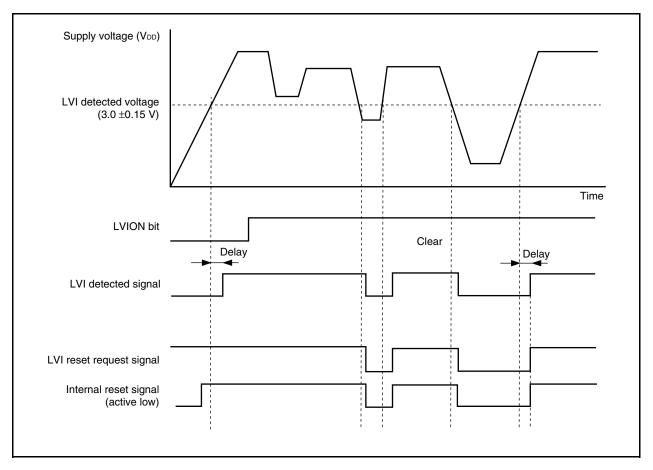
The set/clear conditions for the RAMF bit are shown below.

- Setting conditions: Detection of voltage lower than specified level
 - Set by instruction
 - Generation of reset signal by WDT2 and CLM

Generation of reset signal while RAM is being accessed

- Generation of reset signal via the RESET pin while internal RAM is being accessed.
- Clearing condition: Writing of 0 in specific sequence

	7	6	5	4	3	2	1	<0>
RAMS	0	0	0	0	0	0	0	RAMF
	RAMF		Internal RAM data valid/invalid					
	0	Valid						
	1	Invalid	Invalid					

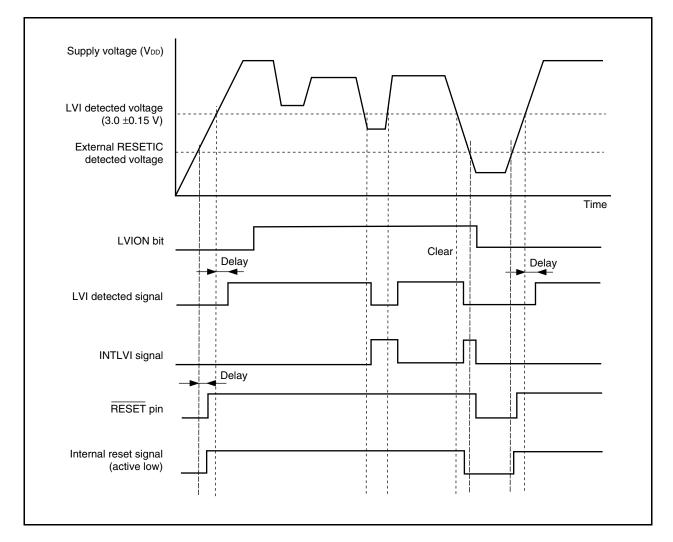

24.4 Operation

Depending on the setting of the LVIM.VIMD bit, an interrupt signal (INTLVI) or an internal reset signal is generated. How to specify each operation is described below, together with timing charts.

24.4.1 To use for internal reset signal

- <To start operation>
- <1> Mask the interrupt of LVI.
- <2> Select the voltage to be detected by using the LVIS.LVIS0 bit.
- <3> Set the LVIM.LVION bit to 1 (to enable operation).
- <4> Insert a wait cycle of 0.2 ms (max.) or more by software.
- <5> By using the LVIM.LVIF bit, check if the supply voltage > detected voltage.
- <6> Set the LVIMD bit to 1 (to generate an internal reset signal).

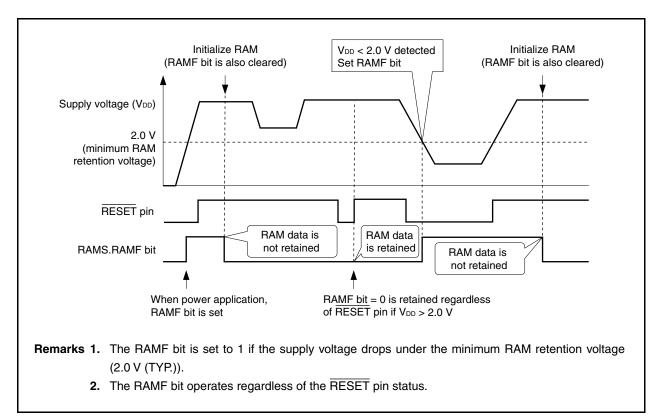
Caution If LVIMD bit is set to 1, the contents of the LVIM and LVIS registers cannot be changed until a reset request other than LVI is generated.



24.4.2 To use for interrupt

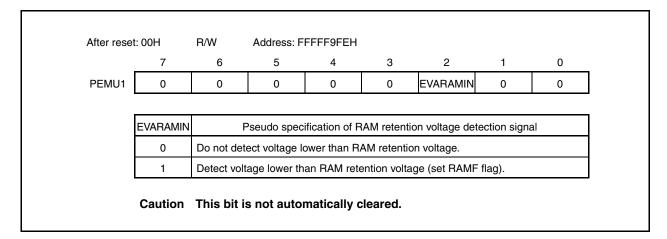
- <To start operation>
- <1> Mask the interrupt of LVI.
- <2> Select the voltage to be detected by using the LVIS.LVIS0 bit.
- <3> Set the LVIM.LVION bit to 1 (to enable operation).
- <4> Insert a wait cycle of 0.2 ms (max.) or more by software.
- <5> By using the LVIM.LVIF bit, check if the supply voltage > detected voltage.
- <6> Clear the interrupt request flag of LVI.
- <7> Unmask the interrupt of LVI.

<To stop operation>


Clear the LVION bit to 0.

24.5 RAM Retention Voltage Detection Operation

The supply voltage and detected voltage are compared. When the supply voltage drops below the detected voltage (including on power application), the RAMS.RAMF bit is set to 1.



24.6 Emulation Function

When an in-circuit emulator is used, the operation of the RAM retention flag (RAMS.RAMF bit) can be pseudocontrolled and emulated by manipulating the PEMU1 register on the debugger.

This register is valid only in the emulation mode. It is invalid in the normal mode.

(1) Peripheral emulation register 1 (PEMU1)

[Usage]

When an in-circuit emulator is used, pseudo emulation of RAMF is realized by rewriting this register on the debugger.

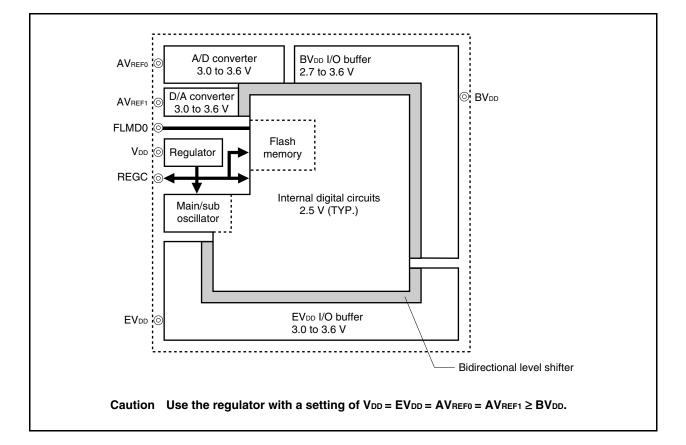
- <1> CPU break (CPU operation stops.)
- <2> Set the EVARAMIN bit to 1 by using a register write command. By setting the EVARAMIN bit to 1, the RAMF bit is set to 1 on hardware (the internal RAM data is invalid).
- <3> Clear the EVARAMIN bit to 0 by using a register write command again. Unless this operation is performed (clearing the EVARAMIN bit to 0), the RAMF bit cannot be cleared to 0 by a CPU operation instruction.
- <4> Run the CPU and resume emulation.

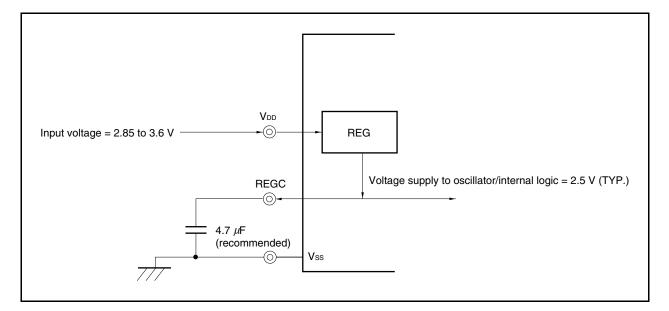
CHAPTER 25 REGULATOR

25.1 Outline

The V850ES/JG2 includes a regulator to reduce power consumption and noise.

This regulator supplies a stepped-down V_{DD} power supply voltage to the oscillator block and internal logic circuits (except the A/D converter, D/A converter, and output buffers). The regulator output voltage is set to 2.5 V (TYP.).




Figure 25-1. Regulator

25.2 Operation

The regulator of this product always operates in any mode (normal operation mode, HALT mode, IDLE1 mode, IDLE2 mode, STOP mode, or during reset).

Be sure to connect a capacitor (4.7 μ F (recommended value)) to the REGC pin to stabilize the regulator output. A diagram of the regulator pin connection method is shown below.

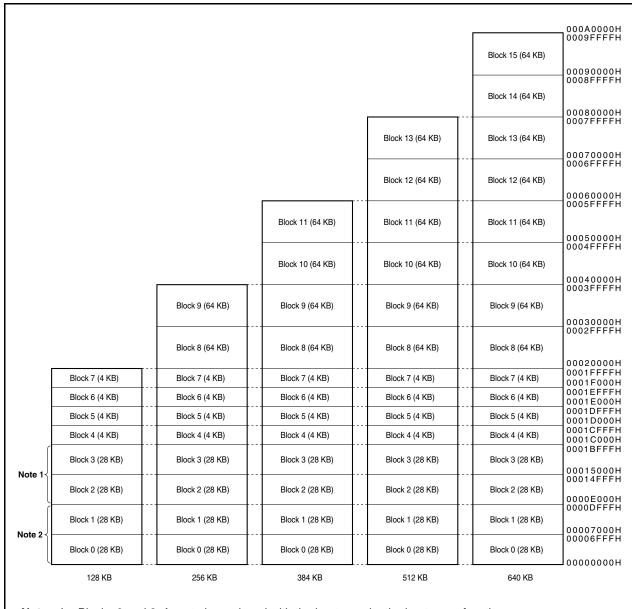
CHAPTER 26 FLASH MEMORY

The V850ES/JG2 incorporates a flash memory.

- μPD70F3715: 128 KB flash memory
- μPD70F3716: 256 KB flash memory
- *μ*PD70F3717: 384 KB flash memory
- μPD70F3718: 512 KB flash memory
- *μ*PD70F3719: 640 KB flash memory

Flash memory versions offer the following advantages for development environments and mass production applications.

- O For altering software after the V850ES/JG2 is soldered onto the target system.
- O For data adjustment when starting mass production.
- O For differentiating software according to the specification in small scale production of various models.
- O For facilitating inventory management.
- O For updating software after shipment.


26.1 Features

- O 4-byte/1-clock access (when instruction is fetched)
- O Capacity: 640/512/384/256/128 KB
- O Write voltage: Erase/write with a single power supply
- O Rewriting method
 - Rewriting by communication with dedicated flash programmer via serial interface (on-board/off-board programming)
 - Rewriting flash memory by user program (self programming)
- O Flash memory write prohibit function supported (security function)
- O Safe rewriting of entire flash memory area by self programming using boot swap function
- O Interrupts can be acknowledged during self programming.

26.2 Memory Configuration

The V850ES/JG2 internal flash memory area is divided into 16, 14, 12, 10, or 8 blocks and can be programmed/erased in block units. All the blocks can also be erased at once.

When the boot swap function is used, the physical memory located at the addresses of blocks 0 and 1 is replaced by the physical memory located at the addresses of blocks 2 and 3. For details of the boot swap function, see **26.5 Rewriting by Self Programming**.

Notes 1. Blocks 2 and 3: Area to be replaced with the boot area by the boot swap function

2. Blocks 0 and 1: Boot area

26.3 Functional Outline

The internal flash memory of the V850ES/JG2 can be rewritten by using the rewrite function of the dedicated flash programmer, regardless of whether the V850ES/JG2 has already been mounted on the target system or not (off-board/on-board programming).

In addition, a security function that prohibits rewriting the user program written to the internal flash memory is also supported, so that the program cannot be changed by an unauthorized person.

The rewrite function using the user program (self programming) is ideal for an application where it is assumed that the program is changed after production/shipment of the target system. A boot swap function that rewrites the entire flash memory area safely is also supported. In addition, interrupt servicing is supported during self programming, so that the flash memory can be rewritten under various conditions, such as while communicating with an external device.

Rewrite Method	Functional Outline	Operation Mode
On-board programming	Flash memory can be rewritten after the device is mounted on the target system, by using a dedicated flash programmer.	Flash memory programming mode
Off-board programming	Flash memory can be rewritten before the device is mounted on the target system, by using a dedicated flash programmer and a dedicated program adapter board (FA series).	
Self programming	Flash memory can be rewritten by executing a user program that has been written to the flash memory in advance by means of off-board/on- board programming. (During self-programming, instructions cannot be fetched from or data access cannot be made to the internal flash memory area. Therefore, the rewrite program must be transferred to the internal RAM or external memory in advance).	Normal operation mode

Table 26-1. Rewri	te Method
-------------------	-----------

Remark The FA series is a product of Naito Densei Machida Mfg. Co., Ltd.

Function	Functional Outline	Support (√: Support	ed, ×: Not supported)
		On-Board/Off-Board Programming	Self Programming
Block erasure	The contents of specified memory blocks are erased.	\checkmark	\checkmark
Chip erasure	The contents of the entire memory area are erased all at once.	\checkmark	×
Write	Writing to specified addresses, and a verify check to see if write level is secured are performed.	\checkmark	\checkmark
Verify/checksum	Data read from the flash memory is compared with data transferred from the flash programmer.	V	× (Can be read by user program)
Blank check	The erasure status of the entire memory is checked.	\checkmark	\checkmark
Security setting	Use of the block erase command, chip erase command, and program command can be prohibited.	\checkmark	× (Supported only when setting is changed from enable to disable)

Table 26-2. Basic Functions

The following table lists the security functions. The block erase command prohibit, chip erase command prohibit, and program command prohibit functions are enabled by default after shipment, and security can be set by rewriting via on-board/off-board programming. Each security function can be used in combination with the others at the same time.

<R>

<R>

Table 26-3. Security Functions

Function	Function Outline
Block erase command prohibit	Execution of a block erase command on all blocks is prohibited. Setting of prohibition can be initialized by execution of a chip erase command.
Chip erase command prohibit	Execution of block erase and chip erase commands on all the blocks is prohibited. Once prohibition is set, setting of prohibition cannot be initialized because the chip erase command cannot be executed.
Program command prohibit	Execution of program and block erase commands on all the blocks is prohibited. Setting of prohibition can be initialized by execution of the chip erase command.
Read command prohibit	Not supported (permanently prohibited).
Boot area rewrite prohibit	Not supported.

		, ,		
Function	Erase, Write, Read Ope (√: Executable, ×: Not	Notes on Security Setting		
	On-Board/ Off-Board Programming	On-Board/ Off-Board Programming	Self Programming	
Block erase command prohibit	Block erase command: \times Chip erase command: $$ Program command: $$ Read command: \times	Block erasure (FlashBlockErase): √ Chip erasure: – Write (FlashWordWrite): √ Read (FlashWordRead): √	Setting of prohibition can be initialized by chip erase command.	Supported only when setting is changed from enable to prohibit
Chip erase command prohibit	Block erase command: \times Chip erase command: \times Program command: $\sqrt{^{Note}}$ Read command: \times	Block erasure (FlashBlockErase): √ Chip erasure: – Write (FlashWordWrite): √ Read (FlashWordRead): √	Setting of prohibition cannot be initialized.	
Program command prohibit	Block erase command: × Chip erase command: √ Program command: × Read command: ×	Block erasure (FlashBlockErase): √ Chip erasure: – Write (FlashWordWrite): √ Read (FlashWordRead): √	Setting of prohibition can be initialized by chip erase command.	

Table 26-4. Security Setting

Note In this case, since the erase command is invalid, data different from the data already written in the flash memory cannot be written.

26.4 Rewriting by Dedicated Flash Programmer

The flash memory can be rewritten by using a dedicated flash programmer after the V850ES/JG2 is mounted on the target system (on-board programming). The flash memory can also be rewritten before the device is mounted on the target system (off-board programming) by using a dedicated program adapter (FA series).

26.4.1 Programming environment

The following shows the environment required for writing programs to the flash memory of the V850ES/JG2.

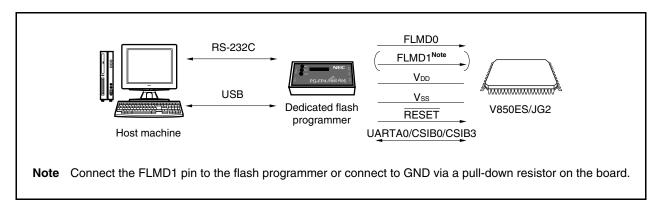


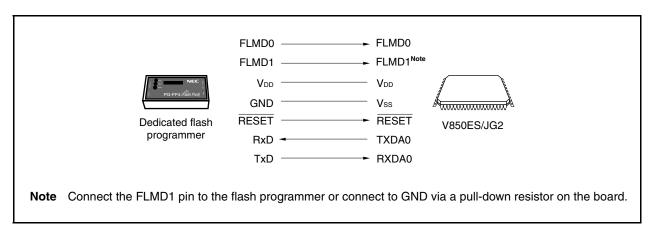
Figure 26-2. Environment Required for Writing Programs to Flash Memory

A host machine is required for controlling the dedicated flash programmer.

UARTA0, CSIB0, or CSIB3 is used for the interface between the dedicated flash programmer and the V850ES/JG2 to perform writing, erasing, etc. A dedicated program adapter (FA series) required for off-board writing.

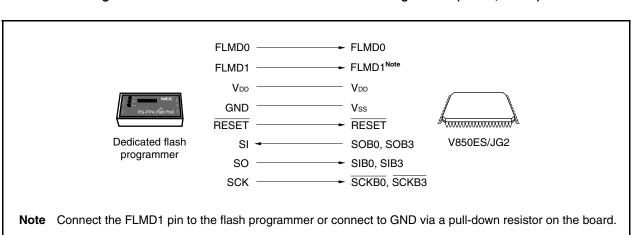
- FA-70F3719GC-8EA-MX (GC-8EA type) (already wired)
- FA-70F3717GF-JBT-MX (GF-JBT type) (already wired)
- FA-100GC-8EU-A (GC-8EA type) (not wired: wiring required)
- FA-100GF-3BA-A (GF-JBT type) (not wired: wiring required)

Remark The FA series is a product of Naito Densei Machida Mfg. Co., Ltd.


26.4.2 Communication mode

Communication between the dedicated flash programmer and the V850ES/JG2 is performed by serial communication using the UARTA0, CSIB0, or CSIB3 interfaces of the V850ES/JG2.

(1) UARTA0


<R> Transfer rate: 9,600, 19,200, 31,250, 38,400, 76,800, 153,600 bps (Setting of 57,600, 115,200, or 128,000 bps is not supported.)

(2) CSIB0, CSIB3

Serial clock: 2.4 kHz to 2.5 MHz (MSB first)

(3) CSIB0 + HS, CSIB3 + HS

Serial clock: 2.4 kHz to 2.5 MHz (MSB first)

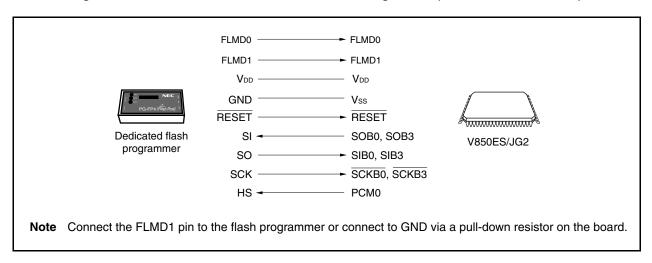


Figure 26-5. Communication with Dedicated Flash Programmer (CSIB0 + HS, CSIB3 + HS)

The dedicated flash programmer outputs the transfer clock, and the V850ES/JG2 operates as a slave.

When the PG-FP4 is used as the dedicated flash programmer, it generates the following signals to the V850ES/JG2. For details, refer to the **PG-FP4 User's Manual (U15260E)**.

		PG-FP4	V850ES/JG2	Proce	ssing for Conr	nection
Signal Name	I/O	Pin Function	Pin Name	UARTA0	CSIB0, CSIB3	CSIB0 + HS, CSIB3 + HS
FLMD0	Output	Write enable/disable	FLMD0	0	O	0
FLMD1	Output	Write enable/disable	FLMD1	ONote 1	ONote 1	ONote 1
VDD	-	VDD voltage generation/voltage monitor	VDD	0	0	0
GND	-	Ground	Vss	0	0	0
CLK	Output	Clock output to V850ES/JG2	X1, X2	× ^{Note 2}	× ^{Note 2}	× ^{Note 2}
RESET	Output	Reset signal	RESET	0	0	0
SI/RxD	Input	Receive signal	SOB0, SOB3/ TXDA0	O	0	0
SO/TxD	Output	Transmit signal	SIB0, SIB3/ RXDA0	0	0	O
SCK	Output	Transfer clock	SCKB0, SCKB3	×	0	0
HS	Input	Handshake signal for CSIB0 + HS, CSIB3 + HS communication	PCM0	×	×	0

- **Notes 1.** Wire these pins as shown in Figures 26-6 and 26-7, or connect then to GND via pull-down resistor on board.
 - 2. Clock cannot be supplied via the CLK pin of the flash programmer. Create an oscillator on board and supply the clock.
- Remark O: Must be connected.
 - \times : Does not have to be connected.

Flash Programmer (FG-FP4) Connection Pin		Name of FA Board			CSIB0 Used			UARTA0 Used																		
Signal	I/O	Pin Function	Pin	Pin Name	me Pin No.		Pin No.		Pin No.		Pin No.		Pin No.		Pin No.		Pin No.		No. Pin Name		Pin No. Pin Name	Pin Name Pin No.	No.	Pin Name	Pin No.	
Name					GF	GC		GF	GC		GF	GC														
SI/RxD	Input	Receive signal	SI	P41/SOB0/ SCL01	25	23	P41/SOB0/ SCL01	25	23	P30/TXDA0/ SOB4	27	25														
SO/TxD	Output	Transmit signal	SO	P40/SIB0/ SDA01	24	22	P40/SIB0/ SDA01	24	22	P31/RXDA0/ INTP7/SIB4	28	26														
SCK	Output	Transfer clock	SCK	P42/SCKB0	26	24	P42/SCKB0	26	24	Not needed	-	_														
CLK	Output	Clock to	X1	Not needed	-	-	Not needed	-	-	Not needed	-	-														
		V850ES/JG2	X2	Not needed	-	-	Not needed	-	-	Not needed	_	_														
/RESET	Output	Reset signal	/RESET	RESET	16	14	RESET	16	14	RESET	16	14														
FLMD0	Output	Write voltage	FLMD0	FLMD0	10	8	FLMD0	10	8	FLMD0	10	8														
FLMD1	Output	Write voltage	FLMD1	PLD5/AD5/ FLMD1	78	76	PLD5/AD5/ FLMD1	78	76	PLD5/AD5/ FLMD1	78	76														
HS	Input	Handshake signal for CSI0 + HS communication	RESERVE/ HS	PCM0/WAIT	63	61	Not needed	_	_	Not needed	_	_														
VDD	-	VDD voltage	VDD	VDD	11	9	VDD	11	9	VDD	11	9														
		generation/		BVDD	72	70	BVDD	72	70	BVDD	72	70														
		voltage monitor		EVDD	36	34	EVDD	36	34	EVDD	36	34														
				AV _{REF0}	3	1	AV _{REF0}	3	1	AV _{REF0}	3	1														
				AV _{REF1}	7	5	AV _{REF1}	7	5	AV _{REF1}	7	5														
GND	-	Ground	GND	Vss	13	11	Vss	13	11	Vss	13	11														
				AVss	4	2	AVss	4	2	AVss	4	2														
				BVss	71	69	BVss	71	69	BVss	71	69														
				EVss	35	33	EVss	35	33	EVss	35	33														

Table 26-6. Wiring of V850ES/JG2 Flash Writing Adapters (FA-100GF-3BA-A, FA-100GC-8EU-A) (1/2)

Cautions 1. Be sure to connect the REGC pin to GND via 4.7 μ F capacitor.

2. Clock cannot be supplied from the CLK pin of the flash programmer. Create an oscillator on the board and supply clock.

Flash Programmer (FG-FP4) Connection Pin		Name of FA Board Pin	CSIB3 + HS Used			CSIB3 Used			
Signal	I/O	Pin Function		Pin Name	Pin	No.	Pin Name	Pin	No.
Name					GF GC			GF	GC
SI/RxD	Input	Receive signal	SI	P911/A11/SOB3	56	54	P911/A11/SOB3	56	54
SO/TxD	Output	Transmit signal	SO	P910/A10/SIB3	55	53	P910/A10/SIB3	55	53
SCK	Output	Transfer clock	SCK	P912/A12/SCKB3	57	55	P912/A12/SCKB3	57	55
CLK	Output	Clock to	X1	Not needed	-	-	Not needed	-	-
		V850ES/JG2	X2	Not needed	-	-	Not needed	-	-
/RESET	Output	Reset signal	/RESET	RESET	16	14	RESET	16	14
FLMD0	Output	Write voltage	FLMD0	FLMD0	10	8	FLMD0	10	8
FLMD1	Output	Write voltage	FLMD1	PLD5/AD5/FLMD1	78	76	PLD5/AD5/FLMD1	78	76
HS	Input	Handshake signal for CSI0 + HS communication	RESERVE/HS	PCM0/WAIT	63	61	Not needed	-	-
VDD	-	VDD voltage	VDD	VDD	11	9	VDD	11	9
		generation/		BVDD	72	70	BVDD	72	70
		voltage monitor		EVDD	36	34	EVDD	36	34
				AVREFO	3	1	AVREFO	3	1
				AV _{REF1}	7	5	AV _{REF1}	7	5
GND	_	Ground	GND	Vss	13	11	Vss	13	11
				AVss	4	2	AVss	4	2
				BVss	71	69	BVss	71	69
				EVss	35	33	EVss	35	33

Table 26-6. Wiring of V850ES/JG2 Flash Writing Adapters (FA-100GF-3BA-A and FA-100GC-8EU-A) (2/2)

Cautions 1. Be sure to connect the REGC pin to GND via 4.7 μ F capacitor.

2. Clock cannot be supplied from the CLK pin of the flash programmer. Create an oscillator on the board and supply clock.

RemarkGF: 100-pin plastic QFP (14×20)GC: 100-pin plastic LQFP (fine pitch) (14×14)

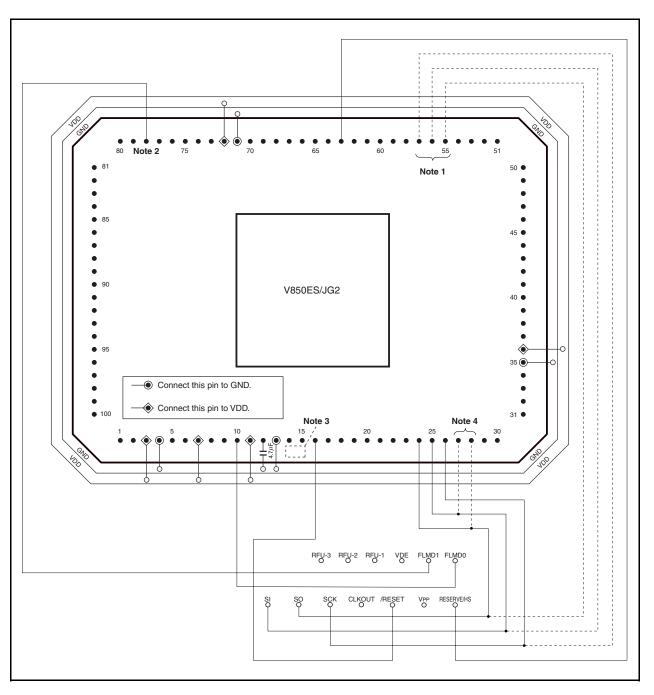


Figure 26-6. Wiring Example of V850ES/JG2 Flash Writing Adapter (FA-100GF-3BA-A) (In CSIB0 + HS Mode) (1/2)

Figure 26-6. Wiring Example of V850ES/JG2 Flash Writing Adapter (FA-100GF-3BA-A) (In CSIB0 + HS Mode) (2/2)

Notes 1. Corresponding pins when CSIB3 is used.
Wire the FLMD1 pin as shown below, or connect it to GND on board via a pull-down resistor.
Create an oscillator on the flash writing adapter (shown in broken lines) and supply a clock. Here is an example of the oscillator.
Example:

X1
X2
U
U
U
U

A Corresponding pins when UARTA0 is used.

Caution Do not input a high level to the DRST pin.
Remarks 1. Process the pins not shown in accordance with the handling of unused pins (see 2.3 Pin I/O Circuit Types, I/O Buffer Power Supplies, and Connection of Unused Pins).
This adapter is for the 100-pin plastic QFP package.

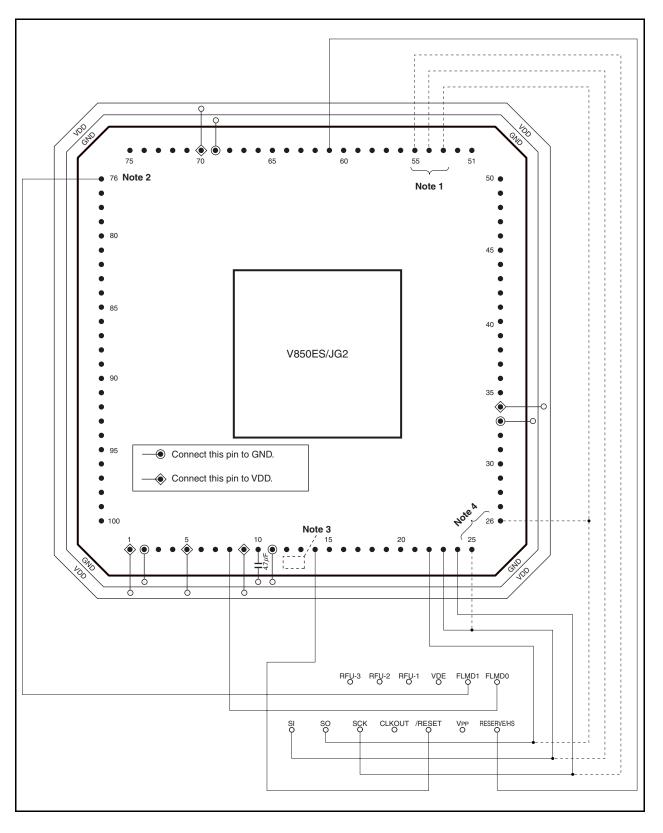


Figure 26-7. Wiring Example of V850ES/JG2 Flash Writing Adapter (FA-100GC-8EU-A) (In CSIB0 + HS Mode) (1/2)

Figure 26-7. Wiring Example of V850ES/JG2 Flash Writing Adapter (FA-100GC-8EU-A) (In CSIB0 + HS Mode) (2/2)

Notes 1. Corresponding pins when CSIB3 is used.
Wire the FLMD1 pin as shown below, or connect it to GND on board via a pull-down resistor.
Create an oscillator on the flash writing adapter (shown in broken lines) and supply a clock. Here is an example of the oscillator.
Example:
X1 X2 Y
Y Y
Y Y
Y Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y</l

26.4.3 Flash memory control

The following shows the procedure for manipulating the flash memory.

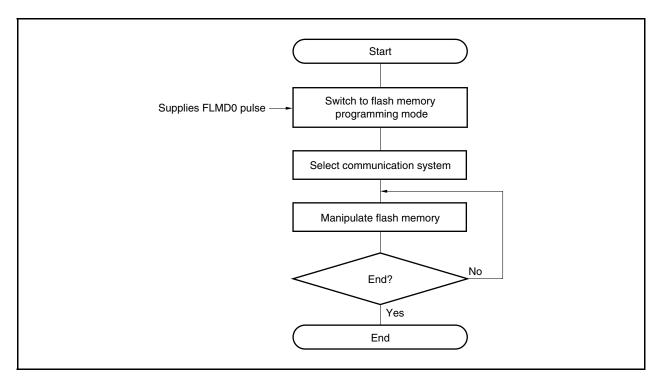
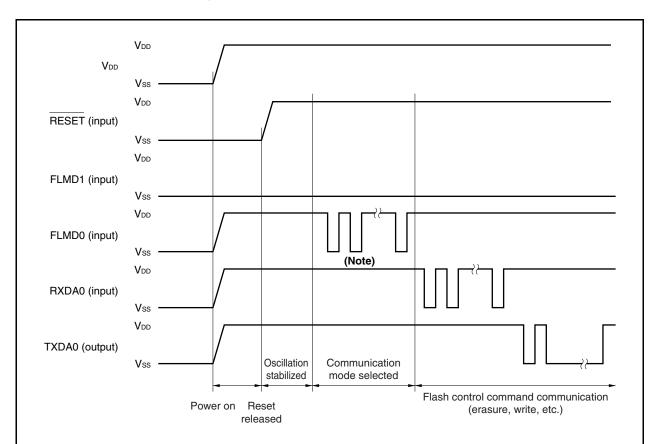



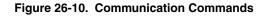
Figure 26-8. Procedure for Manipulating Flash Memory

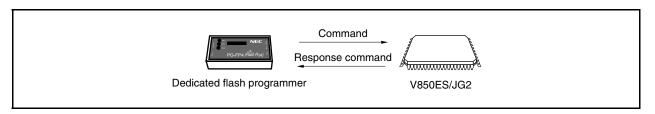
26.4.4 Selection of communication mode

In the V850ES/JG2, the communication mode is selected by inputting pulses (12 pulses max.) to the FLMD0 pin after switching to the flash memory programming mode. The FLMD0 pulse is generated by the dedicated flash programmer.

The following shows the relationship between the number of pulses and the communication mode.

Figure 26-9. Selection of Communication Mode


Note The number of clocks is as follows depending on the communication mode.


FLMD0 Pulse	Communication Mode	Remarks
0	UARTA0	Communication rate: 9,600 bps (after reset), LSB first
8	CSIB0	V850ES/JG2 performs slave operation, MSB first
9	CSIB3	V850ES/JG2 performs slave operation, MSB first
11	CSIB0 + HS	V850ES/JG2 performs slave operation, MSB first
12	CSIB3 + HS	V850ES/JG2 performs slave operation, MSB first
Other	RFU	Setting prohibited

Caution When UARTA0 is selected, the receive clock is calculated based on the reset command sent from the dedicated flash programmer after receiving the FLMD0 pulse.

26.4.5 Communication commands

The V850ES/JG2 communicates with the dedicated flash programmer by means of commands. The signals sent from the dedicated flash programmer to the V850ES/JG2 are called "commands". The response signals sent from the V850ES/JG2 to the dedicated flash programmer are called "response commands".

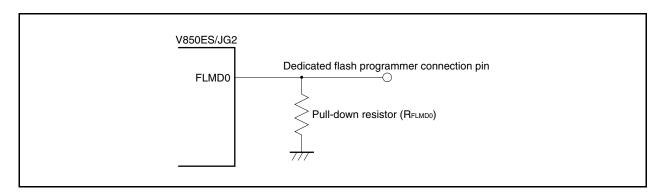
The following shows the commands for flash memory control in the V850ES/JG2. All of these commands are issued from the dedicated flash programmer, and the V850ES/JG2 performs the processing corresponding to the commands.

Classification	Command Name	Support			Function
		CSIB0, CSIB3	CSIB0 + HS, CSIB3 + HS	UARTA0	
Blank check	Block blank check command	\checkmark	\checkmark	\checkmark	Checks if the contents of the memory in the specified block have been correctly erased.
Erase	Chip erase command	\checkmark		\checkmark	Erases the contents of the entire memory.
	Block erase command	\checkmark	\checkmark	\checkmark	Erases the contents of the memory of the specified block.
Write	Program command	\checkmark	\checkmark	\checkmark	Writes the specified address range, and executes a contents verify check.
Verify	Verify command	\checkmark	V	\checkmark	Compares the contents of memory in the specified address range with data transferred from the flash programmer.
	Checksum command	\checkmark	\checkmark	\checkmark	Reads the checksum in the specified address range.
System setting, control	Silicon signature command	\checkmark	\checkmark	\checkmark	Reads silicon signature information.
	Security setting command	\checkmark	\checkmark	\checkmark	Prohibits the chip erase command, block erase command, and program command.

Table 26-7. Flash Memory Control Commands

<R>

26.4.6 Pin connection

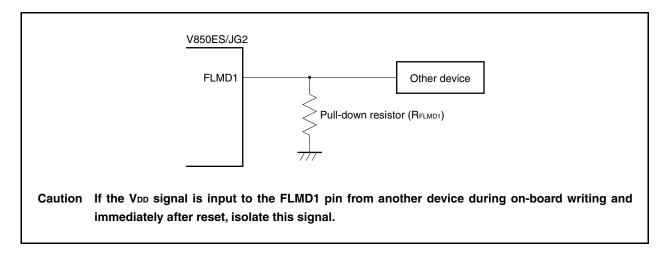

When performing on-board writing, mount a connector on the target system to connect to the dedicated flash programmer. Also, incorporate a function on-board to switch from the normal operation mode to the flash memory programming mode.

In the flash memory programming mode, all the pins not used for flash memory programming become the same status as that immediately after reset. Therefore, pin handling is required when the external device does not acknowledge the status immediately after a reset.

(1) FLMD0 pin

In the normal operation mode, input a voltage of Vss level to the FLMD0 pin. In the flash memory programming mode, supply a write voltage of V_{DD} level to the FLMD0 pin.

Because the FLMD0 pin serves as a write protection pin in the self programming mode, a voltage of V_{DD} level must be supplied to the FLMD0 pin via port control, etc., before writing to the flash memory. For details, see **26.5.5 (1) FLMD0 pin**.



(2) FLMD1 pin

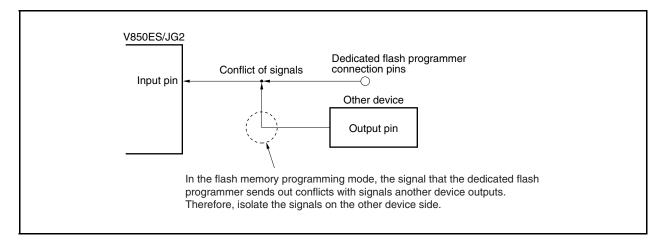
When 0 V is input to the FLMD0 pin, the FLMD1 pin does not function. When V_{DD} is supplied to the FLMD0 pin, the flash memory programming mode is entered, so 0 V must be input to the FLMD1 pin. The following shows an example of the connection of the FLMD1 pin.

FLMD0	FLMD1	Operation Mode
0	Don't care	Normal operation mode
Vdd	0	Flash memory programming mode
Vdd	Vdd	Setting prohibited

(3) Serial interface pin

The following shows the pins used by each serial interface.

Serial Interface	Pins Used
UARTA0	TXDA0, RXDA0
CSIB0	SOB0, SIB0, SCKB0
CSIB3	SOB3, SIB3, SCKB3
CSIB0 + HS	SOB0, SIB0, SCKB0, PCM0
CSIB3 + HS	SOB3, SIB3, SCKB3, PCM0


Table 26-9. Pins Used by Serial Interfaces

When connecting a dedicated flash programmer to a serial interface pin that is connected to another device on-board, care should be taken to avoid conflict of signals and malfunction of the other device.

(a) Conflict of signals

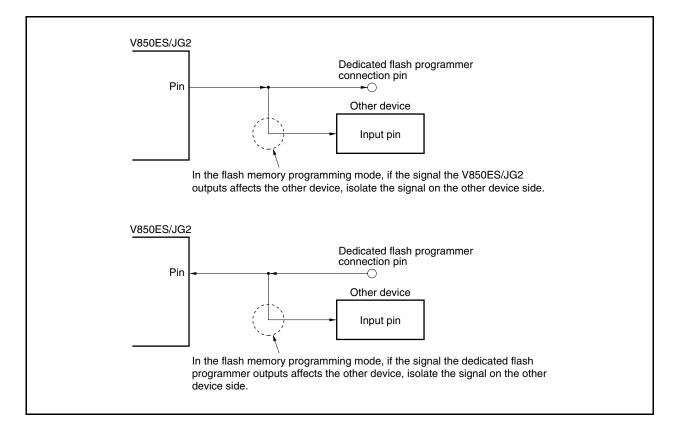
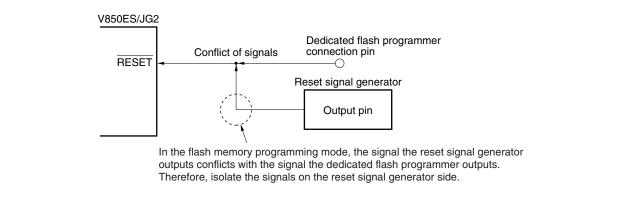

When the dedicated flash programmer (output) is connected to a serial interface pin (input) that is connected to another device (output), a conflict of signals occurs. To avoid the conflict of signals, isolate the connection to the other device or set the other device to the output high-impedance status.

Figure 26-13. Conflict of Signals (Serial Interface Input Pin)

(b) Malfunction of other device

When the dedicated flash programmer (output or input) is connected to a serial interface pin (input or output) that is connected to another device (input), the signal is output to the other device, causing the device to malfunction. To avoid this, isolate the connection to the other device.


(4) RESET pin

When the reset signals of the dedicated flash programmer are connected to the **RESET** pin that is connected to the reset signal generator on-board, a conflict of signals occurs. To avoid the conflict of signals, isolate the connection to the reset signal generator.

When a reset signal is input from the user system in the flash memory programming mode, the programming operation will not be performed correctly. Therefore, do not input signals other than the reset signals from the dedicated flash programmer.

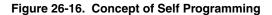
Figure 26-15. Conflict of Signals (RESET Pin)

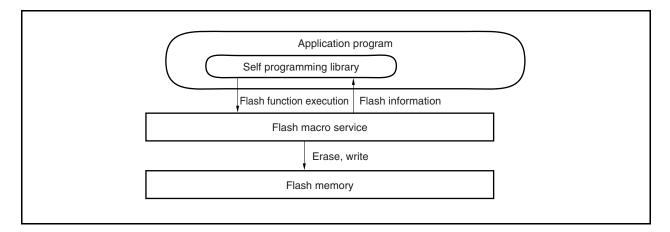
(5) Port pins (including NMI)

When the system shifts to the flash memory programming mode, all the pins that are not used for flash memory programming are in the same status as that immediately after reset. If the external device connected to each port does not recognize the status of the port immediately after reset, pins require appropriate processing, such as connecting to V_{DD} via a resistor or connecting to V_{SS} via a resistor.

(6) Other signal pins

Connect X1, X2, XT1, XT2, and REGC in the same status as that in the normal operation mode. During flash memory programming, input a low level to the $\overline{\text{DRST}}$ pin or leave it open. Do not input a high level.

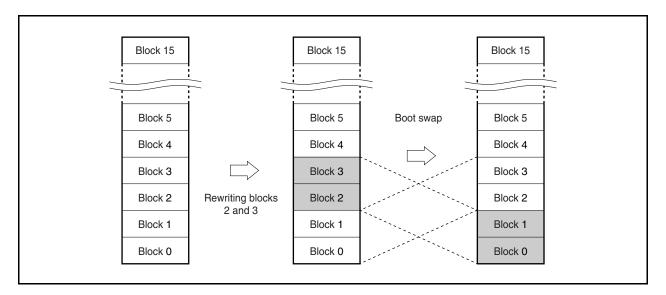

(7) Power supply


Supply the same power (VDD, VSS, EVDD, EVSS, BVDD, BVSS, AVREF0, AVREF1, AVSS) as in normal operation mode.

26.5 Rewriting by Self Programming

26.5.1 Overview

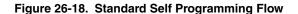
The V850ES/JG2 supports a flash macro service that allows the user program to rewrite the internal flash memory by itself. By using this interface and a self programming library that is used to rewrite the flash memory with a user application program, the flash memory can be rewritten by a user application transferred in advance to the internal RAM or external memory. Consequently, the user program can be upgraded and constant data can be rewritten in the field.

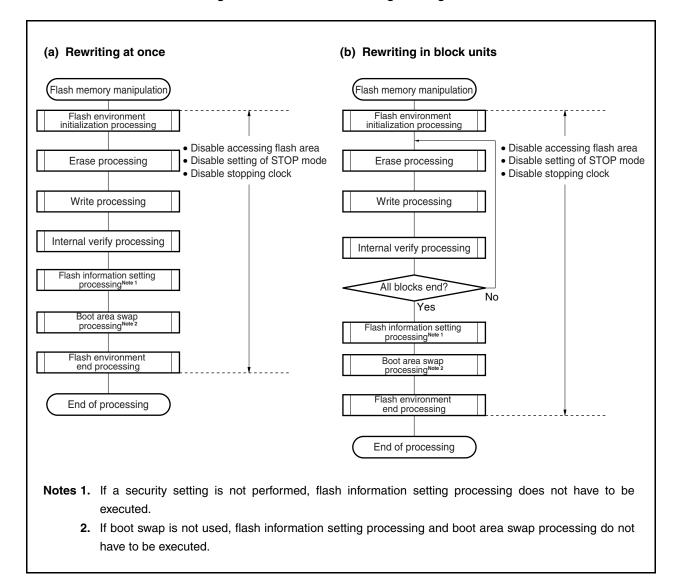


26.5.2 Features

(1) Secure self programming (boot swap function)

The V850ES/JG2 supports a boot swap function that can exchange the physical memory of blocks 0 and 1 with the physical memory of blocks 2 and 3. By writing the start program to be rewritten to blocks 2 and 3 in advance and then swapping the physical memory, the entire area can be safely rewritten even if a power failure occurs during rewriting because the correct user program always exists in blocks 0 and 1.




(2) Interrupt support

Instructions cannot be fetched from the flash memory during self programming. Conventionally, therefore, a user handler written to the flash memory could not be used even if an interrupt occurred. With the V850ES/JG2, a user handler can be registered to an entry RAM area by using a library function, so that interrupt servicing can be performed by internal RAM or external memory execution.

26.5.3 Standard self programming flow

The entire processing to rewrite the flash memory by flash self programming is illustrated below.

26.5.4 Flash functions

Function Name	Outline	Support
FlashEnv	Initialization of flash control macro	\checkmark
FlashBlockErase	Erasure of only specified one block	\checkmark
FlashWordWrite	Writing from specified address	
FlashBlockIVerify	Internal verification of specified one block	
FlashBlockBlankCheck	Blank check of specified one block	
FlashFLMDCheck	Check of FLMD pin	
FlashStatusCheck	Status check of operation specified immediately before	
FlashGetInfo	Reading of flash information	
FlashSetInfo	Setting of flash information	
FlashBootSwap	Swapping of boot area	
FlashSetUserHandler	User interrupt handler registration function	

Table 26-10. Flash Function List

26.5.5 Pin processing

(1) FLMD0 pin

The FLMD0 pin is used to set the operation mode when reset is released and to protect the flash memory from being written during self rewriting. It is therefore necessary to keep the voltage applied to the FLMD0 pin at 0 V when reset is released and a normal operation is executed. It is also necessary to apply a voltage of VDD level to the FLMD0 pin during the self programming mode period via port control before the memory is rewritten.

When self programming has been completed, the voltage on the FLMD0 pin must be returned to 0 V.

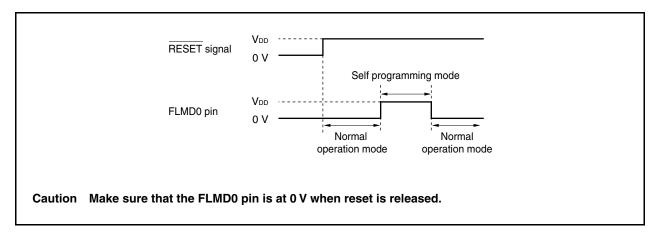


Figure 26-19. Mode Change Timing

26.5.6 Internal resources used

The following table lists the internal resources used for self programming. These internal resources can also be used freely for purposes other than self programming.

Resource Name	Description
Entry RAM area (124 bytes of either internal RAM/external RAM)	Routines and parameters used for the flash macro service are located in this area. The entry program and default parameters are copied by calling a library initialization function.
Stack area (user stack + 300 bytes)	An extension of the stack used by the user is used by the library (can be used in both the internal RAM and external RAM).
Library code (1900 bytes)	Program entity of library (can be used anywhere other than the flash memory block to be manipulated).
Application program	Executed as user application. Calls flash functions.
Maskable interrupt	Can be used in the user application execution status or self programming status. To use this interrupt in the self programming status, the interrupt servicing start address must be registered in advance by a registration function.
NMI interrupt	Can be used in the user application execution status or self programming status. To use this interrupt in the self programming status, the interrupt servicing start address must be registered in advance by a registration function.

Table 26-11. Internal Resources Used

CHAPTER 27 ON-CHIP DEBUG FUNCTION

The V850ES/JG2 on-chip debug function can be implemented by the following two methods.

- Using the DCU (debug control unit)
 On-chip debug function is implemented by the on-chip DCU in the V850ES/JG2, with using the DRST, DCK, DMS, DDI, and DDO pins as the debug interface pins.
- Not using the DCU
 On-chip debug function is implemented by MINICUBE2 or the like, using the user resources, instead of the DCU.

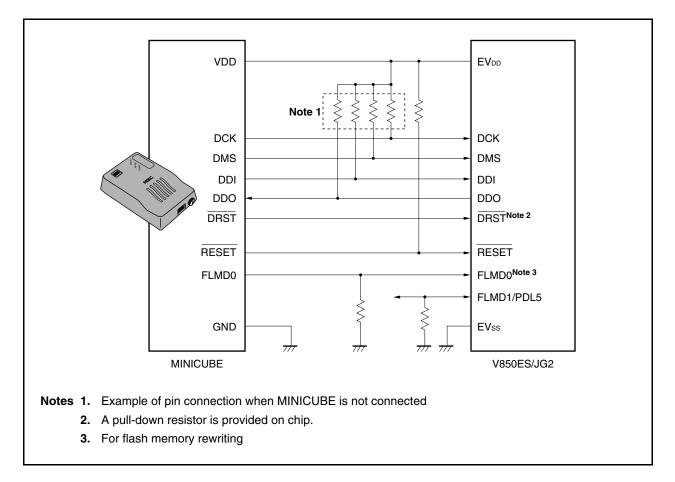
The following table shows the features of the two on-chip debug functions.

		Debugging Using DCU	Debugging Without Using DCU		
Debug interface pins		DRST, DCK, DMS, DDI, DDO	When UARTA0 is used RXD0, TXD0		
			When CSIB0 is used SIB0, SOB0, SCKB0, HS (PCM0)		
			• When CSIB3 is used SIB3, SOB3, SCKB3, HS (PCM0)		
Securement of u	iser resources	Not required	Required		
Hardware break	function	2 points	2 points		
Software break	Internal ROM area	4 points	4 points		
function Internal RAM area		2000 points	2000 points		
Real-time RAM	monitor function ^{Note 1}	Available	Available		
Dynamic memory modification (DMM) function		Available	Available		
Mask function		Reset, NMI, INTWDT2, HLDRQ, WAIT	RESET pin		
ROM security function		10-byte ID code authentication	10-byte ID code authentication		
Hardware used		NINICUBE [®] , etc.	NINICUBE2, etc.		
Trace function		Not supported.	Not supported.		
Debug interrupt (DBINT)	interface function	Not supported.	Not supported.		

Table 27-1. On-Chip Debug Function Features

Notes 1. This is a function which reads out memory contents during program execution.

2. This is a function which rewrites RAM contents during program execution.


<R>

27.1 Debugging with DCU

Programs can be debugged using the debug interface pins (DRST, DCK, DMS, DDI, and DDO) to connect the onchip debug emulator (MINICUBE).

27.1.1 Connection circuit example

Figure 27-1. Circuit Connection Example When Debug Interface Pins Are Used for Communication Interface

27.1.2 Interface signals

The interface signals are described below.

(1) DRST

This is a reset input signal for the on-chip debug unit. It is a negative-logic signal that asynchronously initializes the debug control unit.

MINICUBE raises the $\overline{\text{DRST}}$ signal when it detects V_{DD} of the target system after the integrated debugger is started, and starts the on-chip debug unit of the device.

When the DRST signal goes high, a reset signal is also generated in the CPU.

When starting debugging by starting the integrated debugger, a CPU reset is always generated.

(2) DCK

This is a clock input signal. It supplies a 20 MHz clock from MINICUBE. In the on-chip debug unit, the DMS and DDI signals are sampled at the rising edge of the DCK signal, and the data DDO is output at its falling edge.

(3) DMS

This is a transfer mode select signal. The transfer status in the debug unit changes depending on the level of the DMS signal.

(4) DDI

This is a data input signal. It is sampled in the on-chip debug unit at the rising edge of DCK.

(5) DDO

This is a data output signal. It is output from the on-chip debug unit at the falling edge of the DCK signal.

(6) EVDD

This signal is used to detect VDD of the target system. If VDD from the target system is not detected, the signals output from MINICUBE (DRST, DCK, DMS, DDI, FLMD0, and RESET) go into a high-impedance state.

(7) FLMD0

The flash self programming function is used for the function to download data to the flash memory via the integrated debugger. During flash self programming, the FLMD0 pin must be kept high. In addition, connect a pull-down resistor to the FLMD0 pin.

The FLMD0 pin can be controlled in either of the following two ways.

<1> To control from MINICUBE

Connect the FLMD0 signal of MINICUBE to the FLMD0 pin.

In the normal mode, nothing is driven by MINICUBE (high impedance).

During a break, MINICUBE raises the FLMD0 pin to the high level when the download function of the integrated debugger is executed.

<2> To control from port

Connect any port of the device to the FLMD0 pin.

The same port as the one used by the user program to realize the flash self programming function may be used.

On the console of the integrated debugger, make a setting to raise the port pin to high level before executing the download function, or lower the port pin after executing the download function.

For details, refer to the ID850QB Ver. 3.10 Integrated Debugger Operation User's Manual (U17435E).

(8) RESET

This is a system reset input pin. If the DRST pin is made invalid by the value of the OCDM0 bit of the OCDM register set by the user program, on-chip debugging cannot be executed. Therefore, reset is effected by MINICUBE, using the $\overrightarrow{\text{RESET}}$ pin, to make the $\overrightarrow{\text{DRST}}$ pin valid (initialization).

27.1.3 Maskable functions

Reset, NMI, INTWDT2, WAIT, and HLDRQ signals can be masked.

The maskable functions with the debugger (ID850QB) and the corresponding V850ES/JG2 functions are listed below.

Maskable Functions with ID850QB	Corresponding V850ES/JG2 Functions
NMIO	NMI pin input
NMI2	Non-maskable interrupt request signal (INTWDT2) generation
STOP	_
HOLD	HLDRQ pin input
RESET	Reset signal generation by RESET pin input, low-voltage detector, clock monitor, or watchdog timer (WDT2) overflow
WAIT	WAIT pin input

Table 27-2. Maskable Functions	Table 27-2.	Maskable	Functions
--------------------------------	-------------	----------	------------------

27.1.4 Register

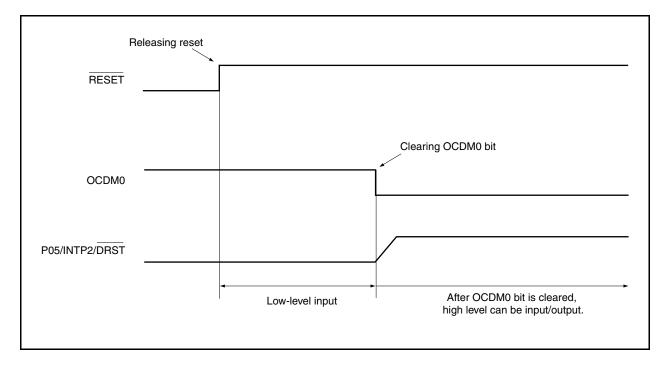
(1) On-chip debug mode register (OCDM)

The OCDM register is used to select the normal operation mode or on-chip debug mode. This register is a special register and can be written only in a combination of specific sequences (see **3.4.7 Special registers**). This register is also used to specify whether a pin provided with an on-chip debug function is used as an on-chip debug pin or as an ordinary port/peripheral function pin. It also is used to disconnect the internal pull-down resistor of the P05/INTP2/DRST pin.

The OCDM register can be written only while a low level is input to the $\overline{\text{DRST}}$ pin. This register can be read or written in 8-bit or 1-bit units.

	7	6	5	4	3	2	1	<0>	
OCDM	0	0	0	0	0	0	0	OCDM0	
	OCDM0		Operation mode						
	0	as on-chi	Selects normal operation mode (in which a pin that functions alternately as on-chip debug function pin is used as a port/peripheral function pin) and						
			cts the on-o		wn resistor	of the Put	D/INTP2/L	RST pin.	
	1		RST pin is I operation m		ch a pin th	at function	s alternat	elv as an	
		on-chip o	debug funct	ion pin is u				-	
			RST pin is l	-	a nin that	functions	Itornotoly		
			debug mod debug funct	•	•				
voltage detecto	or (LVI), ho	DDI, DD	ne value o O, DCK, a	f the OCD	M registe pins not a	r is retain as on-chi	ed. p debu ç	·	
ons 1. When after e • Inpu • Set t <1> <2> 2. The D	or (LVI), he using the xternal re t a low lev the OCDM Clear the Fix the P0	DDI, DDI DDI, DDO set, any o vel to the l0 bit. In OCDM0 I 05/INTP2/	ne value o O, DCK, a of the foll P05/INTF this case bit to 0. DRST pin -chip pul	f the OCD owing ac 2/DRST , take the to low le	M registe bins not a tions mus bin. following vel until	r is retain as on-chi st be take g actions <1> is co	ed. ip debug en. mpletec	ı pins but a	
voltage detecto ons 1. When after e • Inpu • Set t <1> <2> 2. The D	or (LVI), ho using the xternal re t a low lev the OCDM Clear the Fix the PO RST pin h	DDI, DD0 set, any o vel to the 0 bit. In 0CDM0 I 05/INTP2/ as an on leared to	ne value o O, DCK, a of the foll P05/INTF this case bit to 0. DRST pin -chip pul	f the OCD owing ac 2/DRST , take the to low le	M registe bins not a tions mus bin. following vel until	r is retain as on-chi st be take g actions <1> is co	ed. ip debug en. mpletec	ı pins but a	

27.1.5 Operation


The on-chip debug function is made invalid under the conditions shown in the table below. When this function is not used, keep the $\overline{\text{DRST}}$ pin low until the OCDM.OCDM0 flag is cleared to 0.

OCDM0 Flag	0	1
DRST Pin		
L	Invalid	Invalid
н	Invalid	Valid

Remark L: Low-level input

H: High-level input

27.1.6 Cautions

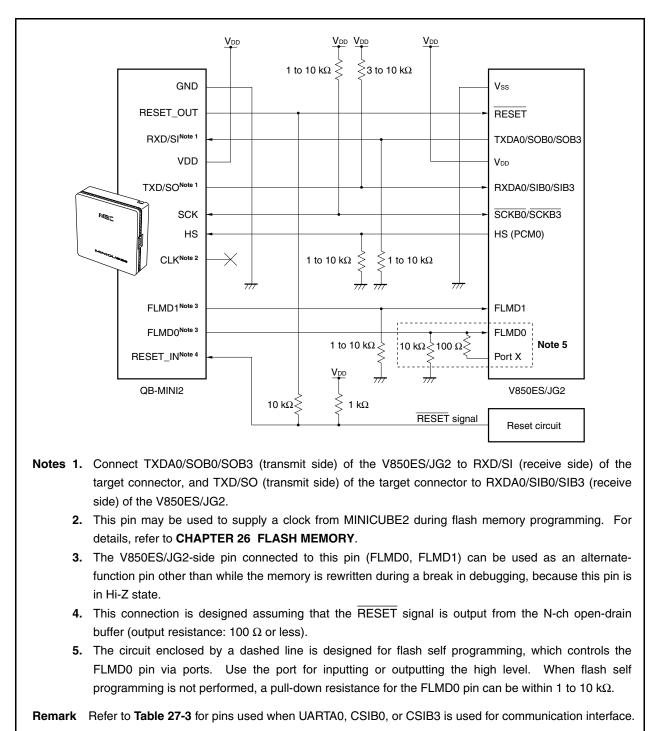
- (1) If a reset signal is input (from the target system or a reset signal from an internal reset source) during RUN (program execution), the break function may malfunction.
- (2) Even if the reset signal is masked by the mask function, the I/O buffer (port pin) may be reset if a reset signal is input from a pin.
- (3) Because a software breakpoint set in the internal flash memory is made temporarily invalid by target reset or internal reset generated by watchdog timer 2. The breakpoint becomes valid again when a hardware break or forced break occurs, but a software break does not occur until then.
- (4) Pin reset during a break is masked and the CPU and peripheral I/O are not reset. If pin reset or internal reset is generated as soon as the flash memory is rewritten by DMM or read by the RAM monitor function while the user program is being executed, the CPU and peripheral I/O may not be correctly reset.

- (5) When the following conditions (a) and (b) are satisfied and operation is stopped on the emulator (IECUBE[®], MINICUBE) due to a break, etc., watchdog timer 2 does not stop and a reset or non-maskable interrupt occurs. When a reset occurs, the debugger hangs up.
 - (a) The main clock or subclock is used as the source clock for watchdog timer 2.
 - (b) The internal oscillation clock is stopped (RCM.RSTOP bit = 1).

To avoid this, perform either of the following.

- When an emulator is used, use the internal oscillation clock as the source clock.
- When an emulator is used, do not stop the internal oscillator.
- (6) When the following conditions (a) and (b) are satisfied and operation is stopped on the emulator (IECUBE, MINICUBE) due to a break, etc., TMM does not stop even if the peripheral break function is set to "Break".
 - (a) Either the INTWT, internal oscillation clock (fR/8), or subclock are selected as the TMM source clock.
 - (b) The main clock is stopped.

To avoid this, perform either of the following.


- When an emulator is used, the main clock (fxx, fxx/2, fxx/4, fxx/64, fxx/512) is used as the source clock.
- When an emulator is used, disable the main clock oscillation.
- (7) In the on-chip debug mode, the DDO pin is forcibly set to the high-level output.

27.2 Debugging Without Using DCU

The following describes how to implement an on-chip debug function using MINICUBE2 with pins for UARTA0 (RXDA0 and TXDA0), pins for CSIB0 (SIB0, SOB0, SCKB0, and HS (PMC0)), or pins for CSIB3 (SIB3, SOB3, SCKB3, and HS (PMC0)) as debug interfaces, without using the DCU.

27.2.1 Circuit connection examples

Figure 27-3. Circuit Connection Example When UARTA0/CSIB0/CSIB3 Is Used for Communication Interface

Pin C	onfigurati	on of MINICUBE2 (QB-MINI2)	With CSIB	0-HS	6	With CSIB	3-HS	6	With UAR	TA0	
Signal Name	I/O	Pin Function	Pin Name	Pin	No.	Pin Name	Pin	No.	Pin Name	Pin	No.
				GC	GF		GC	GF		GC	GF
SI/RxD	Input	Pin to receive commands and data from V850ES/JG2	P41/SOB0	23	25	P911/SOB3	54	56	P30/TXDA0	25	27
SO/TxD	Output	Pin to transmit commands and data to V850ES/JG2	P40/SIB0	22	24	P910/SIB3	53	55	P31/RXDA0	26	28
SCK	Output	Clock output pin for 3-wire serial communication	P42/SCKB0	24	26	P912/SCKB3	55	57	Not needed	-	_
CLK ^{Note}	Output	Clock output pin to V850ES/JG2	Not needed ^{Note}	-	-	Not needed ^{∾₀te}	-	-	Not needed ^{Note}	-	-
			Not needed ^{Note}	-	-	Not needed ^{∾₀te}	-	_	Not needed ^{∾₀te}	-	-
RESET_OUT	Output	Reset output pin to V850ES/JG2	RESET	14	16	RESET	14	16	RESET	14	16
FLMD0	Output	Output pin to set V850ES/JG2 to debug mode or programming mode	FLMD0	8	10	FLMD0	8	10	FLMD0	8	10
FLMD1	Output	Output pin to set programming mode	PDL5/FLMD1	76	78	PDL5/FLMD1	76	78	PDL5/FLMD1	76	78
HS	Input	Handshake signal for CSI0 + HS communication	PCM0/WAIT	61	63	PCM0/WAIT	61	63	Not needed	-	-
GND	-	Ground	Vss	11	13	Vss	11	13	Vss	11	13
			AVss	2	4	AVss	2	4	AVss	2	4
			BVss	69	71	BVss	69	71	BVss	69	71
			EVss	33	35	EVss	33	35	EVss	33	35
RESET_IN	Input	Reset input pin on the target system									

Table 27-3. Wiring Between V850ES/JG2 and MINICUBE2

Note It is used as the clock output of the flash programmer for MINICUBE2. For details, refer to CHAPTER 26 FLASH MEMORY.

Remark GC: 100-pin plastic LQFP (fine pitch) (14×14) GF: 100-pin plastic QFP (fine pitch) (14×20)

27.2.2 Maskable functions

Only reset signals can be masked.

The maskable functions with the debugger (ID850QB) and the corresponding V850ES/JG2 functions are listed below.

Maskable Functions with ID850QB	Corresponding V850ES/JG2 Functions
NMIO	_
NMI1	_
NMI2	_
STOP	_
HOLD	_
RESET	Reset signal generation by RESET pin input
WAIT	_

Table 27-4. Maskable Functions

27.2.3 Securement of user resources

The user must prepare the following to perform communication between MINICUBE2 and the target device and implement each debug function. These items need to be set in the user program or using the compiler options.

(1) Securement of memory space

The shaded portions in Figure 27-4 are the areas reserved for placing the debug monitor program, so user programs and data cannot be allocated in these spaces. These spaces must be secured so as not to be used by the user program.

(2) Security ID setting

The ID code must be embedded in the area between 0000070H and 0000079H in Figure 27-4, to prevent the memory from being read by an unauthorized person. For details, refer to **27.3 ROM Security Function**.

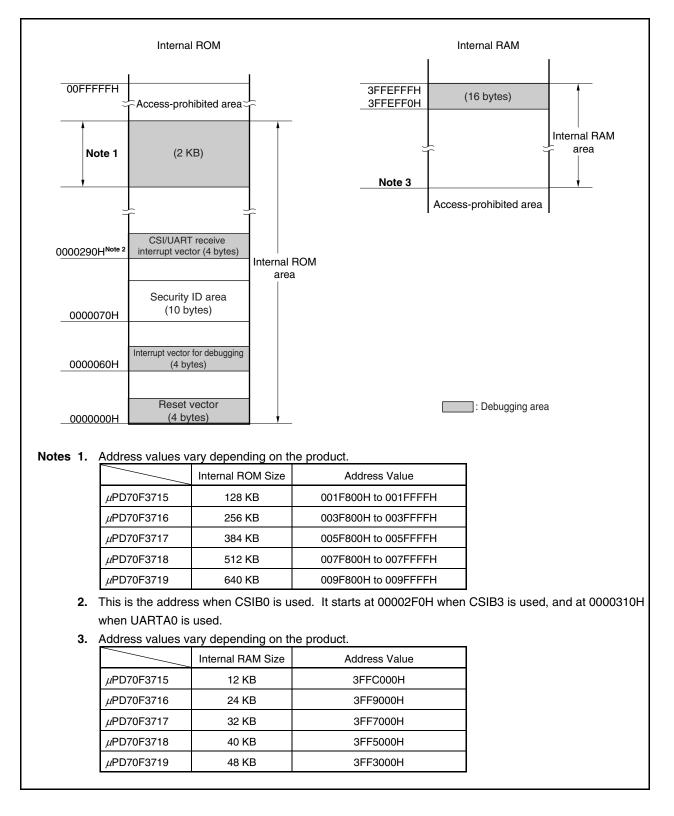


Figure 27-4. Memory Spaces Where Debug Monitor Programs Are Allocated

(3) Reset vector

A reset vector includes the jump instruction for the debug monitor program.

[How to secure areas]

It is not necessary to secure this area intentionally. When downloading a program, however, the debugger rewrites the reset vector in accordance with the following cases. If the rewritten pattern does not match the following cases, the debugger generates an error (F0C34 when using the ID850QB).

(a) When two nop instructions are placed in succession from address 0

Before rewriting	After rewriting
0x0 nop \rightarrow	Jumps to debug monitor program at 0x0
0x2 nop	0x4 xxxx
0x4 xxxx	

(b) When two 0xFFFF are successively placed from address 0 (already erased device)

Before rewriting	After rewriting
0x0 0xFFFF \rightarrow	Jumps to debug monitor program at 0x0
0x2 0xFFFF	0x4 xxxx
0x4 xxxx	

(c) The *jr* instruction is placed at address 0 (when using CA850)

Before rewriting	After rewriting
0x0 jr disp22 \rightarrow	Jumps to debug monitor program at 0x0
	0x4 jr disp22 - 4

(d) mov32 and jmp are placed in succession from address 0 (when using IAR compiler ICCV850)

(e) The jump instruction for the debug monitor program is placed at address 0

Before rewriting		After rewriting
Jumps to debug monitor program at 0x0	\rightarrow	No change

(4) Securement of area for debug monitor program

The shaded portions in Figure 27-4 are the areas where the debug monitor program is allocated. The monitor program performs initialization processing for debug communication interface and RUN or break processing for the CPU. The internal ROM area must be filled with 0xFF. This area must not be rewritten by the user program.

[How to secure areas]

It is not necessarily required to secure this area if the user program does not use this area.

To avoid problems that may occur during the debugger startup, however, it is recommended to secure this area in advance, using the compiler.

The following shows examples for securing the area, using the NEC Electronics compiler CA850. Add the assemble source file and link directive code, as shown below.

• Assemble source (Add the following code as an assemble source file.)

```
-- Secures 2 KB space for monitor ROM section
.section "MonitorROM", const
.space
       0x800, 0xff
-- Secures interrupt vector for debugging
.section "DBG0"
.space
       4, 0xff
-- Secures interrupt vector for serial communication
-- Change the section name according to the serial communication mode used
.section "INTCBOR"
.space
        4, 0xff
-- Secures 16-byte space for monitor RAM section
.section "MonitorRAM", bss
       monitorramsym, 16, 4
                                 -- defines symbol monitorramsym
.lcomm
```

• Link directive (Add the following code to the link directive file.) The following shows an example when the internal ROM has 256 KB (end address is 003FFFFH) and internal RAM has 24 KB (end address is 3FFEFFFH).

```
MROMSEG : !LOAD ?R V0x03f800{
MonitorROM = $PROGBITS ?A MonitorROM;
};
MRAMSEG : !LOAD ?RW V0x03ffeff0{
MonitorRAM = $NOBITS ?AW MonitorRAM;
};
```

(5) Securement of communication serial interface

UARTA0, CSIB0, or CSIB3 is used for communication between MINICUBE2 and the target system. The settings related to the serial interface modes are performed by the debug monitor program, but if the setting is changed by the user program, a communication error may occur.

To prevent such a problem from occurring, communication serial interface must be secured in the user program.

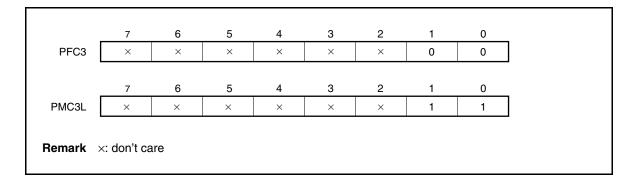
[How to secure communication serial interface]

• On-chip debug mode register (OCDM)

For the on-chip debug function using the UARTA0, CSIB0, or CSIB3, set the OCDM register functions to normal mode. Be sure to set as follows.

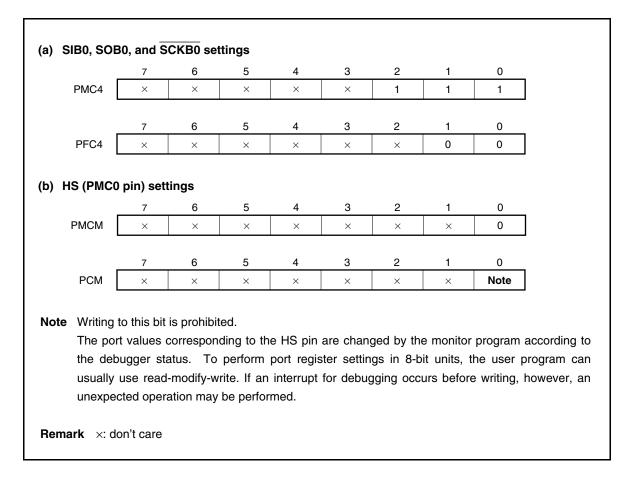
- Input low level to the P05/INTP2/DRST pin.
- Set the OCDM0 bit as shown below.
 - <1> Clear the OCDM0 bit to 0.
 - <2> Fix the P05/INTP2/DRST pin input to low level until the processing of <1> is complete.
- Serial interface registers

Do not set the registers related to CSIB0, CSIB3, or UARTA0 in the user program.


• Interrupt mask register

When CSIB0 is used, do not mask the transmit end interrupt (INTCB0R). When CSIB3 is used, do not mask the transmit end interrupt (INTCB3R). When UARTA0 is used, do not mask the receive end interrupt (INTUA0R).

	7	6	5	4	3	2	1	0
CB0RIC	×	0	×	×	×	×	×	×
b) When C	SIB3 is u	used						
	7	6	5	4	3	2	1	0
CB3RIC	×	0	×	×	×	×	×	×
-								
C) When L	JARTAO i	s used						
	7	6	5	4	3	2	1	0
UA0RIC	×	0	×	×	×	×	×	×


• Port registers when UARTA0 is used

When UARTA0 is used, port registers are set to make the TXDA0 and RXDA0 pins valid by the debug monitor program. Do not change the following register settings with the user program during debugging. (The same value can be overwritten.)

Port registers when CSIB0 is used

When CSIB0 is used, port registers are set to make the SIB0, SOB0, SCKB0, and HS (PMC0) pins valid by the debug monitor program. Do not change the following register settings with the user program during debugging. (The same value can be overwritten.)

• Port registers when CSIB3 is used

When CSIB3 is used, port registers are set to make the SIB3, SOB3, SCKB3, and HS (PMC0) pins valid by the debug monitor program. Do not change the following register settings with the user program during debugging. (The same value can be overwritten.)

a) SIB3, SOI	33, and \overline{S}	CKB3 se	ttinas					
.,,	7	6	5	4	3	2	1	0
PMC9H	×	×	×	1	1	1	×	×
	7	6	5	4	3	2	1	0
PFC9H	×	×	×	1	1	1	×	×
b) HS (PMC) pin) sett	ings						
	7	6	5	4	3	2	1	0
PMCM	×	×	×	×	×	×	×	0
	7	6	5	4	3	2	1	0
PCM	×	×	×	×	×	×	×	Note
•	to this bit			e HS pin	are chan	aed by th	ie monitoi	r program a

Remark ×: don't care

27.2.4 Cautions

(1) Handling of device that was used for debugging

Do not mount a device that was used for debugging on a mass-produced product, because the flash memory was rewritten during debugging and the number of rewrites of the flash memory cannot be guaranteed. Moreover, do not embed the debug monitor program into mass-produced products.

(2) When breaks cannot be executed

Forced breaks cannot be executed if one of the following conditions is satisfied.

- Interrupts are disabled (DI)
- Interrupts issued for the serial interface, which is used for communication between MINICUBE2 and the target device, are masked
- Standby mode is entered while standby release by a maskable interrupt is prohibited
- Mode for communication between MINICUBE2 and the target device is UARTA0, and the main clock has been stopped

(3) When pseudo real-time RAM monitor (RRM) function and DMM function do not operate

The pseudo RRM function and DMM function do not operate if one of the following conditions is satisfied.

- Interrupts are disabled (DI)
- Interrupts issued for the serial interface, which is used for communication between MINICUBE2 and the target device, are masked
- Standby mode is entered while standby release by a maskable interrupt is prohibited
- Mode for communication between MINICUBE2 and the target device is UARTA0, and the main clock has been stopped
- Mode for communication between MINICUBE2 and the target device is UARTA0, and a clock different from the one specified in the debugger is used for communication

(4) Standby release with pseudo RRM and DMM functions enabled

The standby mode is released by the pseudo RRM function and DMM function if one of the following conditions is satisfied.

- Mode for communication between MINICUBE2 and the target device is CSIB0 or CSIB3
- Mode for communication between MINICUBE2 and the target device is UARTA0, and the main clock has been supplied.

(5) Writing to peripheral I/O registers that requires a specific sequence, using DMM function

Peripheral I/O registers that requires a specific sequence cannot be written with the DMM function.

(6) Devices for which debugger startup becomes slow

Chip erase and writing of the monitor program for debugging are conducted when the debugger is first started up, but this operation takes about a dozen seconds.

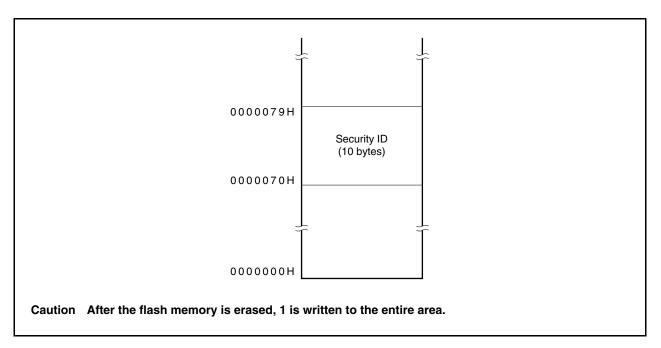
(7) Writing of the monitor program for debugging

When CPU operation clock settings are changed with the debugger, the debugger rewrites the monitor program. The time required is the same as that mentioned just above in (6). For the integrated debugger ID850QB, this applies when settings of the Clock column in the configuration dialog box are changed.

(8) Flash self programming

If a space where the debug monitor program is allocated is rewritten by flash self programming, the debugger can no longer operate normally.

27.3 ROM Security Function


27.3.1 Security ID

The flash memory versions of the V850ES/JG2 perform authentication using a 10-byte ID code to prevent the contents of the flash memory from being read by an unauthorized person during on-chip debugging by the on-chip debug emulator.

Set the ID code in the 10-byte on-chip flash memory area from 0000070H to 0000079H to allow the debugger perform ID authentication.

If the IDs match, the security is released and reading flash memory and using the on-chip debug emulator are enabled.

- Set the 10-byte ID code to 0000070H to 0000079H.
- Bit 7 of 0000079H is the on-chip debug emulator enable flag.
 (0: Disable, 1: Enable)
- When the on-chip debug emulator is started, the debugger requests ID input. When the ID code input on the debugger and the ID code set in 0000070H to 0000079H match, the debugger starts.
- Debugging cannot be performed if the on-chip debug emulator enable flag is 0, even if the ID codes match.

Figure 27-5. Security ID Area

27.3.2 Setting

The following shows how to set the ID code as shown in Table 27-5.

When the ID code is set as shown in Table 27-5, the ID code input in the configuration dialog box of the ID850QB is "123456789ABCDEF123D4" (the ID code is case-insensitive).

Address	Value
0x70	0x12
0x71	0x34
0x72	0x56
0x73	0x78
0x74	0x9A
0x75	0xBC
0x76	0xDE
0x77	0XF1
0x78	0x23
0x79	0xD4

Table 27-5. ID Code

The ID code can be specified for the device file that supports CA850 Ver. 3.10 or later and the security ID using the PM+ compiler common option setting.

1

Compiler Common Options	×
File Startup Link Directive ROM Flash Device	
256M Byte Mode BPC Register: Security ID: 0x123456789ABCDEF123D4	
This edit box can be specified a security ID by hexadecimal. When it is specified, -Xsid option of the linker is set.	
OK Cancel Apply Help	

Г

[Program example (when using CA850 Ver. 3.10 or later)]

CHAPTER 28 ELECTRICAL SPECIFICATIONS

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD	$V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}$	-0.5 to +4.6	V
	BVDD		-0.5 to +4.6	V
	EVDD	$V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}$	-0.5 to +4.6	V
	AV _{REF0}	$V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}$	-0.5 to +4.6	V
	AV _{REF1}	$V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}$	-0.5 to +4.6	V
	Vss	Vss = EVss = BVss = AVss	-0.5 to +0.5	V
	AVss	Vss = EVss = BVss = AVss	-0.5 to +0.5	V
	BVss	Vss = EVss = BVss = AVss	-0.5 to +0.5	V
	EVss	Vss = EVss = BVss = AVss	-0.5 to +0.5	V
Input voltage	VII	RESET, FLMD0, PDH4, PDH5	-0.5 to EV _{DD} + 0.5 ^{Note 1}	V
	V ₁₂	PCM0 to PCM3, PCT0, PCT1, PCT4, PCT6, PDH0 to PDH3, PDL0 to PDL15	-0.5 to BV _{DD} + 0.5 ^{Note 1}	V
	VI3	P10, P11	-0.5 to AV _{REF1} + 0.5 ^{Note 1}	V
	V _{I4}	X1, X2, XT1, XT2	$-0.5 \text{ to } V_{\text{RO}}^{\text{Note 2}} + 0.5^{\text{Note 1}}$	V
	V15	P02 to P06, P30 to P39, P40 to P42, P50 to P55, P90 to P915	-0.5 to +6.0	V
Analog input voltage	VIAN	P70 to P711	-0.5 to AV _{REF0} + 0.5 ^{Note 1}	V

Absolute Maximum Ratings $(T_A = 25^{\circ}C)$ (1/2)

Notes 1. Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.

2. On-chip regulator output voltage (2.5 V (TYP.))

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Conditions		Ratings	Unit
Output current, low IoL		P02 to P06, P30 to P39, P40 to	Per pin	4	mA
		P42, P50 to P55, P90 to P915, PDH4, PDH5	Total of all pins	50	mA
		PCM0 to PCM3, PCT0, PCT1,	Per pin	4	mA
		PCT4, PCT6, PDH0 to PDH3, PDL0 to PDL15	Total of all pins	50	mA
		P10, P11	Per pin	4	mA
			Total of all pins	8	mA
		P70 to P711	Per pin	4	mA
			Total of all pins	20	mA
Output current, high	Іон	P02 to P06, P30 to P39, P40 to P42, P50 to P55, P90 to P915, PDH4, PDH5	Per pin	-4	mA
			Total of all pins	-50	mA
		PCM0 to PCM3, PCT0, PCT1, PCT4, PCT6, PDH0 to PDH3, PDL0 to PDL15	Per pin	-4	mA
			Total of all pins	-50	mA
		P10, P11	Per pin	-4	mA
			Total of all pins	-8	mA
		P70 to P711	Per pin	-4	mA
			Total of all pins	-20	mA
Operating ambient temperature	TA			-40 to +85	°C
Storage temperature	Tstg			-40 to +125	°C

Absolute Maximum Ratings (T_A = 25°C) (2/2)

Cautions 1. Do not directly connect the output (or I/O) pins of IC products to each other, or to VDD, VCC, and GND. Open-drain pins or open-collector pins, however, can be directly connected to each other.

Direct connection of the output pins between an IC product and an external circuit is possible, if the output pins can be set to the high-impedance state and the output timing of the external circuit is designed to avoid output conflict.

2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Capacitance (TA = -40 to $+85^{\circ}$ C, BVDD \leq VDD = EVDD = AVREF0 = AVREF1, VSS = EVSS = BVSS = AVSS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
I/O capacitance	Сю	fx = 1 MHz			10	pF
		Unmeasured pins returned to 0 V				

Operating Conditions

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{BV}_{DD} \le \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{\text{REF0}} = \text{AV}_{\text{REF1}}, \text{Vss} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

Internal System Clock Frequency	Conditions	Conditions Supply Voltage				Unit
		Vdd	EVDD	BVDD	AV _{REF0} , AV _{REF1}	
fxx = 2.5 to 20 MHz	C = 4.7 μ F, A/D converter stopped, D/A converter stopped	2.85 to 3.6	2.85 to 3.6	2.7 to 3.6	2.85 to 3.6	V
	C = 4.7 μ F, A/D converter operating, D/A converter operating	3.0 to 3.6	3.0 to 3.6	2.7 to 3.6	3.0 to 3.6	V
fxr = 32.768 kHz	C = 4.7 μ F, A/D converter stopped, D/A converter stopped	2.85 to 3.6	2.85 to 3.6	2.7 to 3.6	2.85 to 3.6	V

Main Clock Oscillator Characteristics

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \leq V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V})$

Resonator	Circuit Example	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator/ Crystal	hator/	Oscillation frequency (fx) ^{Note 1}		2.5		10	MHz
resonator		Oscillation stabilization	After reset is released		2 ¹⁶ /fx		S
		time ^{Note 2}	After STOP mode is released	1 ^{Note 4}	Note 3		ms
	7)7		After IDLE2 mode is released	350 ^{Note 4}	Note 3		μs

- Notes 1. The oscillation frequency shown above indicates only oscillator characteristics. Use the V850ES/JG2 so that the internal operation conditions do not exceed the ratings shown in AC Characteristics and DC Characteristics.
 - 2. Time required from start of oscillation until the resonator stabilizes.
 - **3.** The value varies depending on the setting of the OSTS register.
 - 4. Time required to set up the flash memory. Secure the setup time using the OSTS register.
- Cautions 1. When using the main clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. When the main clock is stopped and the device is operating on the subclock, wait until the oscillation stabilization time has been secured by the program before switching back to the main clock.

Manufacturer	Circuit Example	Oscillation	Recomm	ended Circuit	Constant	Oscillation Voltage Range	
(Part Number)		Frequency fx (kHz)	C1 (pF)	C2 (pF)	Rd (kΩ)	MIN. (V)	MAX. (V)
KYOCERA		4,000	12	12	1	2.85	3.6
KINSEKI	X1 X2	5,000	10	10	1	2.85	3.6
CORPORATION (HC-49/U-S)		8,000	8	8	0	2.85	3.6
		10,000	8	8	0	2.85	3.6
		3,145.72	12	12	1	2.85	3.6
		4,718.592	10	10	0	2.85	3.6
		6,291.456	8	8	0	2.85	3.6

<R> (i) KYOCERA KINSEKI CORPORATION: Crystal resonator (T_A = -40 to +85°C)

Caution This oscillator constant is a reference value based on evaluation under a specific environment by the resonator manufacturer.

If optimization of oscillator characteristics is necessary in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit.

The oscillation voltage and oscillation frequency indicate only oscillator characteristics. Use the V850ES/JG2 so that the internal operating conditions are within the specifications of the DC and AC characteristics.

Туре			Oscillation Frequency	Recommended Circuit Constant			Oscillation Voltage Range	
			fx (MHz)	C1 (pF)	C2 (pF)	Rd (kΩ)	MIN. (V)	MAX. (V)
Surface		CSTCR4M00G55-R0	4.000	(39)	(39)	0	2.85	3.60
mounting		CSTCR5M00G55-R0	5.000	(39)	(39)	0	2.85	3.60
	X1 X2	CSTCR6M00G55-R0	6.000	(39)	(39)	0	2.85	3.60
		CSTCE8M00G55-R0	8.000	(33)	(33)	0	2.85	3.60
		CSTCE10M0G55-R0	10.000	(33)	(33)	0	2.85	3.60
Lead		CSTLS4M00G56-B0	4.000	(47)	(47)	0	2.85	3.60
		CSTLS5M00G53-B0	5.000	(15)	(15)	0	2.85	3.60
	777	CSTLS6M00G53-B0	6.000	(15)	(15)	0	2.85	3.60
		CSTLS8M00G53-B0	8.000	(15)	(15)	0	2.85	3.60
		CSTLS10M0G53-B0	10.000	(15)	(15)	0	2.85	3.60

<R> (ii) Murata Mfg. Co. Ltd.: Ceramic resonator (T_A = -40 to +85°C)

Caution This oscillator constant is a reference value based on evaluation under a specific environment by the resonator manufacturer.

If optimization of oscillator characteristics is necessary in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit.

The oscillation voltage and oscillation frequency indicate only oscillator characteristics. Use the V850ES/JG2 so that the internal operating conditions are within the specifications of the DC and AC characteristics.

Remark Figures in parentheses in columns C1 and C2 indicate the capacitance incorporated in the resonator.

Subclock Oscillator Characteristics

(TA = -40 to +85°C, BVDD ≤ VDD = EVDD = AVREF0 = AVREF1, VSS = EVSS = BVSS = AVSS = 0 V)

Resonator	Circuit Example	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		Oscillation frequency (fxT) ^{Note 1}		32	32.768	35	kHz
		Oscillation stabilization time ^{Note 2}				10	S

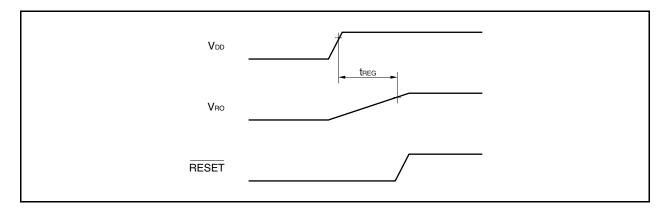
- Notes 1. The oscillation frequency shown above indicates only oscillator characteristics. Use the V850ES/JG2 so that the internal operation conditions do not exceed the ratings shown in AC Characteristics and DC Characteristics.
 - 2. Time required from when V_{DD} reaches the oscillation voltage range (2.85 V (MIN.)) to when the crystal resonator stabilizes.
- Cautions 1. When using the subclock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - The subclock oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the main clock oscillator.
 Particular care is therefore required with the wiring method when the subclock is used.
 - 3. For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

PLL Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, BV_{DD} \le V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input frequency	fx	×4 mode	2.5		5	MHz
		×8 mode	2.5		2.5	MHz
Output frequency	fxx	×4 mode	10		20	MHz
		×8 mode	20		20	MHz
Lock time	t PLL	After VDD reaches 2.85 V (MIN.)			800	μs

Internal Oscillator Characteristics


$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \leq V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output frequency	fR		100	200	400	kHz

Regulator Characteristics

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \le V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage	VDD	fxx = 20 MHz (MAX.)	2.85		3.6	V
Output voltage	VRO			2.5		V
Regulator output stabilization time	treg	After V _{DD} reaches 2.85 V (MIN.), Stabilization capacitance C = 4.7 μ F connected to REGC pin			1	ms

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	PDH4, PDH5	0.7EVDD		EVDD	V
	VIH2	RESET, FLMD0	0.8EVDD		EVDD	V
	Vінз	P02 to P06, P30 to P37, P42, P50 to P55, P92 to P915	0.7EVDD EVDD 0.8EVDD EVDD P37, P42, P50 to P55, 0.8EVDD 5.5 P90, P91 0.7EVDD 5.5 T0, PCT1, PCT4, 0.7BVDD BVDD I3, PDL0 to PDL15 0.7AVREF0 AVREF0 0.7AVREF1 AVREF0 AVREF0 P37, P42, P50 to P55, EVss 0.3EV P0, P91 EVss 0.3EV P0, P91 EVss 0.3EV P0, P91 EVss 0.3EV P37, P42, P50 to P55, EVss 0.2EV P37, P42, P50 to P55, EVss 0.3EV P30, P91 EVss 0.3EV P37, P42, P50 to P55, EVss 0.3EV P30, P91 EVss 0.3EV P30, P91 EVss 0.3AVR VD = AVREF0 = AVREF1 5 -5	5.5	V	
	VIH4	P38, P39, P40, P41, P90, P91	0.7EVDD		5.5	V
	VIH5	PCM0 to PCM3, PCT0, PCT1, PCT4, PCT6, PDH0 to PDH3, PDL0 to PDL15	0.7BVDD		BVdd	V
	VIH6	P70 to P711	0.7AVREF0		AV _{REF0}	V
	VIH7	P10, P11	0.7AV _{REF1}		AV _{REF1}	V
Input voltage, low	VIL1	PDH4, PDH5			0.3EVDD	V
	VIL2	RESET, FLMD0	EVss		0.2EVDD	V
	VIH4 P3 VIH4 P3 VIH5 P4 VIH6 P3 VIH6 P3 VIH7 P3 VIL1 P1 VIL2 R1 VIL2 R1 VIL3 P3 VIL4 P3 VIL5 P4 VIL6 P3 VIL7 P3 NIL7 P4	P02 to P06, P30 to P37, P42, P50 to P55, P92 to P915	EVss		0.2EV _{DD}	V
		P38, P39, P40, P41, P90, P91	EVss		0.3EVDD	V
	VIL5	PCM0 to PCM3, PCT0, PCT1, PCT4, PCT6, PDH0 to PDH3, PDL0 to PDL15	BVss		0.3BVDD	V
	VIL6	P70 to P711	AVss		0.3AVREFO	V
	VIL7	P10, P11	AVss		0.3AVREF1	V
Input leakage current, high	Іцн	$V_{I} = V_{DD} = EV_{DD} = BV_{DD} = AV_{REF0} = AV_{REF1}$			5	μA
Input leakage current, low	Ilil	V1 = 0 V			-5	μA
Output leakage current, high	Ігон	$V_{O} = V_{DD} = EV_{DD} = BV_{DD} = AV_{REF0} = AV_{REF1}$			5	μA
Output leakage current, low	Ilol	Vo = 0 V			-5	μA

DC Characteristics

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \le V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}) (1/3)$

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \le V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}) (2/3)$

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P02 to P06, P30 to P39,	Per pin Іон = –1.0 mA	Total of all pins –20 mA	EV _{DD} -1.0		EVDD	V
		P40 to P42, P50 to P55, P90 to P915, PDH4, PDH5	Per pin Іон = –100 <i>µ</i> А	Total of all pins –6.0 mA	EV _{DD} -0.5		EVDD	V
	Voh2	PCM0 to PCM3, PCT0,	Per pin Іон = –1.0 mA	Total of all pins –20 mA	BV _{DD} -1.0		BVDD	V
		PCT1, PCT4, PCT6, PDH0 to PDH3, PDL0 to PDL15	Per pin Іон = –100 <i>µ</i> А	Total of all pins –2.8 mA	BV _{DD} – 0.5		BVDD	V
	Vонз	P70 to P711	Per pin Іон = –0.4 mA	Total of all pins -4.8 mA	AV _{REF0} – 1.0		AV _{REF0}	V
			Per pin Іон = –100 <i>μ</i> А	Total of all pins -1.2 mA	AVREFO – 0.5		AV _{REF0}	V
	V он4	P10, P11	Per pin Іон = –0.4 mA	Total of all pins -0.8 mA	AV _{REF1} – 1.0		AV _{REF1}	V
		Per pin Іон = –100 <i>µ</i> А	Total of all pins -0.2 mA	AV _{REF1} – 0.5		AV _{REF1}	V	
Output voltage, low	Vol1	P02 to P06, P30 to P37, P42, P50 to P55, P92 to P915, PDH4, PDH5	Iон = -100 µA Per pin IoL = 1.0 mA	Total of all pins 20 mA	0		0.4	V
	Vol2	P38, P39, P40, P41, P90, P91	Per pin Io∟ = 3.0 mA		0		0.4	V
VoL3 PCM0 to PCM3, PCT PCT1, PCT PCT6, PDH to PDH3, PDL0 to	PCM3, PCT0, PCT1, PCT4, PCT6, PDH0 to PDH3,	Per pin Io∟ = 1.0 mA	Total of all pins 20 mA	0		0.4	V	
	Vol4	P10, P11, P70 to P711	Per pin Io∟ = 0.4 mA	Total of all pins 5.6 mA	0		0.4	V
Software pull-down resistor	R1	P05	VI = VDD		10	30	100	kΩ

Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

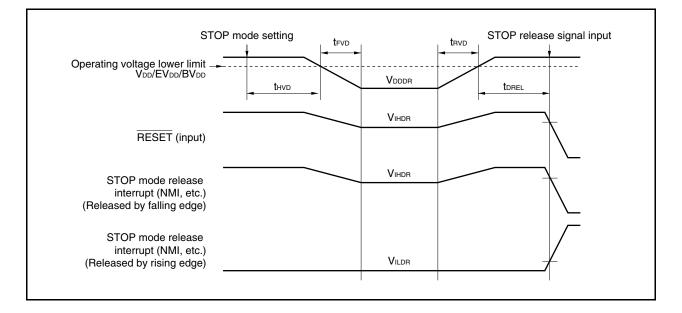
2. When the IOH and IOL conditions are not satisfied for a pin but the total value of all pins is satisfied, only that pin does not satisfy the DC characteristics.

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Supply current ^{Note 1}	IDD1	Normal operation	fxx = 20 MHz	Note 2		32	48	mA
			(fx = 5 MHz)	Note 3		30	45	mA
	IDD2	HALT mode	fxx = 20 MHz	Note 2		17	26	mA
			(fx = 5 MHz)	Note 3		16	24	mA
	Idd3	IDLE1 mode	fxx = 5 MHz (fx = 5 MH PLL off	łz),		0.8	1.6	mA
	IDD4	IDLE2 mode	fxx = 5 MHz (fx = 5 MH PLL off	łz),		0.3	0.8	mA
	IDD5	Subclock operating mode	fxt = 32.768 kHz, main clock,	Note 2		300	600	μA
		internal oscillator stopped	Note 3		200	400	μA	
		Note 2		18	100	μA		
			internal oscillator stopped	Note 3		18	80	μA
	IDD7	STOP mode	Subclock stopped, inte oscillator stopped	ernal		6	50	μA
			Subclock operating, in oscillator stopped	iternal		10	60	μA
	IDD8 Flash memory programming mode		Subclock stopped, inte oscillator operating	ernal		10	60	μA
		Flash memory	fxx = 20 MHz	Note 2		35	54	mA
		(fx = 5 MHz)	Note 3		33	51	mA	

DC Characteristics

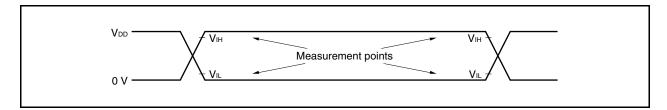
$(T_A = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \le V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}) (3/3)$

- **Notes 1.** Total of V_{DD}, EV_{DD}, and BV_{DD} currents. Current flowing through the output buffers, A/D converter, D/A converter, and on-chip pull-down resistor is not included.
 - **2.** μPD70F3718, 70F3719
 - **3.** *μ*PD70F3715, 70F3716, 70F3717

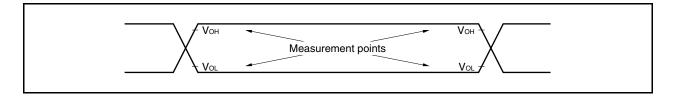

Data Retention Characteristics

In STOP mode

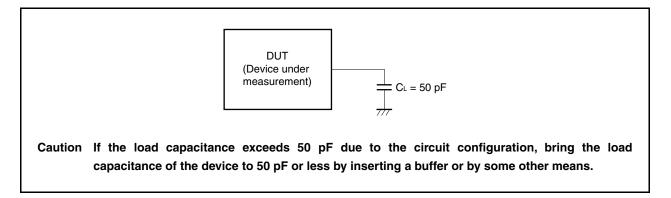
$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \leq V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	VDDDR	STOP mode (all functions stopped)	1.9		3.6	V
Data retention current	Idddr	STOP mode (all functions stopped)		7	50	μA
Supply voltage rise time	trvd		200			μs
Supply voltage fall time	t FVD		200			μs
Supply voltage retention time	t hvd	After STOP mode setting	0			ms
STOP release signal input time	t DREL	After VDD reaches 2.85 V (MIN.)	0			ms
Data retention input voltage, high	VIHDR	$V_{DD} = EV_{DD} = BV_{DD} = V_{DDDR}$	0.9VDDDR		VDDDR	V
Data retention input voltage, low	VILDR	$V_{DD} = EV_{DD} = BV_{DD} = V_{DDDR}$	0		0.1VDDDR	V

Caution Shifting to STOP mode and restoring from STOP mode must be performed within the rated operating range.

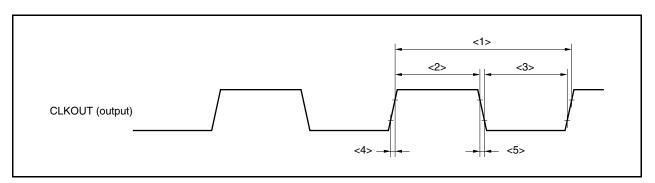


AC Characteristics


AC Test Input Measurement Points (VDD, AVREF0, AVREF1, EVDD, BVDD)

AC Test Output Measurement Points

Load Conditions



CLKOUT Output Timing

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \le V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V})$

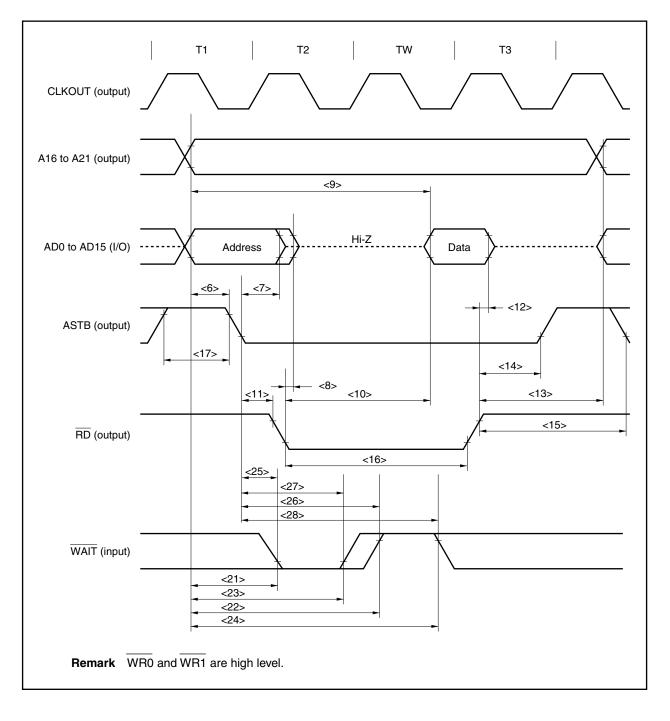
Parameter	Symb	ol	Conditions	MIN.	MAX.	Unit
Output cycle	tсүк	<1>		50 ns	31.25 <i>μ</i> s	
High-level width	twкн	<2>		tсүк/2 – 10		ns
Low-level width	twĸ∟	<3>		tсүк/2 – 10		ns
Rise time	tкв	<4>			10	ns
Fall time	tкғ	<5>			10	ns

Clock Timing

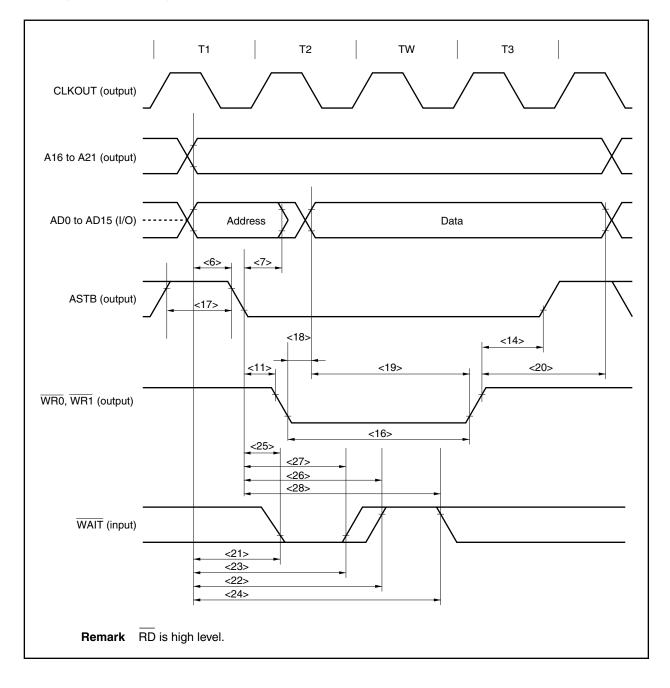
Bus Timing

(1) In multiplexed bus mode

(a) Read/write cycle (CLKOUT asynchronous)


$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{BV}_{DD} \le \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = \text{AV}_{REF1}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{ CL} = 50 \text{ pF})$

Parameter	Symbol	l	Conditions	MIN.	MAX.	Unit
Address setup time (to ASTB \downarrow)	t sast	<6>		(0.5 + tasw)T - 20		ns
Address hold time (from ASTB \downarrow)	t hsta	<7>		(0.5 + tанw)T – 15		ns
Delay time from $\overline{\mathrm{RD}}\downarrow$ to address float	t frda	<8>			16	ns
Data input setup time from address	t SAID	<9>			(2 + n + tasw + taнw)T – 35	ns
Data input setup time from $\overline{\mathrm{RD}} \downarrow$	tsrid	<10>			(1 + n)T – 25	ns
Delay time from ASTB \downarrow to $\overline{\text{RD}}$, $\overline{\text{WRm}}\downarrow$	t dstrdwr	<11>		(0.5 + tанw)T – 15		ns
Data input hold time (from \overline{RD})	thrdid	<12>		0		ns
Address output time from $\overline{RD}\uparrow$	t drda	<13>		(1 + i)T – 15		ns
Delay time from RD, WRm↑ to ASTB↑	t DRDWRST	<14>		0.5T – 15		ns
Delay time from \overline{RD} to $ASTB\downarrow$	t DRDST	<15>		(1.5 + i + tasw)T - 15		ns
RD, WRm low-level width	twrdwrl	<16>		(1 + n)T – 15		ns
ASTB high-level width	twsтн	<17>		(1 + i + tasw)T – 15		ns
Data output time from $\overline{WRm}\downarrow$	towrod	<18>			15	ns
Data output setup time (to $\overline{\text{WRm}}$)	tsodwr	<19>		(1 + n)T – 20		ns
Data output hold time (from WRm↑)	thwrod	<20>		T – 15		ns
WAIT setup time (to address)	tsawt1	<21>	n ≥ 1		(1.5 + tasw + tahw)T - 35	ns
	tsawt2	<22>			(1.5 + n + tasw + tahw)T – 35	ns
WAIT hold time (from address)	thawt1	<23>	n ≥ 1	(0.5 + n + tasw + tahw)T		ns
	thawt2	<24>		(1.5 + n + tasw + tahw)T		ns
WAIT setup time (to ASTB↓)	tsstwt1	<25>	n ≥ 1		(1 + tанw)T – 25	ns
	tsstwt2	<26>			(1 + n + tанw)T – 25	ns
$\overline{\text{WAIT}}$ hold time (from ASTB \downarrow)	tHSTWT1	<27>	n ≥ 1	(n + tанw)Т		ns
	tHSTWT2	<28>		(1 + n + tанw)Т		ns

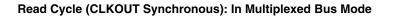

Remarks 1. tasw: Number of address setup wait clocks

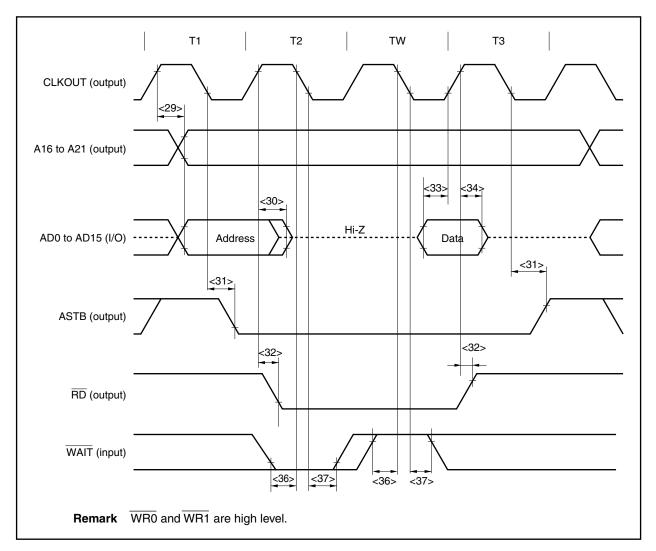
tanw: Number of address hold wait clocks

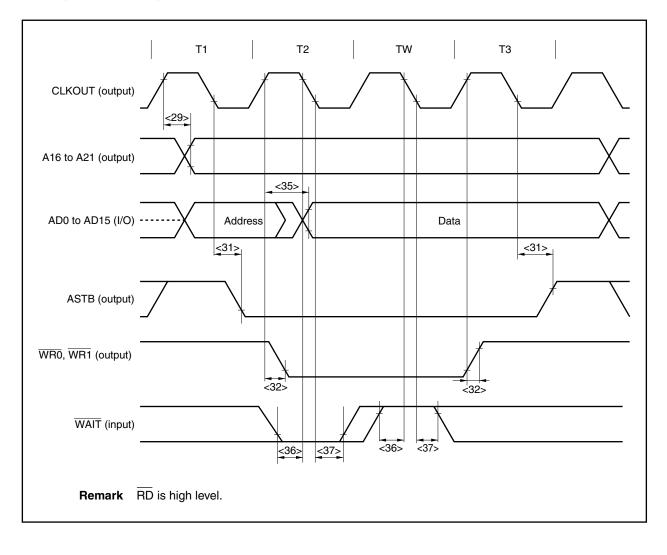
- 2. T = 1/fcpu (fcpu: CPU operating clock frequency)
- n: Number of wait clocks inserted in the bus cycle The sampling timing changes when a programmable wait is inserted.
- **4.** m = 0, 1
- 5. i: Number of idle states inserted after a read cycle (0 or 1)
- The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

Read Cycle (CLKOUT Asynchronous): In Multiplexed Bus Mode

Write Cycle (CLKOUT Asynchronous): In Multiplexed Bus Mode


(b) Read/write cycle (CLKOUT synchronous): In multiplexed bus mode


Parameter	Sym	bol	Conditions	MIN.	MAX.	Unit
Delay time from CLKOUT↑ to address	tdka	<29>		0	25	ns
Delay time from CLKOUT↑ to address float	t fka	<30>		0	19	ns
Delay time from CLKOUT \downarrow to ASTB	t DKST	<31>		-12	7	ns
Delay time from CLKOUT↑ to RD, WRm	t dkrdwr	<32>		-5	14	ns
Data input setup time (to CLKOUT \uparrow)	tsidk	<33>		15		ns
Data input hold time (from $CLKOUT^{\uparrow}$)	tнкір	<34>		5		ns
Data output delay time from CLKOUT↑	tdкор	<35>			19	ns
$\overline{\text{WAIT}}$ setup time (to CLKOUT \downarrow)	tswтк	<36>		20		ns
WAIT hold time (from CLKOUT↓)	tнкwт	<37>		5		ns


$(T_A = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \le V_{DD} = BV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = BV_{SS} = BV_{SS} = AV_{SS} = 0 V, C_L = 50 \text{ pF})$

Remarks 1. m = 0, 1

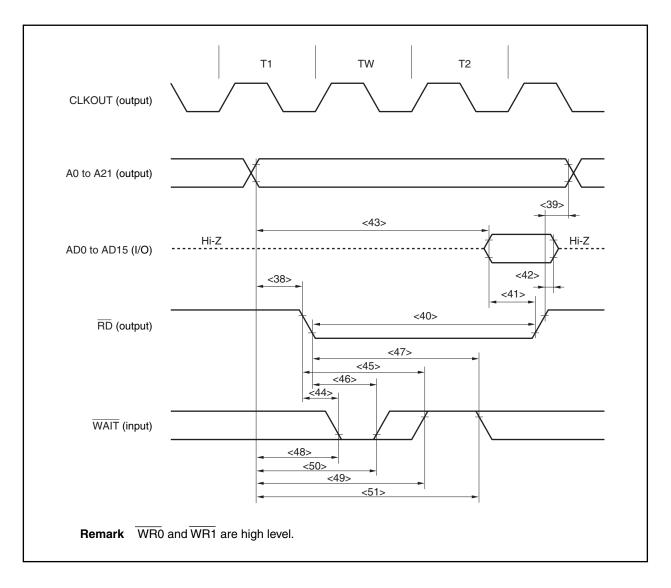
2. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

Write Cycle (CLKOUT Synchronous): In Multiplexed Bus Mode

(2) In separate bus mode

(a) Read cycle (CLKOUT asynchronous): In separate bus mode

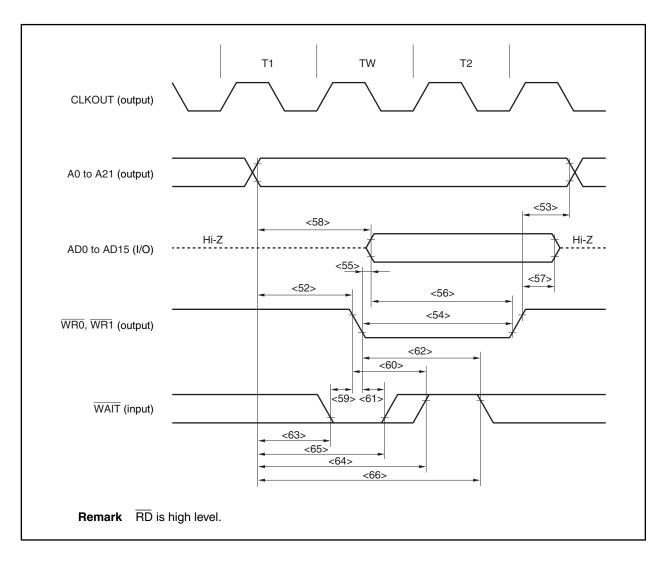
Parameter	Symb	ool	Conditions	MIN.	MAX.	Unit
Address setup time (to $\overline{RD}\downarrow$)	tsard	<38>		(0.5 + tasw)T – 23		ns
Address hold time (from $\overline{RD}\uparrow$)	thard	<39>		iT + 1		ns
RD low-level width	twrdl	<40>		(1.5 + n + tанw)T – 10		ns
Data setup time (to $\overline{RD}\uparrow$)	tsisd	<41>		23		ns
Data hold time (from $\overline{RD}\uparrow$)	thisd	<42>		0		ns
Data setup time (to address)	tsaid	<43>			(2 + n + tasw + tahw)T - 40	ns
$\overline{\text{WAIT}}$ setup time (to $\overline{\text{RD}}\downarrow$)	tsrdwt1	<44>			(0.5 + tанw)T – 25	ns
	tsrdwt2	<45>			(0.5 + n + tанw)T – 25	ns
$\overline{\text{WAIT}}$ hold time (from $\overline{\text{RD}}\downarrow$)	thrdwt1	<46>		(n – 0.5 + tанw)Т		ns
	thrdwt2	<47>		(n + 0.5 + tанw)T		ns
WAIT setup time (to address)	tsawt1	<48>			(1 + tasw + taнw)T - 45	ns
	tsawt2	<49>			(1 + n + tasw + tahw)T - 45	ns
WAIT hold time (from address)	thawt1	<50>		(n + tasw + taнw)T		ns
	thawt2	<51>		(1 + n + tasw + tahw)T		ns


$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{ BV}_{DD} \leq \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = \text{AV}_{REF1}, \text{ Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{ CL} = 50 \text{ pF})$

Remarks 1. tasw: Number of address setup wait clocks

tahw: Number of address hold wait clocks

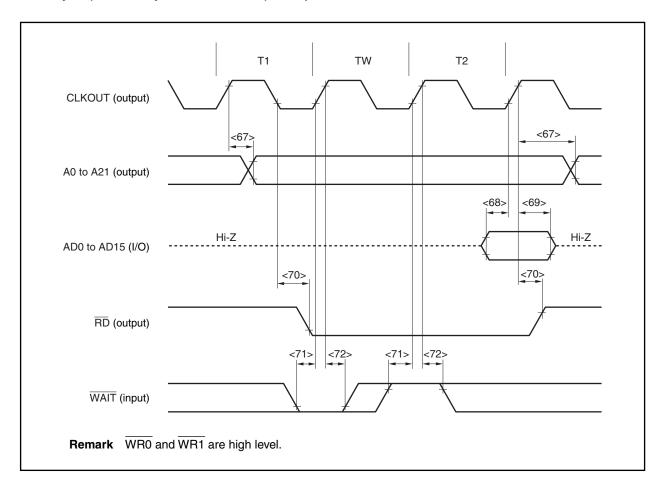
- **2.** T = 1/fcpu (fcpu: CPU operating clock frequency)
- **3.** n: Number of wait clocks inserted in the bus cycle
- The sampling timing changes when a programmable wait is inserted.
- 4. i: Number of idle states inserted after a read cycle (0 or 1)
- 5. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.


Parameter	Symt	loc	Conditions	MIN.	MAX.	Unit
Address setup time (to $\overline{WRm}\downarrow$)	tsawr	<52>		(1 + tasw + tahw)T – 23		ns
Address hold time (from \overline{WRm})	thawr	<53>		0.5T – 10		ns
WRm low-level width	twwRL	<54>		(0.5 + n)T – 10		ns
Data output time from $\overline{WRm} \downarrow$	toosdw	<55>		-5		ns
Data setup time (to \overline{WRm})	tsosdw	<56>		(0.5 + n)T – 20		ns
Data hold time (from $\overline{\text{WRm}}$)	thosdw	<57>		0.5T – 10		ns
Data setup time (to address)	t SAOD	<58>		(1 + tasw + taнw)T – 25		ns
\overline{WAIT} setup time (to $\overline{WRm}\downarrow$)	tswrwt1	<59>		22		ns
	tswrwt2	<60>			nT – 22	ns
$\overline{\text{WAIT}}$ hold time (from $\overline{\text{WRm}}\downarrow$)	thwrwt1	<61>		0		ns
	thwrwt2	<62>		nT		ns
WAIT setup time (to address)	tsawt1	<63>			(1 + tasw + taнw)T – 45	ns
	tsawt2	<64>			(1 + n + tasw + taнw)T – 45	ns
WAIT hold time (from address)	thawt1	<65>		(n + tasw + tahw)T		ns
	thawt2	<66>		(1 + n + tasw + tahw)T		ns

(b) Write cycle (CLKOUT asynchronous): In separate bus mode

Remarks 1. m = 0, 1

- 2. tasw: Number of address setup wait clocks tahw: Number of address hold wait clocks
- **3.** T = 1/fcpu (fcpu: CPU operating clock frequency)
- 4. n: Number of wait clocks inserted in the bus cycle
 - The sampling timing changes when a programmable wait is inserted.
- 5. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.


(c) Read cycle (CLKOUT synchronous): In separate bus mode

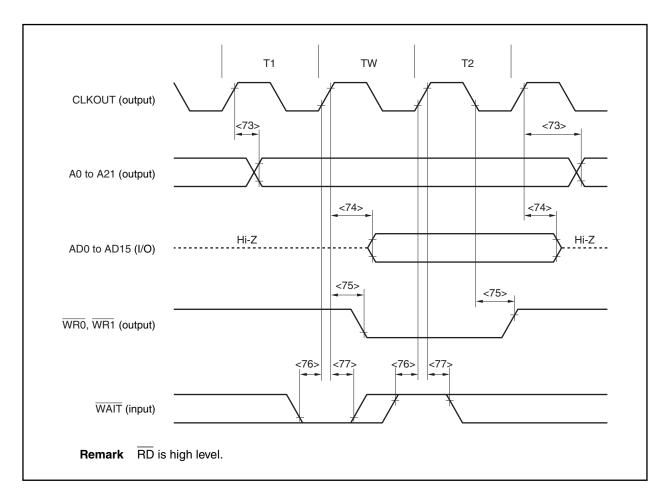
`			,	, ,			
Parameter	Symbol		Conditions	MIN.	MAX.	Unit	
Delay time from CLKOUT↑ to address	t dksa	<67>		2	25	ns	
Data input setup time (to CLKOUT \uparrow)	t sisdk	<68>		20		ns	
Data input hold time (from CLKOUT \uparrow)	t hkisd	<69>		0		ns	
Delay time from CLKOUT↓↑ to RD	t dksr	<70>		-2	12	ns	
WAIT setup time (to CLKOUT↑)	tswтк	<71>		20		ns	
WAIT hold time (from CLKOUT↑)	tнкwт	<72>		0		ns	

 $(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{ } \text{BV}\text{DD} \leq \text{V}\text{DD} = \text{EV}\text{DD} = \text{AV}\text{REF0} = \text{AV}\text{REF1}, \text{ } \text{Vss} = \text{EV}\text{ss} = \text{BV}\text{ss} = \text{AV}\text{ss} = 0 \text{ } \text{V}, \text{ } \text{CL} = 50 \text{ } \text{pF}\text{)}$

Remark The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

Read Cycle (CLKOUT Synchronous, 1 Wait): In Separate Bus Mode

(d) Write cycle (CLKOUT synchronous): In separate bus mode


(12 - 40 to +00 - 0, 54 bb - 24 bb -											
Parameter	Sym	bol	Conditions	MIN.	MAX.	Unit					
Delay time from CLKOUT↑ to address	t dksa	<73>		2	25	ns					
Delay time from CLKOUT↑ to data output	t okso	<74>		2	15	ns					
Delay time from CLKOUT $\uparrow \downarrow$ to WRm	t DKSW	<75>		-2	12	ns					
WAIT setup time (to CLKOUT↑)	tswтк	<76>		20		ns					
WAIT hold time (from CLKOUT↑)	tнкwт	<77>		0		ns					

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{BV}_{DD} \le \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = \text{AV}_{REF1}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{ CL} = 50 \text{ pF})$

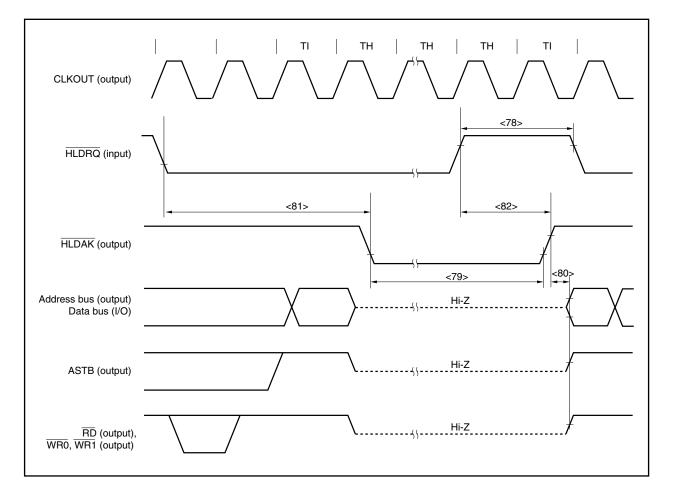
Remarks 1. m = 0, 1

2. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

Write Cycle (CLKOUT Synchronous): In Separate Bus Mode

(3) Bus hold

(a) CLKOUT asynchronous

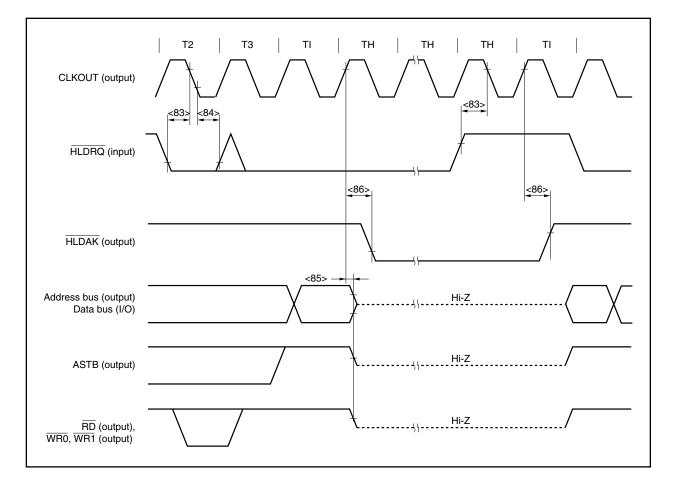

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{BV}_{DD} \le \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = \text{AV}_{REF1}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF})$

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
HLDRQ high-level width	twнqн	<78>		T + 10		ns
HLDAK low-level width	twhal	<79>		T – 15		ns
Delay time from HLDAK↑ to bus output	tdhac	<80>		-3		ns
Delay time from $\overline{\text{HLDRQ}}\downarrow$ to $\overline{\text{HLDAK}}\downarrow$	tdhqha1	<81>			(2n + 7.5)T + 25	ns
Delay time from $\overline{\text{HLDRQ}}\uparrow$ to $\overline{\text{HLDAK}}\uparrow$	tdhqha2	<82>		0.5T	1.5T + 25	ns

Remarks 1. T = 1/fcpu (fcpu: CPU operating clock frequency)

- 2. n: Number of wait clocks inserted in the bus cycle
 - The sampling timing changes when a programmable wait is inserted.
- 3. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

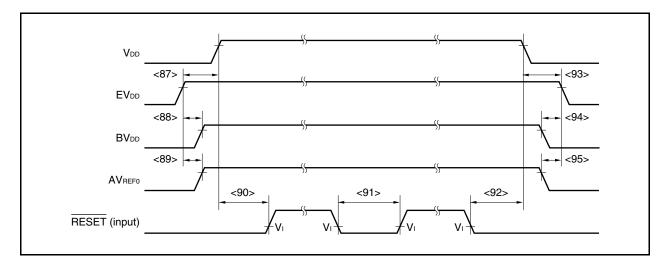
Bus Hold (CLKOUT Asynchronous)


(b) CLKOUT synchronous

· · · · · · · · · · · · · · · · · · ·	•			, ,			
Parameter	Symbol		Conditions	MIN.	MAX.	Unit	
$\overline{\text{HLDRQ}}$ setup time (to CLKOUT \downarrow)	tsнак	<83>		20		ns	
\overline{HLDRQ} hold time (from $CLKOUT\downarrow$)	tнкна	<84>		5		ns	
Delay time from CLKOUT \uparrow to bus float	t dkf	<85>			19	ns	
Delay time from CLKOUT↑ to HLDAK	tdkha	<86>			19	ns	

 $(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{ } \text{BV}\text{DD} \leq \text{V}\text{DD} = \text{EV}\text{DD} = \text{AV}\text{REF0} = \text{AV}\text{REF1}, \text{ } \text{Vss} = \text{EV}\text{ss} = \text{BV}\text{ss} = \text{AV}\text{ss} = 0 \text{ } \text{V}, \text{ } \text{CL} = 50 \text{ } \text{pF})$

Remark The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.



$(1A = -40 \text{ to } +65^{\circ}\text{C}, \text{ vss} = \text{Avss} = \text{Dvss} = \text{Dvss} = 0 \text{ v}, \text{ CL} = 50 \text{ pr})$									
Parameter	Syn	nbol	Conditions	MIN.	MAX.	Unit			
$EV_{DD} \uparrow \to V_{DD} \uparrow$	tREL	<87>		0		ns			
$EV_{DD} \uparrow \to BV_{DD} \uparrow$	t REB	<88>		0	tREL	ns			
$EV_{DD} \uparrow \to AV_{REF0}, AV_{REF1} \uparrow$	t REA	<89>		0	trel	ns			
$EV_{DD} \uparrow \to \overline{RESET} \uparrow$	trer	<90>		500 + treg ^{Note}		ns			
RESET low-level width	twrsl	<91>	Analog noise elimination (during flash erase/writing)	500		ns			
			Analog noise elimination	500		ns			
$\overline{\text{RESET}} {\downarrow} \rightarrow V_{\text{DD}} {\downarrow}$	tFRE	<92>		500		ns			
$V_{DD} {\downarrow} \to EV_{DD} {\downarrow}$	trel	<93>		0		ns			
$BV_{DD} {\downarrow} \to EV_{DD} {\downarrow}$	tfeb	<94>		0	trel	ns			
$AV_{REF0} \!$	tfea	<95>		0	tfel	ns			

Power On/Power Off/Reset Timing

(TA = -40 to $+85^{\circ}$ C, Vss = AVss = BVss = EVss = 0 V, CL = 50 pF)

Note Depends on the on-chip regulator characteristics.

Interrupt, FLMD0 Pin Timing

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \leq V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}, C_{L} = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
NMI high-level width	twniн	Analog noise elimination	500		ns
NMI low-level width	twnil	Analog noise elimination	500		ns
INTPn high-level width	twith	n = 0 to 7 (Analog noise elimination)	500		ns
		n = 3 (Digital noise elimination)	3T _{SMP} + 20		ns
INTPn low-level width	twi⊤∟	n = 0 to 7 (Analog noise elimination)	500		ns
		n = 3 (Digital noise elimination)	3T _{SMP} + 20		ns
FLMD0 high-level width	twмdн		500		ns
FLMD0 low-level width	twmdl		500		ns

Key Return Timing

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \le V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}, C_{L} = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
KRn high-level width	t wĸĸĦ	Analog noise elimination	500		ns
KRn low-level width	t wkrl	Analog noise elimination	500		ns

Remark n = 0 to 7

Timer Timing

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \le V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
TI high-level width	tтін	TIP00, TIP01, TIP10, TIP11, TIP20, TIP21,	2T + 20		ns
TI low-level width	t⊤ı∟	TIP30, TIP31, TIP40, TIP41, TIP50, TIP51, TIQ00 to TIQ03	2T + 20		ns

Remark T = 1/fxx

UART Timing

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \le V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

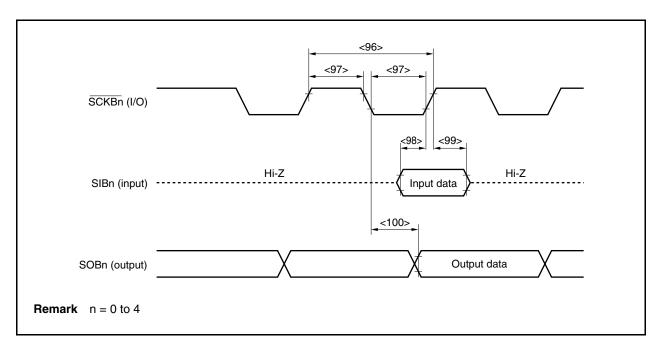
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transmit rate				312.5	kbps
ASCK0 cycle time				10	MHz

CSIB Timing

(1) Master mode

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \le V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
SCKBn cycle time	tkCY1	<96>		125		ns
SCKBn high-/low-level width	tкнı, tк∟ı	<97>		tксү1/2 – 5		ns
SIBn setup time (to SCKBn [↑])	tsik1	<98>		30		ns
SIBn hold time (from SCKBn↑)	tksi1	<99>		30		ns
Delay time from $\overline{\text{SCKBn}}\downarrow$ to SOBn output	tks01	<100>			30	ns


Remark n = 0 to 4

(2) Slave mode

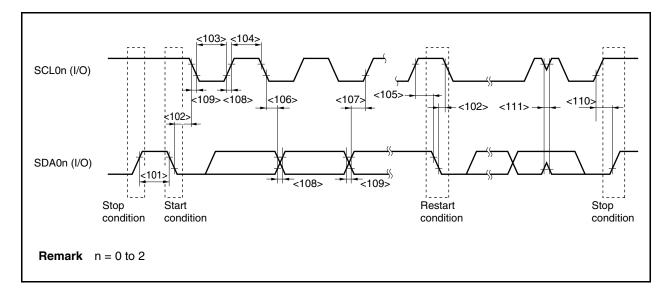
$(T_A = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \le V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Syı	mbol	Conditions	MIN.	MAX.	Unit
SCKBn cycle time	t ксү2	<96>		125		ns
SCKBn high-/low-level width	tкн2,	<97>		57.5		ns
	tĸl2					
SIBn setup time (to SCKBn↑)	tsik2	<98>		30		ns
SIBn hold time (from SCKBn↑)	tksi2	<99>		30		ns
Delay time from $\overline{\text{SCKBn}}\downarrow$ to SOBn output	tkso2	<100>			30	ns

Remark n = 0 to 4

						, ,		
Pa	arameter	Syr	nbol	Norma	l Mode	High-Spe	ed Mode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCL0n clock free	quency	fськ		0	100	0	400	kHz
Bus free time (Between start a	and stop conditions)	t BUF	<101>	4.7	_	1.3	-	μs
Hold time ^{Note 1}		thd:sta	<102>	4.0	_	0.6	_	μs
SCL0n clock low	v-level width	t∟ow	<103>	4.7	-	1.3	-	μs
SCL0n clock hig	h-level width	tніgн	<104>	4.0	-	0.6	_	μs
Setup time for st	tart/restart conditions	tsu:sta	<105>	4.7	-	0.6	_	μs
Data hold time	CBUS compatible master	thd:dat	<106>	5.0	-	-	-	μs
	I ² C mode			0 ^{Note 2}	-	0 ^{Note 2}	0.9 ^{Note 3}	μs
Data setup time		tsu:dat	<107>	250	-	100 ^{Note 4}	-	ns
SDA0n and SCL	On signal rise time	tR	<108>	_	1000	20 + 0.1Cb ^{Note 5}	300	ns
SDA0n and SCL	On signal fall time	t⊧	<109>	_	300	20 + 0.1Cb ^{Note 5}	300	ns
Stop condition s	etup time	tsu:sto	<110>	4.0	_	0.6	_	μs
Pulse width of sp input filter	pike suppressed by	ts₽	<111>	-	-	0	50	ns
Capacitance loa	d of each bus line	Cb		_	400	-	400	pF

I²C Bus Mode


$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \leq V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}, C_{L} = 50 \text{ pF})$

Notes 1. At the start condition, the first clock pulse is generated after the hold time.

- 2. The system requires a minimum of 300 ns hold time internally for the SDA0n signal (at VIHmin. of SCL0n signal) in order to occupy the undefined area at the falling edge of SCL0n.
- **3.** If the system does not extend the SCL0n signal low hold time (tLow), only the maximum data hold time (tHD:DAT) needs to be satisfied.
- **4.** The high-speed mode I²C bus can be used in the normal-mode I²C bus system. In this case, set the high-speed mode I²C bus so that it meets the following conditions.
 - If the system does not extend the SCL0n signal's low state hold time: tsu:DAT $\geq 250~ns$
 - If the system extends the SCL0n signal's low state hold time: Transmit the following data bit to the SDA0n line prior to the SCL0n line release (t_{Rmax} + t_{SU:DAT} = 1,000 + 250 = 1,250 ns: Normal mode l²C bus specification).
- **5.** Cb: Total capacitance of one bus line (unit: pF)

Remark n = 0 to 2

I²C Bus Mode

A/D Converter

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{BV}_{DD} \le \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = \text{AV}_{REF1}, 3.0 \text{ V} \le \text{AV}_{REF0} \le 3.6 \text{ V}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution					10	bit
Overall error ^{Note}		$3.0 \le AV_{\text{REF0}} \le 3.6 \text{ V}$			±0.6	%FSR
Conversion time	t CONV		2.6		24	μs
Zero scale error					±0.5	%FSR
Full scale error					±0.5	%FSR
Non-linearity error					±4.0	LSB
Differential linearity error					±4.0	LSB
Analog input voltage	VIAN		AVss		AV _{REF0}	V
Reference voltage	AV _{REF0}		3.0		3.6	V
AVREFO current	AIREFO	Normal conversion mode		3	6.5	mA
		High-speed conversion mode		4	10	mA
		When A/D converter unused			5	μA

Note Excluding quantization error (±0.05 %FSR).

- Caution Do not set (read/write) alternate-function ports during A/D conversion; otherwise the conversion resolution may be degraded.
- Remark LSB: Least Significant Bit FSR: Full Scale Range

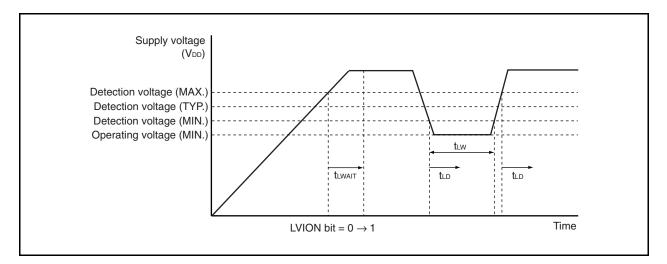
D/A Converter

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \le V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, 3.0 \text{ V} \le AV_{REF1} \le 3.6 \text{ V}, \text{Vss} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution					8	bit
Overall error ^{Note 1}		$R = 2 M\Omega$			±1.2	%FSR
Settling time		C = 20 pF			3	μs
Output resistor	Ro	Output data 55H		3.5		kΩ
Reference voltage	AV _{REF1}		3.0		3.6	V
AVREF1 currentNote 2	AIREF1	D/A conversion operating		1	2.5	mA
		D/A conversion stopped			5	μA

Notes 1. Excluding quantization error (±0.5 LSB).

2. Value of 1 channel of D/A converter

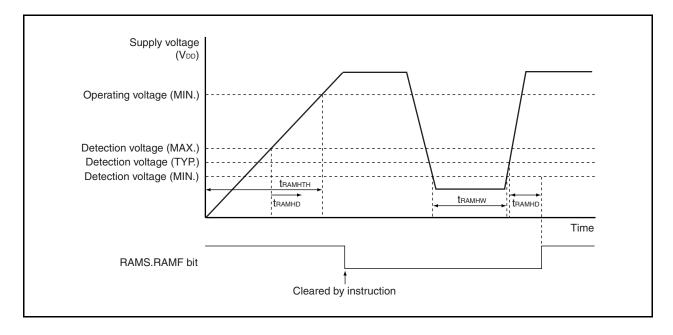

Remark R is the output pin load resistance and C is the output pin load capacitance.

LVI Circuit Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, BV_{DD} \le V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 V, C_L = 50 pF)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VLVIO		2.85	3.0	3.15	v
Response time ^{Note}	tld	After V_DD reaches V_LVI0/V_LVI1 (MAX.), or after V_DD has dropped to V_LVI0/V_LVI1 (MIN.)		0.2	2.0	ms
Minimum pulse width	t∟w		0.2			ms
Reference voltage stabilization wait time	tlwait	After V _{DD} reaches 2.85 V (MIN.)		0.1	0.2	ms

Note Time required to detect the detection voltage and output an interrupt or reset signal.



RAM Retention Detection

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \le V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}, C_{L} = 50 \text{ pF})$

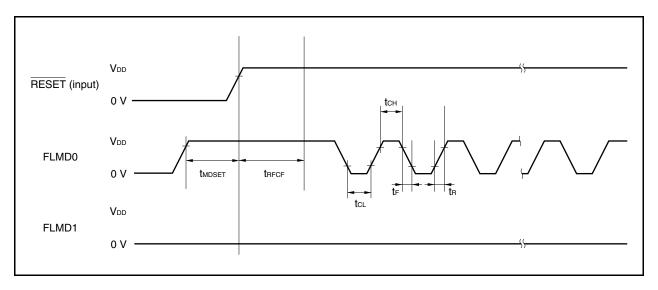
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VRAMH		1.9	2.0	2.1	V
Supply voltage rise time	t RAMHTH	V _{DD} = 0 to 2.85 V	0.002			ms
Response time ^{Note}	t RAMHD	After VDD reaches 2.1 V		0.2	2.0	ms
Minimum pulse width	t RAMHW		0.2			ms

Note Time required to detect the detection voltage and set the RAMS.RAMF bit.

Flash Memory Programming Characteristics

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, BV_{DD} \leq V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = EV_{SS} = BV_{SS} = AV_{SS} = 0 \text{ V}, C_{L} = 50 \text{ pF})$

(1) Basic characteristics


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fcpu		2.5		20	MHz
Supply voltage	VDD		2.85		3.6	V
Number of rewrites	CWRT				100	times
Programming temperature	t PRG		-40		+85	°C

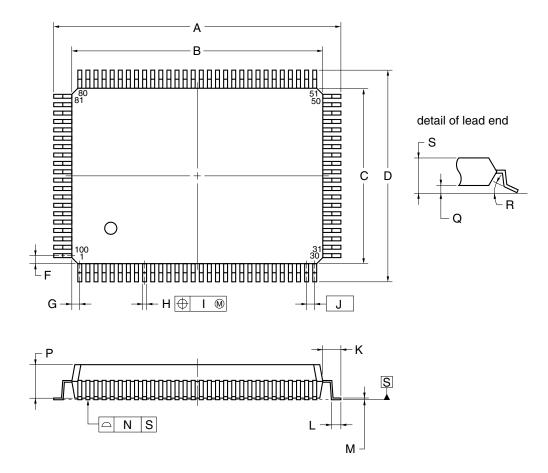
(2) Serial write operation characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
FLMD0, FLMD1 setup time	t MDSET		2		3000	ms
FLMD0 count start time from RESET↑	t RFCF	fx = 2.5 to 10 MHz	17855/fx +			s
			α			
FLMD0 counter high-level width/ low-level width	tcн/tc∟		10	100		μs
FLMD0 counter rise time/fall time	tr/tr				50	ns

Remark α = oscillation stabilization time

Flash write mode setup timing

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Block erase time		fxx = 20 MHz	Note 1		304		ms
			Note 2		1405		ms
			Note 3		3057		ms
Write time per 256 bytes		fxx = 20 MHz			8.1		ms
Block internal verify time		fxx = 20 MHz	Note 1		20		ms
			Note 2		141		ms
			Note 3		322		ms
Block blank check time		fxx = 20 MHz	Note 1		9.2		ms
			Note 2		64		ms
			Note 3		147		ms
Flash memory information setting time		fxx = 20 MHz			1.0		ms

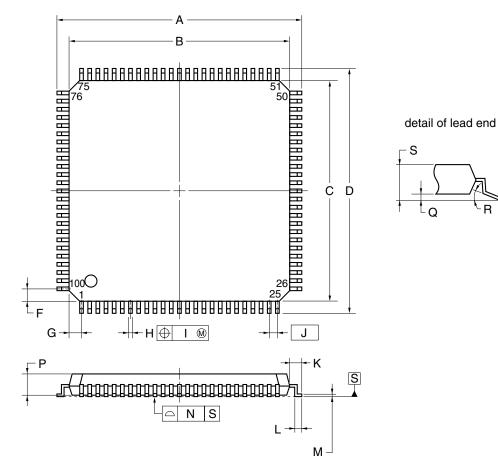

(3) Programming characteristics

Notes 1. Block size = 4 KB

- 2. Block size = 28 KB
- 3. Block size = 64 KB
- Caution When writing initially to shipped products, it is counted as one rewrite for both "erase to write" and "write only".

Example (P: Write, E: Erase) Shipped product $\longrightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: 3 rewrites Shipped product $\rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: 3 rewrites

100-PIN PLASTIC QFP (14x20)



NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	23.2±0.2
В	20.0±0.2
С	14.0±0.2
D	17.2±0.2
F	0.825
G	0.575
Н	$0.32^{+0.08}_{-0.07}$
Ι	0.13
J	0.65 (T.P.)
К	1.6±0.2
L	0.8±0.2
М	$0.17\substack{+0.06\\-0.05}$
Ν	0.10
Р	2.7±0.1
Q	0.125±0.075
R	3°+7° -3°
S	3.0 MAX.
	S100GF-65-JBT-2

100-PIN PLASTIC LQFP (FINE PITCH) (14x14)

NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS		
А	16.00±0.20		
В	14.00±0.20		
С	14.00±0.20		
D	16.00±0.20		
F	1.00		
G	1.00		
н	$0.22\substack{+0.05\\-0.04}$		
I	0.08		
J	0.50 (T.P.)		
К	1.00±0.20		
L	0.50±0.20		
М	$0.17\substack{+0.03 \\ -0.07}$		
Ν	0.08		
Р	1.40±0.05		
Q	0.10±0.05		
R	3° ^{+7°} -3°		
S	1.60 MAX.		
S100GC-50-8EU, 8EA-2			

CHAPTER 30 RECOMMENDED SOLDERING CONDITIONS

The V850ES/JG2 should be soldered and mounted under the following recommended conditions. For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 30-1. Surface Mounting Type Soldering Conditions

(1) μ PD70F3715GC-8EA-A:100-pin plastic LQFP (fine pitch) (14 × 14) μ PD70F3716GC-8EA-A:100-pin plastic LQFP (fine pitch) (14 × 14) μ PD70F3717GC-8EA-A:100-pin plastic LQFP (fine pitch) (14 × 14) μ PD70F3718GC-8EA-A:100-pin plastic LQFP (fine pitch) (14 × 14) μ PD70F3719GC-8EA-A:100-pin plastic LQFP (fine pitch) (14 × 14) μ PD70F3719GC-8EA-A:100-pin plastic LQFP (fine pitch) (14 × 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: Three times or less, Exposure limit: 7 days ^{№™} (after that, prebake at 125°C for 20 to 72 hours)	IR60-207-3
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remarks 1. Products with -A at the end of the part number are lead-free products.

2. For soldering methods and conditions other than those recommended above, please contact an NEC Electronics sales representative.

(2)	μPD70F3715GF-JBT-A:	100-pin plastic QFP (fine pitch) (14 $ imes$ 20)
	μPD70F3716GF-JBT-A:	100-pin plastic QFP (fine pitch) (14 $ imes$ 20)
	μPD70F3717GF-JBT-A:	100-pin plastic QFP (fine pitch) (14 $ imes$ 20)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: Three times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	IR60-207-3
Wave soldering	For details, contact an NEC Electronics sales representative.	-
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remarks 1. Products with -A at the end of the part number are lead-free products.

2. For soldering methods and conditions other than those recommended above, please contact an NEC Electronics sales representative.

<R>

APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for the development of systems that employ the V850ES/JG2. Figure A-1 shows the development tool configuration.

• Support for PC98-NX series

Unless otherwise specified, products supported by IBM PC/AT[™] compatibles are compatible with PC98-NX series computers. When using PC98-NX series computers, refer to the explanation for IBM PC/AT compatibles.

Windows[™]

Unless otherwise specified, "Windows" means the following OSs.

- Windows 98, 2000
- Windows Me
- Windows XP
- Windows NT[™] Ver. 4.0

<R>

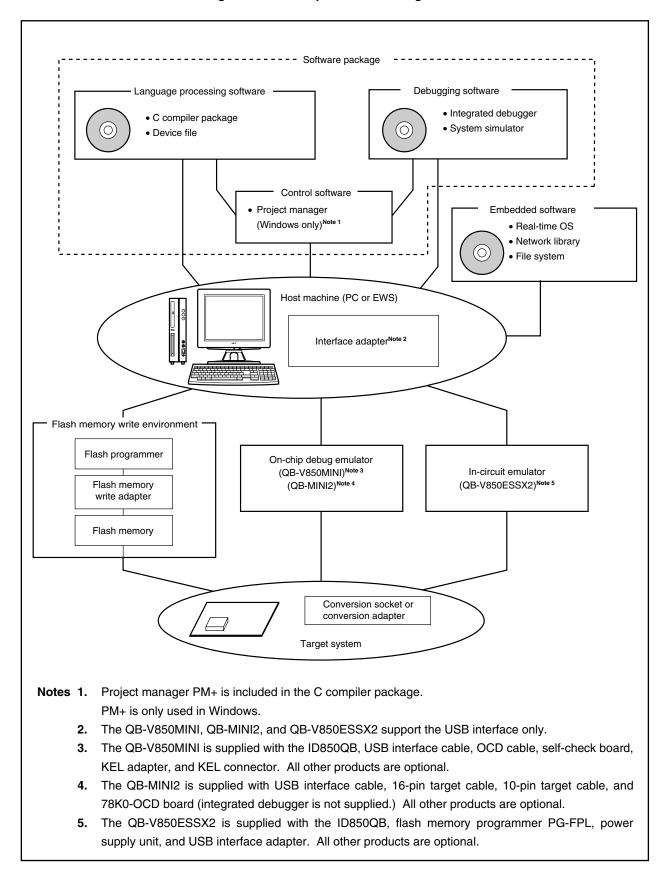


Figure A-1. Development Tool Configuration

A.1 Software Package

SP850	Development tools (software) commonly used with V850 microcontrollers are included
Software package for V850	this package.
microcontrollers	Part number: µSxxxxSP850

Remark ×××× in the part number differs depending on the host machine and OS used.

μS<u>××××</u>SP850

××××	Host Machine	OS	Supply Medium
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM
BB17	IBM PC/AT compatibles	Windows (English version)	

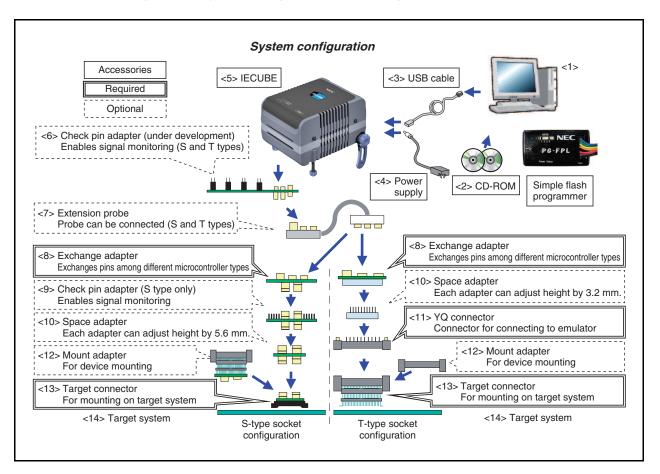
A.2 Language Processing Software

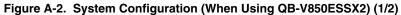
CA850 C compiler package	This compiler converts programs written in C into object codes executable with a microcontroller. This compiler is started from project manager PM+.
	Part number: µSxxxxCA703000
DF703724	This file contains information peculiar to the device.
Device file	This device file should be used in combination with a tool (CA850, SM+ for V850ES/Jx2, or ID850QB).
	The corresponding OS and host machine differ depending on the tool to be used.

Remark ×××× in the part number differs depending on the host machine and OS used.

μS<u>××××</u>CA703000

XXXX	Host Machine	OS	Supply Medium
/////	These machine		eappij meaiam
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM
BB17	IBM PC/AT compatibles	Windows (English version)	
3K17	SPARCstation [™]	SunOS [™] (Rel. 4.1.4), Solaris [™] (Rel. 2.5.1)	


A.3 Control Software


PM+	This is control software designed to enable efficient user program development in the
Project manager	Windows environment. All operations used in development of a user program, such as
	starting the editor, building, and starting the debugger, can be performed from PM+.
	<caution></caution>
	PM+ is included in C compiler package CA850.
	It can only be used in Windows.

A.4 Debugging Tools (Hardware)

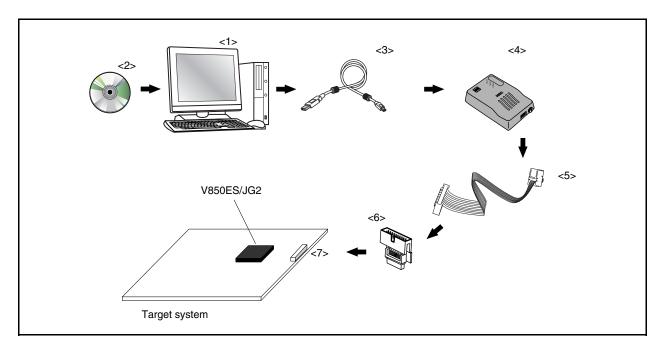
A.4.1 When using IECUBE QB-V850ESSX2

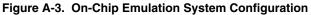
The system configuration when connecting the QB-V850ESSX2 to the host machine (PC-9821 series, PC/AT compatible) is shown below. Even if optional products are not prepared, connection is possible.

Figure A-2. System Configuration (When Using QB-V850ESSX2) (2/2)

<1>	1> Host machine (PC-9821 series, IBM-PC/AT compatibles)				
<2>	Debugger, USB driver, manuals, etc. (ID850QB Disk, Accessory Disk ^{Note 1})				
<3>	> USB interface cable				
<4>	> AC adapter				
<5>	 In-circuit emulator (QB-V850ESSX2) 				
<6>	Check pin adapter (S and T types) (QB-144-CA-01 ^{№ te 2}) (optional)				
<7>	Extension probe (S and T types) (QB-144-EP-01S) (optional)				
<8>	<8> Exchange adapter ^{Note 3} (S type: QB-100GC-EA-01S (GC package), QB-100GF-EA-01S (GF package)				
	type:	: QB-100GC-EA-01T (GC package), QB-100GF-EA-01T (GF package))			
<9>	Cheo	ck pin adapter ^{№te 4} (S type only) (QB-100-CA-01S) (optional)			
<10>	-	ce adapter ^{Note 4} (S type: QB-100-SA-01S (GC/GF packages), T type: QB-100GC-YS-01T (GF package), 100GF-YS-01T (GF package) (optional)			
<11>		connector ^{Note 3} (T type only) (QB-100GC-YQ-01T) (GC package), QB-100GF-YQ-01T (GF package)			
<12> Mount adapter (S type: QB-100GC-MA-01S (GC package), QB-100GF-MA-01S (GF package), T ty					
	QB-1	100GF-HQ-01T (GC package), QB-100GF-HQ-01T (GF package)) (optional)			
<13> Target connector ^{Note 3} (S type: QB-100GC-TC-01S (GC package), QB-100GF-TC-01S (GF package), 1					
	type:	QB-100GC-NQ-01T (GC package), QB-100GF-NQ-01T(GF package))			
<14>	> Targ	et system			
Note	es 1.	Download the device file from the NEC Electronics website.			
		http://www.necel.com/micro/ods/eng/			
	2.	Under development			
	3.	Supplied with the device depending on the ordering number.			
		When QB-V850ESSX2-ZZZ is ordered			
		The exchange adapter and the target connector are not supplied.			
		When QB-V850ESSX2-S100GC is ordered			
		The QB-100GC-EA-01S and QB-100GC-TC-01S are supplied.			
		When QB-V850ESSX2-S100GF is ordered			
		The QB-100GF-EA-01S and QB-100GF-TC-01S are supplied.			
		When QB-V850ESSX2-T100GC is ordered			
		The QB-100GC-EA-01T, QB-100GC-YQ-01T, and QB-100GC-NQ-01T are supplied.			
		When QB-V850ESSX2-T100GF is ordered			
		The QB-100GF-EA-01T, QB-100GF-YQ-01T, and QB-100GF-NQ-01T are supplied.			
	4.	When using both <9> and <10>, the order between <9> and <10> is not cared.			

<5> QB-V850ESSX2 ^{Note} In-circuit emulator	The in-circuit emulator serves to debug hardware and software when developing application systems using the V850ES/JG2. It supports the integrated debugger ID850QB. This emulator should be used in combination with a power supply unit and emulation probe. Use the USB interface cable to connect this emulator to the host machine.
<3> USB interface cable	Cable to connect the host machine and the QB-V850ESSX2.
<4> AC adapter	100 to 240 V can be supported by replacing the AC plug.
<8> QB-100GC-EA-01S QB-100GF-EA-01S QB-100GC-EA-01T QB-100GF-EA-01T Exchange adapter	Adapter to perform pin conversion. • QB-100GC-EA-01S: 100-pin plastic LQFP (GC-8EA type) • QB-100GF-EA-01S: 100-pin plastic QFP (GF-JBT type) • QB-100GC-EA-01T: 100-pin plastic LQFP (GC-8EA type) • QB-100GF-EA-01T: 100-pin plastic QFP (GC-JBT type)
<9> QB-100-CA-01S (S type only) Check pin adapter	Adapter used in waveform monitoring using the oscilloscope, etc. • QB-100-CA-01S: GC-8EA/GF-JBT type
<10> QB-100-SA-01S QB-100GC-YS-01T QB-100GF-YS-01T Space adapter	Adapter to adjust the height. • QB-100GF-SA-01S: GC-8EA/GF-JBT type • QB-100GC-YS-01T: 100-pin plastic LQFP (GC-8EA type) • QB-100GF-YS-01T: 100-pin plastic QFP (GF-JBT type)
<11> QB-100GC-YQ-01T QB-100GF-YQ-01T (T type only) YQ connector	Conversion adapter to connect target connector and exchange adapter • QB-100GC-YQ-01T: 100-pin plastic LQFP (GC-8EA type) • QB-100GF-YQ-01T: 100-pin plastic QFP (GF-JBT type)
<12> QB-100GC-MA-01S QB-100GF-MA-01S QB-100GC-HQ-01T QB-100GF-HQ-01T Mount adapter	Adapter to mount the V850ES/JG2 with socket. • QB-100GC-MA-01S: 100-pin plastic LQFP (GC-8EA type) • QB-100GF-MA-01S: 100-pin plastic QFP (GF-JBT type) • QB-100GC-HQ-01T: 100-pin plastic LQFP (GC-8EA type) • QB-100GF-HQ-01T: 100-pin plastic QFP (GF-JBT type)
<13> QB-100GC-TC-01S QB-100GF-TC-01S QB-100GC-NQ-01T QB-100GF-NQ-01T Target connector	Connector to solder on the target system. • QB-100GC-TC-01S: 100-pin plastic LQFP (GC-8EA type) • QB-100GF-TC-01S: 100-pin plastic QFP (GF-JBT type) • QB-100GC-NQ-01T: 100-pin plastic LQFP (GC-8EA type) • QB-100GF-NQ-01T: 100-pin plastic QFP (GF-JBT type)


Note The QB-V850ESSX2 is supplied with a power supply unit, USB interface cable, and flash memory programmer (PG-FPL). It is also supplied with integrated debugger ID850QB as control software.


Remark The numbers in the angle brackets correspond to the numbers in Figure A-2.

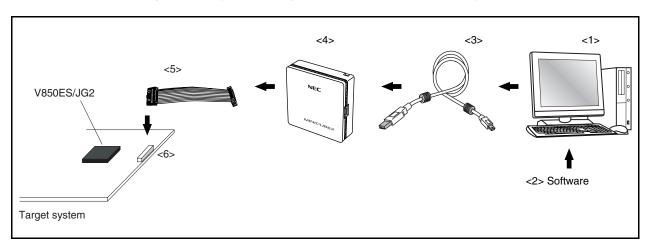
A.4.2 When using MINICUBE QB-V850MINI

(1) On-chip emulation using MINICUBE

The system configuration when connecting MINICUBE to the host machine (PC-9821 series, PC/AT compatible) is shown below.

<1>	Host machine	PC with USB ports
<2>	CD-ROM ^{Note 1}	Contents such as integrated debugger ID850QB, N-Wire Checker, device driver, and documents are included in CD-ROM. It is supplied with MINICUBE.
<3>	USB interface cable	USB cable to connect the host machine and MINICUBE. It is supplied with MINICUBE. The cable length is approximately 2 m.
<4>	MINICUBE On-chip debug emulator	This on-chip debug emulator serves to debug hardware and software when developing application systems using the V850ES/JG2. It supports integrated debugger ID850QB.
<5>	OCD cable	Cable to connect MINICUBE and the target system. It is supplied with MINICUBE. The cable length is approximately 20 cm.
<6>	Connector conversion board KEL adapter	This conversion board is supplied with MINICUBE.
<7>	MINICUBE connector KEL connector	8830E-026-170S (supplied with MINICUBE) 8830E-026-170L (sold separately)

Notes 1. Download the device file from the NEC Electronics website.


http://www.necel.com/micro/ods/eng/index.html

2. Product of KEL Corporation

Remark The numbers in the angular brackets correspond to the numbers in Figure A-3.

A.4.3 When using MINICUBE2 QB-MINI2

The system configuration when connecting MINICUBE2 to the host machine (PC-9821 series, PC/AT compatible) is shown below.

<1>	Host machine	PC with USB ports	
<2>	2> Software The integrated debugger ID850QB, device file, etc. Download the device file from the NEC Electronics website. http://www.necel.com/micro/ods/eng/		
<3>	USB interface cable	USB cable to connect the host machine and MINICUBE. It is supplied with MINICUBE. The cable length is approximately 2 m.	
<4>	MINICUBE2 On-chip debug emulator	This on-chip debug emulator serves to debug hardware and software when developing application systems using the V850ES/JG2. It supports integrated debugger ID850QB.	
<5>	16-pin target cable	Cable to connect MINICUBE2 and the target system. It is supplied with MINICUBE. The cable length is approximately 15 cm.	
<6>	Target connector (sold separately)	Use a 16-pin general-purpose connector with 2.54 mm pitch.	

Remark The numbers in the angular brackets correspond to the numbers in Figure A-4.

A.5 Debugging Tools (Software)

SM+ for V850ES/Jx2 (under development) System simulator	This simulator is used with V850 microcontrollers. SM+ for V850ES/Jx2 is Windows-based software. Debugging of C source and assembler files is possible during simulation of the target system operation on the host machine. By using SM+ for V850ES/Jx2, logic verification and performance verification of applications can be performed independently from hardware development. Therefore, development efficiency and software quality can be improved. It should be used in combination with the device file. Part number: μ SxxxxSM703724-B
ID850QB Integrated debugger	This debugger supports the in-circuit emulators for V850 microcontrollers. The ID850QB is Windows-based software. It has improved C-compatible debugging functions and can display the results of tracing with the source program using an integrating window function that associates the source program, disassemble display, and memory display with the trace result. It should be used in combination with the device file. Part number: μ Sxxxx ID703000-QB (ID850QB)

Remark ×××× in the part number differs depending on the host machine and OS used.

*μ*S<u>××××</u>ID703000-QB

××××	Host Machine	OS	Supply Medium
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM
BB17	IBM PC/AT compatibles	Windows (English version)	

A.6 Embedded Software

RX850, RX850 Pro Real-time OS	The RX850 and RX850 Pro are real-time OSs conforming to <i>µ</i> ITRON 3.0 specifications. A tool (configurator) for generating multiple information tables is supplied. RX850 Pro has more functions than the RX850.	
	Part number: μS××××RX703000-ΔΔΔΔ (RX850) μS××××RX703100-ΔΔΔΔ (RX850 Pro)	
Applilet ^{®Note}	This is a driver configurator that automatically generates sample programs for the V850ES/JG2.	
RX-FS850 (File system)	This is a FAT file system function. It is a file system that supports the CD-ROM file system function. This file system is used with the real-time OS RX850 Pro.	

Note For how to obtain Applilet, consult an NEC Electronics sales representative.

Caution To purchase the RX850 or RX850 Pro, first fill in the purchase application form and sign the license agreement.

Remark xxxx and $\Delta\Delta\Delta\Delta$ in the part number differ depending on the host machine and OS used.

 μ S××××RX703000- $\Delta\Delta\Delta\Delta$

$\mu S_{\underline{\times}\underline{\times}\underline{\times}\underline{\times}}RX703100-\underline{\Delta\Delta\Delta\Delta}$

$\Delta\Delta\Delta\Delta\Delta$	Product Outline	Maximum Number for Use in Mass Product
001	Evaluation object	Do not use for mass-produced product.
100K	Mass-production object	0.1 million units
001M		1 million units
010M		10 million units
S01	Source program	Object source program for mass production

 xxxx	Host Machine	OS	Supply Medium
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM
BB17	IBM PC/AT compatibles	Windows (English version)	
3K17	SPARCstation	Solaris (Rel. 2.5.1)	

A.7 Flash Memory Writing Tools

Flashpro IV (part number: PG-FP4) Flash programmer	Flash programmer dedicated to microcontrollers with on-chip flash memory.
QB-MINI2 (MINICUBE2)	On-chip debug emulator with programming function.
FA-100GC-8UE-A FA-100GF-3BA-A Flash memory writing adapter	 Flash memory writing adapter used connected to the Flashpro IV, etc. (not wired). FA-100GC-8EU-A: 100-pin plastic LQFP (GC-8EA type) FA-100GF-3BA-A: 100-pin plastic QFP (GF-JBT type)
FA-70F3719GC-8EA-MX FA-70F3717GF-JBT-MX Flash memory writing adapter	Flash memory writing adapter used connected to the Flashpro IV, etc. (already wired). • FA-70F3719GC-8EA-MX: 100-pin plastic LQFP (GC-8EA type) • FA-70F3717GF-JBT-MX: 100-pin plastic QFP (GF-JBT type)

Remark FA-100GC-8EU-A, FA-100GF-3BA-A, FA-70F3719GC-8EA-MX, FA-70F3717GF-JBT-M are products of Naito Densei Machida Mfg. Co., Ltd.

TEL: +81-42-750-4172

APPENDIX B REGISTER INDEX

Symbol	Name	Unit	Page
ADA0CR0	A/D conversion result register 0	ADC	438
ADA0CR0H	A/D conversion result register 0H	ADC	438
ADA0CR1	A/D conversion result register 1	ADC	438
ADA0CR1H	A/D conversion result register 1H	ADC	438
ADA0CR2	A/D conversion result register 2	ADC	438
ADA0CR2H	A/D conversion result register 2H	ADC	438
ADA0CR3	A/D conversion result register 3	ADC	438
ADA0CR3H	A/D conversion result register 3H	ADC	438
ADA0CR4	A/D conversion result register 4	ADC	438
ADA0CR4H	A/D conversion result register 4H	ADC	438
ADA0CR5	A/D conversion result register 5	ADC	438
ADA0CR5H	A/D conversion result register 5H	ADC	438
ADA0CR6	A/D conversion result register 6	ADC	438
ADA0CR6H	A/D conversion result register 6H	ADC	438
ADA0CR7	A/D conversion result register 7	ADC	438
ADA0CR7H	A/D conversion result register 7H	ADC	438
ADA0CR8	A/D conversion result register 8	ADC	438
ADA0CR8H	A/D conversion result register 8H	ADC	438
ADA0CR9	A/D conversion result register 9	ADC	438
ADA0CR9H	A/D conversion result register 9H	ADC	438
ADA0CR10	A/D conversion result register 10	ADC	438
ADA0CR10H	A/D conversion result register 10H	ADC	438
ADA0CR11	A/D conversion result register 11	ADC	438
ADA0CR11H	A/D conversion result register 11H	ADC	438
ADA0M0	A/D converter mode register 0	ADC	431
ADA0M1	A/D converter mode register 1	ADC	433
ADA0M2	A/D converter mode register 2	ADC	436
ADA0PFM	Power fail compare mode register	ADC	440
ADA0PFT	Power fail compare threshold value register	ADC	441
ADA0S	Analog input channel specification register	ADC	437
ADIC	Interrupt control register	INTC	653
AWC	Address wait control register	BCU	186
BCC	Bus cycle control register	BCU	187
BSC	Bus size configuration register	BCU	175
CB0CTL0	CSIB0 control register 0	CSIB	509
CB0CTL1	CSIB0 control register 1	CSIB	512
CB0CTL2	CSIB0 control register 2	CSIB	513
CB0RIC	Interrupt control register	INTC	652
CB0RX	CSIB0 receive data register	CSIB	508
CB0RXL	CSIB0 receive data register L	CSIB	508
CB0STR	CSIB0 status register	CSIB	515
CB0TIC	Interrupt control register	INTC	652

Cumbol	Nome	Unit	(2/1
Symbol	Name		Page
CBOTX	CSIB0 transmit data register	CSI	508
CBOTXL	CSIB0 transmit data register L	CSI	508
CB1CTL0	CSIB1 control register 0	CSI	509
CB1CTL1	CSIB1 control register 1	CSI	512
CB1CTL2	CSIB1 control register 2	CSI	513
CB1RIC	Interrupt control register	INTC	652
CB1RX	CSIB1 receive data register	CSI	508
CB1RXL	CSIB1 receive data register L	CSI	508
CB1STR	CSIB1 status register	CSI	515
CB1TIC	Interrupt control register	INTC	652
CB1TX	CSIB1 transmit data register	CSI	508
CB1TXL	CSIB1 transmit data register L	CSI	508
CB2CTL0	CSIB2 control register 0	CSI	509
CB2CTL1	CSIB2 control register 1	CSI	512
CB2CTL2	CSIB2 control register 2	CSI	513
CB2RIC	Interrupt control register	INTC	652
CB2RX	CSIB2 receive data register	CSI	508
CB2RXL	CSIB2 receive data register L	CSI	508
CB2STR	CSIB2 status register	CSI	515
CB2TIC	Interrupt control register	INTC	652
CB2TX	CSIB2 transmit data register	CSI	508
CB2TXL	CSIB2 transmit data register L	CSI	508
CB3CTL0	CSIB3 control register 0	CSI	509
CB3CTL1	CSIB3 control register 1	CSI	512
CB3CTL2	CSIB3 control register 2	CSI	513
CB3RIC	Interrupt control register	INTC	652
CB3RX	CSIB3 receive data register	CSI	508
CB3RXL	CSIB3 receive data register L	CSI	508
CB3STR	CSIB3 status register	CSI	515
CB3TIC	Interrupt control register	INTC	652
CB3TX	CSIB3 transmit data register	CSI	508
CB3TXL	CSIB3 transmit data register L	CSI	508
CB4CTL0	CSIB4 control register 0	CSI	509
CB4CTL1	CSIB4 control register 1	CSI	512
CB4CTL2	CSIB4 control register 2	CSI	513
CB4RIC	Interrupt control register	INTC	653
CB4RX	CSIB4 receive data register	CSI	508
CB4RXL	CSIB4 receive data register L	CSI	508
CB4STR	CSIB4 status register	CSI	515
CB4TIC	Interrupt control register	INTC	653
CB4TX		CSI	508
	CSIB4 transmit data register		
CB4TXL	CSIB4 transmit data register L	CSI	508
CCLS	CPU operation clock status register	CG	204
CKC	Clock control register	CG	207
CLM	Clock monitor mode register	CLM	705

Symbol	Name	Unit	Page
СТВР	CALLT base pointer	CPU	53
CTPC	CALLT execution status saving register	CPU	52
CTPSW	CALLT execution status saving register	CPU	52
DA0CS0	D/A conversion value setting register 0	DAC	465
DA0CS1	D/A conversion value setting register 1	DAC	465
DA0M	D/A converter mode register	DAC	464
DADC0	DMA addressing control register 0	DMAC	617
DADC1	DMA addressing control register 1	DMAC	617
DADC2	DMA addressing control register 2	DMAC	617
DADC3	DMA addressing control register 3	DMAC	617
DBC0	DMA byte count register 0	DMAC	616
DBC1	DMA byte count register 1	DMAC	616
DBC2	DMA byte count register 2	DMAC	616
DBC3	DMA byte count register 3	DMAC	616
DCHC0	DMA channel control register 0	DMAC	618
DCHC1	DMA channel control register 1	DMAC	618
DCHC2	DMA channel control register 2	DMAC	618
DCHC3	DMA channel control register 3	DMAC	618
DDA0H	DMA destination address register 0H	DMAC	615
DDA0L	DMA destination address register 0L	DMAC	615
DDA1H	DMA destination address register 1H	DMAC	615
DDA1L	DMA destination address register 1L	DMAC	615
DDA2H	DMA destination address register 2H	DMAC	615
DDA2L	DMA destination address register 2L	DMAC	615
DDA3H	DMA destination address register 3H	DMAC	615
DDA3L	DMA destination address register 3L	DMAC	615
DMAIC0	Interrupt control register	INTC	653
DMAIC1	Interrupt control register	INTC	653
DMAIC2	Interrupt control register	INTC	653
DMAIC3	Interrupt control register	INTC	653
DSA0H	DMA source address register 0H	DMAC	614
DSA0L	DMA source address register 0L	DMAC	614
DSA1H	DMA source address register 1H	DMAC	614
DSA1L	DMA source address register 1L	DMAC	614
DSA2H	DMA source address register 2H	DMAC	614
DSA2L	DMA source address register 2L	DMAC	614
DSA3H	DMA source address register 3H	DMAC	614
DSA3L	DMA source address register 3L	DMAC	614
DTFR0	DMA trigger factor register 0	DMAC	619
DTFR1	DMA trigger factor register 1	DMAC	619
DTFR2	DMA trigger factor register 2	DMAC	619
DTFR3	DMA trigger factor register 3	DMAC	619
DWC0	Data wait control register 0	BCU	183

Symbol	Name	Unit	(4/1 Page
ECR	Interrupt source register	CPU	50
EIPC	Interrupt status saving register	CPU	49
EIPSW	Interrupt status saving register	CPU	49
EXIMC	External bus interface mode control register	BCU	174
FEPC	NMI status saving register	CPU	50
FEPSW	NMI status saving register	CPU	50
IIC0	IIC shift register 0	I ² C	557
IIC1	IIC shift register 1	I ² C	557
IIC2	IIC shift register 2	I²C	557
IICC0	IIC control register 0	I ² C	543
IICC1	IIC control register 1	I ² C	543
IICC2	IIC control register 2	I ² C	543
IICCL0	IIC clock select register 0	I ² C	553
IICCL1	IIC clock select register 1	I ² C	553
IICCL2	IIC clock select register 2	I ² C	553
IICF0	IIC flag register 0	I ² C	551
IICF1	IIC flag register 1	I ² C	551
IICF2	IIC flag register 2	I ² C	551
	Interrupt control register	INTC	653
IICIC1	Interrupt control register	INTC	652
IICIC2	Interrupt control register	INTC	653
IICS0	IIC status register 0	l ² C	548
IICS1	IIC status register 1	I ² C	548
IICS2	IIC status register 2	I ² C	548
IICX0	IIC function expansion register 0	I ² C	554
IICX1	IIC function expansion register 1	I ² C	554
IICX2	IIC function expansion register 2	l ² C	554
IMR0	Interrupt mask register 0	INTC	653
IMROH	Interrupt mask register 0H	INTC	653
IMR0L	Interrupt mask register 0L	INTC	653
IMR1	Interrupt mask register 1	INTC	653
IMR1H	Interrupt mask register 1H	INTC	653
IMR1L	Interrupt mask register 1L	INTC	653
IMR2	Interrupt mask register 2	INTC	653
IMR2H	Interrupt mask register 2	INTC	653
IMR2L		INTC	
	Interrupt mask register 2		653
IMR3	Interrupt mask register 3	INTC	653
	Interrupt mask register 3H	INTC	653
IMR3L	Interrupt mask register 3L	INTC	653
	External interrupt falling edge specification register 0	INTC	665
INTF3	External interrupt falling edge specification register 3	INTC	666
INTF9H	External interrupt falling edge specification register 9H	INTC	667
	External interrupt rising edge specification register 0	INTC	665
INTR3	External interrupt rising edge specification register 3	INTC	666
INTR9H	External interrupt rising edge specification register 9H	INTC	667

Symbol	Name	Unit	Page
ISPR	In-service priority register	INTC	655
KRIC	Interrupt control register	INTC	653
KRM	Key return mode register	KR	672
LOCKR	Lock register	CG	208
LVIIC	Interrupt control register	INTC	652
LVIM	Low voltage detection register	LVI	710
LVIS	Low voltage detection level select register	LVI	711
NFC	Noise elimination control register	INTC	668
OCDM	On-chip debug mode register	DCU	746
OCKS0	IIC division clock select register 0	I ² C	557
OCKS1	IIC division clock select register 1	I ² C	557
OSTS	Oscillation stabilization time select register	Standby	677
P0	Port 0 register	Port	93
P1	Port 1 register	Port	96
P3	Port 3 register	Port	98
РЗН	Port 3 register H	Port	98
P3L	Port 3 register L	Port	98
P4	Port 4 register	Port	103
P5	Port 5 register	Port	105
P7H	Port 7 register H	Port	110
P7L	Port 7 register L	Port	110
P9	Port 9 register	Port	112
P9H	Port 9 register H	Port	112
P9L	Port 9 register L	Port	112
PC	Program counter	CPU	47
PCC	Processor clock control register	CG	200
PCM	Port CM register	Port	119
PCT	Port CT register	Port	121
PDH	Port DH register	Port	123
PDL	Port DL register	Port	126
PDLH	Port DL register H	Port	126
PDLL	Port DL register L	Port	126
PEMU1	Peripheral emulation register 1	CPU	715
PF0	Port 0 function register	Port	95
PF3	Port 3 function register	Port	102
PF3H	Port 3 function register H	Port	102
PF3L	Port 3 function register L	Port	102
PF4	Port 4 function register	Port	104
PF5	Port 5 function register	Port	108
PF9	Port 9 function register	Port	118
PF9H	Port 9 function register H	Port	118
PF9L	Port 9 function register L	Port	118
PFC0	Port 0 function control register	Port	95
PFC3	Port 3 function control register	Port	100
PFC3H	Port 3 function control register H	Port	100

Symbol	Name	Unit	Page
PFC3L	Port 3 function control register L	Port	100
PFC4	Port 4 function control register	Port	104
PFC5	Port 5 function control register	Port	107
PFC9	Port 9 function control register	Port	115
PFC9H	Port 9 function control register H	Port	115
PFC9L	Port 9 function control register L	Port	115
PFCE3L	Port 3 function control extension register L	Port	100
PFCE5	Port 5 function control extension register	Port	107
PFCE9	Port 9 function control extension register	Port	115
PFCE9H	Port 9 function control extension register H	Port	115
PFCE9L	Port 9 function control extension register L	Port	115
PIC0	Interrupt control register	INTC	652
PIC1	Interrupt control register	INTC	652
PIC2	Interrupt control register	INTC	652
PIC3	Interrupt control register	INTC	652
PIC4	Interrupt control register	INTC	652
PIC5	Interrupt control register	INTC	652
PIC6	Interrupt control register	INTC	652
PIC7	Interrupt control register	INTC	652
PLLCTL	PLL control register	CG	206
PLLS	PLL lockup time specification register	CG	209
PM0	Port 0 mode register	Port	94
PM1	Port 1 mode register	Port	96
PM3	Port 3 mode register	Port	98
РМЗН	Port 3 mode register H	Port	98
PM3L	Port 3 mode register L	Port	98
PM4	Port 4 mode register	Port	103
PM5	Port 5 mode register	Port	106
PM7H	Port 7 mode register H	Port	110
PM7L	Port 7 mode register L	Port	110
PM9	Port 9 mode register	Port	112
PM9H	Port 9 mode register H	Port	112
PM9L	Port 9 mode register L	Port	112
PMC0	Port 0 mode control register	Port	94
PMC3	Port 3 mode control register	Port	99
РМСЗН	Port 3 mode control register H	Port	99
PMC3L	Port 3 mode control register L	Port	99
PMC4	Port 4 mode control register	Port	104
PMC5	Port 5 mode control register	Port	106
PMC9	Port 9 mode control register	Port	113
PMC9H	Port 9 mode control register H	Port	113
PMC9L	Port 9 mode control register L	Port	113
PMCCM	Port CM mode control register	Port	120
PMCCT	Port CT mode control register	Port	120
PMCDH	Port DH mode control register	Port	122

Symbol	Name	Unit	Page
PMCDL	Port DL mode control register	Port	127
PMCDLH	Port DL mode control register H	Port	127
PMCDLL	Port DL mode control register L	Port	127
PMCM	Port CM mode register	Port	119
PMCT	Port CT mode register	Port	121
PMDH	Port DH mode register	Port	123
PMDL	Port DL mode register	Port	126
PMDLH	Port DL mode register H	Port	126
PMDLL	Port DL mode register L	Port	126
PRCMD	Command register	CPU	81
PRSCM0	Prescaler compare register 0	WT	409
PRSCM1	Prescaler compare register 1	BRG	533
PRSCM2	Prescaler compare register 2	BRG	533
PRSCM3	Prescaler compare register 3	BRG	533
PRSM0	Prescaler mode register 0	WT	408
PRSM1	Prescaler mode register 1	BRG	532
PRSM2	Prescaler mode register 2	BRG	532
PRSM3	Prescaler mode register 3	BRG	532
PSC	Power save control register	CG	675
PSMR	Power save mode register	CG	676
PSW	Program status word	CPU	51
r0 to r31	General-purpose registers	CPU	47
RAMS	Internal RAM data status register	CG	711
RCM	Internal oscillation mode register	CG	204
RESF	Reset source flag register	Reset	694
RTBH0	Real-time output buffer register 0H	RTP	422
RTBL0	Real-time output buffer register 0L	RTP	422
RTPC0	Real-time output port control register 0	RTP	424
RTPM0	Real-time output port mode register 0	RTP	423
SELCNT0	Selector operation control register 0	Timer	296
SVA0	Slave address register 0	l ² C	558
SVA1	Slave address register 1	l ² C	558
SVA2	Slave address register 2	I ² C	558
SYS	System status register	CPU	82
TM0CMP0	TMM0 compare register 0	Timer	398
TM0CTL0	TMM0 control register 0	Timer	399
TM0EQIC0	Interrupt control register	INTC	652
TP0CCIC0	Interrupt control register	INTC	652
TP0CCIC1	Interrupt control register	INTC	652
TP0CCR0	TMP0 capture/compare register 0	Timer	220
TP0CCR1	TMP0 capture/compare register 1	Timer	222
TPOCNT	TMP0 counter read buffer register	Timer	224
TP0CTL0	TMP0 control register 0	Timer	214
TP0CTL1	TMP0 control register 1	Timer	214
TP0IOC0	TMP0 I/O control register 0	Timer	216

			(8/10
Symbol	Name	Unit	Page
TP0IOC1	TMP0 I/O control register 1	Timer	217
TP0IOC2	TMP0 I/O control register 2	Timer	218
TP0OPT0	TMP0 option register 0	Timer	219
TP00VIC	Interrupt control register	INTC	652
TP1CCIC0	Interrupt control register	INTC	652
TP1CCIC1	Interrupt control register	INTC	652
TP1CCR0	TMP1 capture/compare register 0	Timer	220
TP1CCR1	TMP1 capture/compare register 1	Timer	222
TP1CNT	TMP1 counter read buffer register	Timer	224
TP1CTL0	TMP1 control register 0	Timer	214
TP1CTL1	TMP1 control register 1	Timer	214
TP1IOC0	TMP1 I/O control register 0	Timer	216
TP1IOC1	TMP1 I/O control register 1	Timer	217
TP1IOC2	TMP1 I/O control register 2	Timer	218
TP1OPT0	TMP1 option register 0	Timer	219
TP10VIC	Interrupt control register	INTC	652
TP2CCIC0	Interrupt control register	INTC	652
TP2CCIC1	Interrupt control register	INTC	652
TP2CCR0	TMP2 capture/compare register 0	Timer	220
TP2CCR1	TMP2 capture/compare register 1	Timer	222
TP2CNT	TMP2 counter read buffer register	Timer	224
TP2CTL0	TMP2 control register 0	Timer	214
TP2CTL1	TMP2 control register 1	Timer	214
TP2IOC0	TMP2 I/O control register 0	Timer	216
TP2IOC1	TMP2 I/O control register 1	Timer	217
TP2IOC2	TMP2 I/O control register 2	Timer	218
TP2OPT0	TMP2 option register 0	Timer	219
TP2OVIC	Interrupt control register	INTC	652
TP3CCIC0	Interrupt control register	INTC	652
TP3CCIC1	Interrupt control register	INTC	652
TP3CCR0	TMP3 capture/compare register 0	Timer	220
TP3CCR1	TMP3 capture/compare register 1	Timer	222
TP3CNT	TMP3 counter read buffer register	Timer	224
TP3CTL0	TMP3 control register 0	Timer	214
TP3CTL1	TMP3 control register 1	Timer	214
TP3IOC0	TMP3 I/O control register 0	Timer	216
TP3IOC1	TMP3 I/O control register 1	Timer	217
TP3IOC2	TMP3 I/O control register 2	Timer	218
TP3OPT0	TMP3 option register 0	Timer	219
TP3OVIC	Interrupt control register	INTC	652
TP4CCIC0	Interrupt control register	INTC	652
TP4CCIC1	Interrupt control register	INTC	652
TP4CCR0	TMP4 capture/compare register 0	Timer	220
TP4CCR0	TMP4 capture/compare register 0	Timer	220
TP4CCR1 TP4CNT	TMP4 counter read buffer register	Timer	222

Symbol	Name	Unit	Page
TP4CTL0	TMP4 control register 0	Timer	214
TP4CTL1	TMP4 control register 1	Timer	214
TP4IOC0	TMP4 I/O control register 0	Timer	216
TP4IOC1	TMP4 I/O control register 1	Timer	217
TP4IOC2	TMP4 I/O control register 2	Timer	218
TP4OPT0	TMP4 option register 0	Timer	219
TP4OVIC	Interrupt control register	INTC	652
TP5CCIC0	Interrupt control register	INTC	652
TP5CCIC1	Interrupt control register	INTC	652
TP5CCR0	TMP5 capture/compare register 0	Timer	220
TP5CCR1	TMP5 capture/compare register 1	Timer	222
TP5CNT	TMP5 counter read buffer register	Timer	224
TP5CTL0	TMP5 control register 0	Timer	214
TP5CTL1	TMP5 control register 1	Timer	214
TP5IOC0	TMP5 I/O control register 0	Timer	216
TP5IOC1	TMP5 I/O control register 1	Timer	217
TP5IOC2	TMP5 I/O control register 2	Timer	218
TP5OPT0	TMP5 option register 0	Timer	219
TP50VIC	Interrupt control register	INTC	652
TQOCCICO	Interrupt control register	INTC	652
TQ0CCIC1	Interrupt control register	INTC	652
TQ0CCIC2	Interrupt control register	INTC	652
TQ0CCIC3	Interrupt control register	INTC	652
TQOCCR0	TMQ0 capture/compare register 0	Timer	308
TQ0CCR1	TMQ0 capture/compare register 1	Timer	310
TQ0CCR2	TMQ0 capture/compare register 2	Timer	312
TQ0CCR3	TMQ0 capture/compare register 3	Timer	314
TQOCOTIO	TMQ0 counter read buffer register	Timer	316
TQOCTLO	TMQ0 control register 0	Timer	302
TQOCTL0	TMQ0 control register 1	Timer	303
TQUETET	TMQ0 I/O control register 0	Timer	303
TQ0IOC0			304
TQ0IOC1	TMQ0 I/O control register 1	Timer	
	TMQ0 I/O control register 2	Timer	306 307
	TMQ0 option register 0	Timer	
	Interrupt control register	INTC	652
	UARTA0 control register 0	UARTA	474
UA0CTL1	UARTA0 control register 1	UARTA	496
UA0CTL2	UARTA0 control register 2	UARTA	497
	UARTA0 option control register 0	UARTA	476
UAORIC	Interrupt control register	INTC	653
UAORX	UARTA0 receive data register	UARTA	479
UA0STR	UARTA0 status register	UARTA	477
UA0TIC	Interrupt control register	INTC	653
UA0TX	UARTA0 transmit data register	UARTA	479
UA1CTL0	UARTA1 control register 0	UARTA	474

Symbol	Name	Unit	Page
UA1CTL1	UARTA1 control register 1	UARTA	496
UA1CTL2	UARTA1 control register 2	UARTA	497
UA1OPT0	UARTA1 option control register 0	UARTA	476
UA1RIC	Interrupt control register	INTC	653
UA1RX	UARTA1 receive data register	UARTA	479
UA1STR	UARTA1 status register	UARTA	477
UA1TIC	Interrupt control register	INTC	653
UA1TX	UARTA1 transmit data register	UARTA	479
UA2CTL0	UARTA2 control register 0	UARTA	474
UA2CTL1	UARTA2 control register 1	UARTA	496
UA2CTL2	UARTA2 control register 2	UARTA	497
UA2OPT0	UARTA2 option control register 0	UARTA	476
UA2RIC	Interrupt control register	INTC	653
UA2RX	UARTA2 receive data register	UARTA	479
UA2STR	UARTA2 status register	UARTA	477
UA2TIC	Interrupt control register	INTC	653
UA2TX	UARTA2 transmit data register	UARTA	479
VSWC	System wait control register	CPU	83
WDTE	Watchdog timer enable register	WDT	419
WDTM2	Watchdog timer mode register 2	WDT	417
WTIC	Interrupt control register	INTC	653
WTIIC	Interrupt control register	INTC	653
WTM	Watch timer operation mode register	WT	410

APPENDIX C INSTRUCTION SET LIST

C.1 Conventions

(1) Register symbols used to describe operands

Register Symbol	Explanation
reg1	General-purpose registers: Used as source registers.
reg2	General-purpose registers: Used mainly as destination registers. Also used as source register in some instructions.
reg3	General-purpose registers: Used mainly to store the remainders of division results and the higher 32 bits of multiplication results.
bit#3	3-bit data for specifying the bit number
immX	X bit immediate data
dispX	X bit displacement data
regID	System register number
vector	5-bit data that specifies the trap vector (00H to 1FH)
сссс	4-bit data that shows the conditions code
sp	Stack pointer (r3)
ер	Element pointer (r30)
listX	X item register list

(2) Register symbols used to describe opcodes

Register Symbol	Explanation
R	1-bit data of a code that specifies reg1 or regID
r	1-bit data of the code that specifies reg2
w	1-bit data of the code that specifies reg3
d	1-bit displacement data
1	1-bit immediate data (indicates the higher bits of immediate data)
i	1-bit immediate data
сссс	4-bit data that shows the condition codes
CCCC	4-bit data that shows the condition codes of Bcond instruction
bbb	3-bit data for specifying the bit number
L	1-bit data that specifies a program register in the register list

(3) Register symbols used in operations

Register Symbol	Explanation
\leftarrow	Input for
GR []	General-purpose register
SR[]	System register
zero-extend (n)	Expand n with zeros until word length.
sign-extend (n)	Expand n with signs until word length.
load-memory (a, b)	Read size b data from address a.
store-memory (a, b, c)	Write data b into address a in size c.
load-memory-bit (a, b)	Read bit b of address a.
store-memory-bit (a, b, c)	Write c to bit b of address a.
saturated (n)	Execute saturated processing of n (n is a 2's complement). If, as a result of calculations, $n \ge 7FFFFFFFH$, let it be 7FFFFFFH. $n \le 80000000H$, let it be 80000000H.
result	Reflects the results in a flag.
Byte	Byte (8 bits)
Halfword	Half word (16 bits)
Word	Word (32 bits)
+	Addition
-	Subtraction
П	Bit concatenation
x	Multiplication
÷	Division
%	Remainder from division results
AND	Logical product
OR	Logical sum
XOR	Exclusive OR
NOT	Logical negation
logically shift left by	Logical shift left
logically shift right by	Logical shift right
arithmetically shift right by	Arithmetic shift right

(4) Register symbols used in execution clock

Register Symbol	Explanation
i	If executing another instruction immediately after executing the first instruction (issue).
r	If repeating execution of the same instruction immediately after executing the first instruction (repeat).
I	If using the results of instruction execution in the instruction immediately after the execution (latency).

(5) Register symbols used in flag operations

Identifier	Explanation
(Blank)	No change
0	Clear to 0
х	Set or cleared in accordance with the results.
R	Previously saved values are restored.

(6) Condition codes

Condition Code (cccc)	Condition Formula	Explanation
0000	OV = 1	Overflow
1000	OV = 0	No overflow
0001	CY = 1	Carry Lower (Less than)
1001	CY = 0	No carry Not lower (Greater than or equal)
0010	Z = 1	Zero
1010	Z = 0	Not zero
0011	(CY or Z) = 1	Not higher (Less than or equal)
1011	(CY or Z) = 0	Higher (Greater than)
0100	S = 1	Negative
1 1 0 0	S = 0	Positive
0101	-	Always (Unconditional)
1 1 0 1	SAT = 1	Saturated
0110	(S xor OV) = 1	Less than signed
1 1 1 0	(S xor OV) = 0	Greater than or equal signed
0111	((S xor OV) or Z) = 1	Less than or equal signed
1 1 1 1	((S xor OV) or Z) = 0	Greater than signed

C.2 Instruction Set (in Alphabetical Order)

Mnemonic	Operand	Opcode	Operation		E,	ecut	ion			Flage		1/6)
Milemonic	Operand	Opcode	Operation			Cloc			<u> </u>	-	1	T
					i	r	1	CY	ov	S	Z	SAT
ADD	reg1,reg2	rrrrr001110RRRRR	GR[reg2]←GR[reg2]+GR[reg1]		1	1	1	×	×	×	×	
	imm5,reg2	rrrrr010010iiiii	GR[reg2]←GR[reg2]+sign-extend(i		1	1	1	×	×	×	×	
ADDI	imm16,reg1,reg2	rrrr110000RRRRR	GR[reg2]←GR[reg1]+sign-extend(i	R[reg2]←GR[reg1]+sign-extend(imm16) R[reg2]←GR[reg2]AND GR[reg1] R[reg2]←GR[reg1]AND zero-extend(imm16)				×	×	×	×	
AND	reg1,reg2	rrrrr001010RRRRR	GR[reg2]←GR[reg2]AND GR[reg1]		1	1	1		0	×	×	
ANDI	imm16,reg1,reg2	rrrrr110110RRRRR	GR[reg2]←GR[reg1]AND zero-exte	end(imm16)	1	1	1		0	×	×	
Bcond	disp9	ddddd1011dddcccc	if conditions are satisfied	When conditions	2	2	2					
		Note 1	then PC←PC+sign-extend(disp9)	are satisfied	Note 2							
				When conditions are not satisfied	1	1	1					
BSH	reg2,reg3	rrrr11111100000 wwwww01101000010	GR[reg3]←GR[reg2] (23 : 16)		1	1	1	×	0	×	×	
BSW	reg2,reg3	rrrr11111100000 wwww01101000000	GR[reg3]←GR[reg2] (7 : 0) ∥ GR[re [reg2] (23 : 16) ∥ GR[reg2] (31 : 24)		1	1	1	×	0	×	×	
CALLT	imm6	0000001000iiiiii	CTPC←PC+2(return PC) CTPSW←PSW adr←CTBP+zero-extend(imm6 logic PC←CTBP+zero-extend(Load-mem		4	4	4					
CLR1	bit#3,disp16[reg1]	10bbb111110RRRRR	adr←GR[reg1]+sign-extend(disp16)	3	3	3				×	
		ddddddddddddd	Z flag←Not(Load-memory-bit(adr,b Store-memory-bit(adr,bit#3,0)	it#3))	Note 3	Note 3	Note 3					
	reg2,[reg1]	rrrr111111RRRRR 0000000011100100	adr←GR[reg1] Z flag←Not(Load-memory-bit(adr,re Store-memory-bit(adr,reg2,0)	eg2))	3 Note 3	3 Note 3	3 Note 3				×	
CMOV	cccc,imm5,reg2,reg3	rrrrr111111iiii wwwww011000cccc0			1	1	1					
	cccc,reg1,reg2,reg3	rrrrr111111RRRR wwwww011001cccc0	if conditions are satisfied then GR[reg3]←GR[reg1] else GR[reg3]←GR[reg2]		1	1	1					
CMP	reg1,reg2	rrrrr001111RRRRR	result←GR[reg2]–GR[reg1]		1	1	1	×	×	×	×	
	imm5,reg2	rrrrr010011iiiii	result←GR[reg2]–sign-extend(imm	5)	1	1	1	×	×	×	×	
CTRET		0000011111100000 0000000101000100	PC←CTPC PSW←CTPSW		3	3	3	R	R	R	R	R
DBRET		0000011111100000	PC←DBPC PSW←DBPSW		3	3	3	R	R	R	R	R

Mnemonic	Operand	Opcode	Operation	Ex	ecut	ion		I	Flags	-	2/6)
				(Clocl	k					
				i	r	Ι	CY	٥V	S	Ζ	SAT
DBTRAP		1111100001000000	DBPC←PC+2 (restored PC) DBPSW←PSW PSW.NP←1 PSW.EP←1 PSW.ID←1 PC←00000060H	3	3	3					
DI		0000011111100000 0000000101100000	PSW.ID←1	1	1	1					
DISPOSE	imm5,list12	0000011001iiiiiL LLLLLLLLL00000	sp←sp+zero-extend(imm5 logically shift left by 2) GR[reg in list12]←Load-memory(sp,Word) sp←sp+4 repeat 2 steps above until all regs in list12 is loaded		n+1 Note4						
	imm5,list12,[reg1]	0000011001iiiiiL LLLLLLLLRRRRR Note 5	sp←sp+zero-extend(imm5 logically shift left by 2) GR[reg in list12]←Load-memory(sp,Word) sp←sp+4 repeat 2 steps above until all regs in list12 is loaded PC←GR[reg1]	_	n+3 Note4	_					
DIV	reg1,reg2,reg3	rrrr111111RRRRR wwwww01011000000	GR[reg2]←GR[reg2]÷GR[reg1] GR[reg3]←GR[reg2]%GR[reg1]	35	35	35		×	×	×	
DIVH	reg1,reg2	rrrr000010RRRRR	GR[reg2]←GR[reg2]÷GR[reg1] ^{№06 6}	35	35	35		×	×	×	
	reg1,reg2,reg3	rrrrr111111RRRRR wwwww01010000000	GR[reg2]←GR[reg2]÷GR[reg1] ^{№te 6} GR[reg3]←GR[reg2]%GR[reg1]	35	35	35		×	×	×	
DIVHU	reg1,reg2,reg3	rrrrr111111RRRRR wwwww01010000010	GR[reg2]←GR[reg2]÷GR[reg1] ^{№666} GR[reg3]←GR[reg2]%GR[reg1]	34	34	34		×	×	×	
DIVU	reg1,reg2,reg3	rrrr111111RRRRR wwww01011000010	GR[reg2]←GR[reg2]÷GR[reg1] GR[reg3]←GR[reg2]%GR[reg1]	34	34	34		×	×	×	
EI		1000011111100000 0000000101100000	PSW.ID←0	1	1	1					
HALT		0000011111100000 0000000100100000	Stop	1	1	1					
HSW	reg2,reg3	rrrr11111100000 wwww01101000100	GR[reg3]←GR[reg2](15 : 0) II GR[reg2] (31 : 16)	1	1	1	×	0	×	×	
JARL	disp22,reg2	rrrrr11110dddddd ddddddddddddddd Note 7	GR[reg2]←PC+4 PC←PC+sign-extend(disp22)	2	2	2					
JMP	[reg1]	00000000011RRRRR	PC←GR[reg1]	3	3	3					
JR	disp22	0000011110ddddd dddddddddddddd Note 7	PC←PC+sign-extend(disp22)	2	2	2					
LD.B	disp16[reg1],reg2	rrrr111000RRRRR dddddddddddddddd	adr←GR[reg1]+sign-extend(disp16) GR[reg2]←sign-extend(Load-memory(adr,Byte))	1	1	Note 11				<u> </u>	
LD.BU	disp16[reg1],reg2	rrrrr11110bRRRRR ddddddddddddd	adr←GR[reg1]+sign-extend(disp16) GR[reg2]←zero-extend(Load-memory(adr,Byte))	1	1	Note 11					
		Notes 8, 10									

(2/6)

Mnemonic	Operand	Opcode	Оре	ration		ecut			I	lags		3/6)
					i	Clocl r	< 	CY	ov	S	Z	SAT
LD.H	disp16[reg1],reg2	rrrrr111001RRRRR ddddddddddddddd Note 8	adr←GR[reg1]+sign-exten GR[reg2]←sign-extend(Lo	nd(disp16) ad-memory(adr,Halfword))	1	1	Note			0		
LDSR	reg2,regID	rrrr111111RRRRR 0000000000100000 Note 12	SR[regID]←GR[reg2]	Other than regID = PSW regID = PSW	1	1 1	1 1	×	×	×	×	×
LD.HU	disp16[reg1],reg2	rrrrr111111RRRRR dddddddddddddddd	adr←GR[reg1]+sign-exten GR[reg2]←zero-extend(Lc		1	1	Note 11					
LD.W	disp16[reg1],reg2	rrrrr111001RRRRR dddddddddddddd Note 8	adr←GR[reg1]+sign-exten GR[reg2]←Load-memory(1	1	Note 11					
MOV	reg1,reg2	rrrr000000RRRRR	GR[reg2]←GR[reg1]		1	1	1					
	imm5,reg2	rrrrr010000iiiii	GR[reg2]←sign-extend(im	m5)	1	1	1					
	imm32,reg1	00000110001RRRRR 	GR[reg1]←imm32		2	2	2					
MOVEA	imm16,reg1,reg2	rrrrr110001RRRRR	GR[reg2]←GR[reg1]+sign	-extend(imm16)	1	1	1					
MOVHI	imm16,reg1,reg2	rrrrr110010RRRRR	GR[reg2]←GR[reg1]+(imr	n16 ll 0 ¹⁶)	1	1	1					
MUL	reg1,reg2,reg3	rrrrr111111RRRRR wwwww01000100000	GR[reg3] II GR[reg2]←GR Note 14	[reg2]xGR[reg1]	1	4	5					
	imm9,reg2,reg3	rrrrr111111iiii wwww01001IIII00 Note 13	GR[reg3] ∥ GR[reg2]←GR	[reg2]xsign-extend(imm9)	1	4	5					
MULH	reg1,reg2	rrrr000111RRRRR	GR[reg2]←GR[reg2] ^{№σte 6} xG	GR[reg1] ^{Note 6}	1	1	2					
	imm5,reg2	rrrrr010111iiiii	GR[reg2]←GR[reg2] ^{№te 6} xs	ign-extend(imm5)	1	1	2					
MULHI	imm16,reg1,reg2	rrrrr110111RRRRR	GR[reg2]←GR[reg1] ^{№te 6} xir	nm16	1	1	2					
MULU	reg1,reg2,reg3	rrrrr111111RRRRR wwwww01000100010	GR[reg3] II GR[reg2]←GR Note 14	[reg2]xGR[reg1]	1	4	5					
	imm9,reg2,reg3	rrrrr111111iiii wwww01001IIII10 Note 13	GR[reg3] II GR[reg2]←GR	[reg2]xzero-extend(imm9)	1	4	5					
NOP		000000000000000000000000000000000000000	Pass at least one clock cy	cle doing nothing.	1	1	1					
NOT	reg1,reg2	rrrr000001RRRRR	GR[reg2]←NOT(GR[reg1])	1	1	1		0	×	×	
NOT1	bit#3,disp16[reg1]	01bbb111110RRRRR ddddddddddddddddd	adr←GR[reg1]+sign-exten Z flag←Not(Load-memory Store-memory-bit(adr,bit#3	-bit(adr,bit#3))	3 Note 3	3 Note 3	3 Note 3				×	
	reg2,[reg1]	rrrrr111111RRRRR 0000000011100010	adr←GR[reg1] Z flag←Not(Load-memory	-	3 Note 3	3 Note 3	3 Note 3				×	
			Store-memory-bit(adr,reg2									

(4/0)

Maaaaia	Onemand	Quanda	Oreartian	-					-1		4/6)
Mnemonic	Operand	Opcode	Operation		ecut Clocl			1	-lags	;	
				i	r	1	CY	ov	s	z	SAT
OR	reg1,reg2	rrrr001000RRRRR	GR[reg2]←GR[reg2]OR GR[reg1]	1	1	1		0	×	×	
ORI	imm16,reg1,reg2	rrrrr110100RRRRR	GR[reg2]←GR[reg1]OR zero-extend(imm16)	1	1	1		0	×	×	
PREPARE	list12,imm5	0000011110iiiiiL LLLLLLLLL00001	Store-memory(sp–4,GR[reg in list12],Word) sp←sp–4 repeat 1 step above until all regs in list12 is stored sp←sp-zero-extend(imm5)		n+1 Note4						
	list12,imm5, sp/imm ^{Note 15}	0000011110iiiiiL LLLLLLLLLff011 imm16/imm32 Note 16	Store-memory(sp-4,GR[reg in list12],Word) $sp \leftarrow sp+4$ repeat 1 step above until all regs in list12 is stored $sp \leftarrow sp$ -zero-extend (imm5) $ep \leftarrow sp/imm$	Note 4	n+2 Note4 Note17	Note 4					
RETI		0000011111100000	if PSW.EP=1 then PC \leftarrow EIPC PSW \leftarrow EIPSW else if PSW.NP=1 then PC \leftarrow FEPC PSW \leftarrow FEPSW else PC \leftarrow EIPC PSW \leftarrow EIPSW	3	3	3	R	R	R	R	R
SAR	reg1,reg2	rrrrr111111RRRRR 0000000010100000	GR[reg2]←GR[reg2]arithmetically shift right by GR[reg1]	1	1	1	×	0	×	×	
	imm5,reg2	rrrrr010101iiiii	GR[reg2]←GR[reg2]arithmetically shift right by zero-extend (imm5)	1	1	1	×	0	×	×	
SASF	cccc,reg2	rrrrr1111110cccc 0000001000000000	if conditions are satisfied then GR[reg2]←(GR[reg2]Logically shift left by 1) OR 00000001H else GR[reg2]←(GR[reg2]Logically shift left by 1) OR 00000000H	1	1	1					
SATADD	reg1,reg2	rrrrr000110RRRRR	GR[reg2]←saturated(GR[reg2]+GR[reg1])	1	1	1	×	×	×	×	×
	imm5,reg2	rrrrr010001iiiii	GR[reg2]←saturated(GR[reg2]+sign-extend(imm5)	1	1	1	×	×	×	×	×
SATSUB	reg1,reg2	rrrr000101RRRRR	GR[reg2]←saturated(GR[reg2]–GR[reg1])	1	1	1	×	×	×	×	×
SATSUBI	imm16,reg1,reg2	rrrr110011RRRRR	GR[reg2]←saturated(GR[reg1]–sign-extend(imm16)	1	1	1	×	×	×	×	×
SATSUBR	reg1,reg2	rrrr000100RRRRR	GR[reg2]←saturated(GR[reg1]–GR[reg2])	1	1	1	×	×	×	×	×
SETF	cccc,reg2	rrrr1111110cccc 00000000000000000000	If conditions are satisfied then GR[reg2]←00000001H else GR[reg2]←00000000H	1	1	1					

(5/6)

Mnemonic	Operand	Opcode	Operation	Ex	ecut	ion		I	=lags	3	
				(Cloc	k					
				i	r	Ι	CY	٥V	S	Z	SA
SET1	bit#3,disp16[reg1]	00bbb111110RRRRR	adr-GR[reg1]+sign-extend(disp16)	3	3	3				×	
		ddddddddddddd	Z flag—Not (Load-memory-bit(adr,bit#3))	Note 3	Note 3	Note 3					
			Store-memory-bit(adr,bit#3,1)	_	_	_					-
	reg2,[reg1]	rrrrr111111RRRRR 0000000011100000	adr←GR[reg1] Z flag←Not(Load-memory-bit(adr,reg2))	3	3	3				×	
		000000011100000	Store-memory-bit(adr,reg2,1)	NOLE 3	Notes	Note 3					
SHL	reg1,reg2	rrrrr111111RRRRR	GR[reg2]←GR[reg2] logically shift left by GR[reg1]	1	1	1	×	0	×	×	
		000000011000000			-						
	imm5,reg2	rrrrr010110iiiii	GR[reg2]←GR[reg2] logically shift left by zero-extend(imm5)	1	1	1	×	0	×	×	
SHR	reg1,reg2	rrrr111111RRRRR	GR[reg2]←GR[reg2] logically shift right by GR[reg1]	1	1	1	×	0	×	×	
		00000001000000									
	imm5,reg2	rrrrr010100iiiii	GR[reg2]—GR[reg2] logically shift right by zero-extend(imm5)	1	1	1	×	0	×	×	
SLD.B	disp7[ep],reg2	rrrrr0110dddddd	adr←ep+zero-extend(disp7)	1	1	Note 9					
			GR[reg2]←sign-extend(Load-memory(adr,Byte))								
SLD.BU	disp4[ep],reg2	rrrrr0000110dddd	adr←ep+zero-extend(disp4)	1	1	Note 9					
		Note 18	GR[reg2]←zero-extend(Load-memory(adr,Byte))								
SLD.H	disp8[ep],reg2	rrrrr1000dddddd	adr←ep+zero-extend(disp8)	1	1	Note 9					
		Note 19	GR[reg2]←sign-extend(Load-memory(adr,Halfword))								
SLD.HU	disp5[ep],reg2	rrrrr0000111dddd	adr←ep+zero-extend(disp5)	1	1	Note 9					
		Notes 18, 20	GR[reg2]←zero-extend(Load-memory(adr,Halfword))								
SLD.W	disp8[ep],reg2	rrrrr1010dddddd	adr←ep+zero-extend(disp8)	1	1	Note 9					
		Note 21	GR[reg2]←Load-memory(adr,Word)								
SST.B	reg2,disp7[ep]	rrrrr0111dddddd	adr←ep+zero-extend(disp7)	1	1	1					
			Store-memory(adr,GR[reg2],Byte)								
SST.H	reg2,disp8[ep]	rrrrr1001dddddd	adr←ep+zero-extend(disp8)	1	1	1					
		Note 19	Store-memory(adr,GR[reg2],Halfword)								
SST.W	reg2,disp8[ep]	rrrrr1010ddddd1 Note 21	adr←ep+zero-extend(disp8) Store-memory(adr,GR[reg2],Word)	1	1	1					
ST.B	reg2,disp16[reg1]	rrrrr111010RRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	1					1
		dddddddddddddd	Store-memory(adr,GR[reg2],Byte)								
ST.H	reg2,disp16[reg1]	rrrrr111011RRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	1					
		dddddddddddddd	Store-memory (adr,GR[reg2], Halfword)								
		Note 8									
ST.W	reg2,disp16[reg1]	rrrrr111011RRRRR	adr-GR[reg1]+sign-extend(disp16)	1	1	1					
		dddddddddddd1	Store-memory (adr,GR[reg2], Word)								
		Note 8			<u> </u>	_					<u> </u>
STSR	regID,reg2	rrrrr111111RRRRR	GR[reg2]←SR[regID]	1	1	1					
0104	regiD,reg2	0000000001000000	տլւեղշյ←օպլենլոյ								

(6/6)	
-------	--

	1									(6/6)
Mnemonic	Operand	Opcode	Operation		ecut Clocl			F	Flage	6	
				i	r	Ι	CY	ov	S	Z	SAT
SUB	reg1,reg2	rrrr001101RRRRR	GR[reg2]←GR[reg2]–GR[reg1]	1	1	1	×	×	×	×	
SUBR	reg1,reg2	rrrr001100RRRRR	GR[reg2]←GR[reg1]–GR[reg2]	1	1	1	×	×	×	×	
SWITCH	reg1	00000000010RRRR	adr←(PC+2) + (GR [reg1] logically shift left by 1) PC←(PC+2) + (sign-extend (Load-memory (adr,Halfword)) logically shift left by 1	5	5	5					
SXB	reg1	00000000101RRRRR	GR[reg1]←sign-extend (GR[reg1] (7 : 0))	1	1	1					
SXH	reg1	00000000111RRRRR	GR[reg1]←sign-extend (GR[reg1] (15 : 0))	1	1	1					
TRAP	vector	0000011111111111	EIPC ←PC+4 (Restored PC) EIPSW ←PSW ECR.EICC ←Interrupt code PSW.EP ←1 PSW.ID ←1 PC ←00000040H (when vector is 00H to 0FH) 00000050H (when vector is 10H to 1FH)	3	3	3					
TST	reg1,reg2	rrrr001011RRRRR	result←GR[reg2] AND GR[reg1]	1	1	1		0	×	×	
TST1	bit#3,disp16[reg1]	11bbb111110RRRRR ddddddddddddddd	adr←GR[reg1]+sign-extend(disp16) Z flag←Not (Load-memory-bit (adr,bit#3))	3 Note 3	3 Note 3	3 Note 3				×	
	reg2, [reg1]	rrrr111111RRRRR 0000000011100110	adr←GR[reg1] Z flag←Not (Load-memory-bit (adr,reg2))	3 Note 3	3 Note 3	3 Note 3				×	
XOR	reg1,reg2	rrrr001001RRRRR	GR[reg2]←GR[reg2] XOR GR[reg1]	1	1	1		0	×	×	
XORI	imm16,reg1,reg2	rrrrr110101RRRRR	GR[reg2]←GR[reg1] XOR zero-extend (imm16)	1	1	1		0	×	×	
ZXB	reg1	00000000100RRRR	GR[reg1]←zero-extend (GR[reg1] (7 : 0))	1	1	1					
ZXH	reg1	00000000110RRRRR	GR[reg1]←zero-extend (GR[reg1] (15 : 0))	1	1	1					

Notes 1. dddddddd: Higher 8 bits of disp9.

- 2. 3 if there is an instruction that rewrites the contents of the PSW immediately before.
- **3.** If there is no wait state (3 + the number of read access wait states).
- **4.** n is the total number of list12 load registers. (According to the number of wait states. Also, if there are no wait states, n is the total number of list12 registers. If n = 0, same operation as when n = 1)
- 5. RRRRR: other than 00000.
- 6. The lower halfword data only are valid.
- 7. ddddddddddddddddd: The higher 21 bits of disp22.
- 8. ddddddddddddd: The higher 15 bits of disp16.
- 9. According to the number of wait states (1 if there are no wait states).
- **10.** b: bit 0 of disp16.
- 11. According to the number of wait states (2 if there are no wait states).

- **Notes 12.** In this instruction, for convenience of mnemonic description, the source register is made reg2, but the reg1 field is used in the opcode. Therefore, the meaning of register specification in the mnemonic description and in the opcode differs from other instructions.
 - rrrrr = regID specification
 - RRRRR = reg2 specification
 - 13. iiiii: Lower 5 bits of imm9.
 - IIII: Higher 4 bits of imm9.
 - 14. Do not specify the same register for general-purpose registers reg1 and reg3.
 - 15. sp/imm: specified by bits 19 and 20 of the sub-opcode.
 - **16.** ff = 00: Load sp in ep.
 - 01: Load sign expanded 16-bit immediate data (bits 47 to 32) in ep.
 - 10: Load 16-bit logically left shifted 16-bit immediate data (bits 47 to 32) in ep.
 - 11: Load 32-bit immediate data (bits 63 to 32) in ep.
 - **17.** If imm = imm32, n + 3 clocks.
 - **18.** rrrrr: Other than 00000.
 - **19.** ddddddd: Higher 7 bits of disp8.
 - 20. dddd: Higher 4 bits of disp5.
 - 21. dddddd: Higher 6 bits of disp8.

APPENDIX D LIST OF CAUTIONS

This appendix lists cautions described in this document. "Classification (hard/soft)" in table is as follows.

Hard: Cautions for microcontroller internal/external hardware

Soft: Cautions for software such as register settings or programs

	1	1	T	r	(1/	/36)
Chapter	Classification	Function	Details of Function	Cautions	Page	3
Chapter 1	Hard	Introduction	FLMD0	Connect this pin to V_{SS} in the normal mode.	pp. 23, 24	
Cha			REGC	Connect the REGC pin to Vss via a 4.7 μ F capacitor.	pp. 23, 24	
Chapter 2	Soft	Pin functions	P05	Incorporates a pull-down resistor. It can be disconnected by clearing the OCDM.OCDM0 bit to 0.	p. 31	
Cha	Т		DDO	In the on-chip debug mode, high-level output is forcibly set.	р. 35	
	Soft		KR0 to KR7	Pull this pin up externally.	p. 36	
			NMI	The NMI pin alternately functions as the P02 pin. If functions as the P02 pin after reset. To enable the NMI pin, set the PMC0.PMC02 bit to 1. The initial setting of the NMI pin is "No edge detected". Select the NMI pin valid edge using INTF0 and INTR0 registers.	p. 36	
	Hard		When power is turned on	When the power is turned on, the following pins may output an undefined level temporarily, even during reset. • P10/ANO0 pin • P11/ANO1 pin • P53/SIB2/KR3/TIQ00/TOQ00/RTP03/DDO pin	p. 45	
Chapter 3	Soft	CPU functions	EIPC register, EIPSW register, FEPC register, FEPSW register	Because only one set of these registers is available, the contents of these registers must be saved by program if multiple interrupts are enabled.	p. 49	
			EIPC, FEPC, CTPC	Even if EIPC or FEPC, or bit 0 of CTPC is set to 1 by the LDSR instruction, bit 0 is ignored when execution is returned to the main routine by the RETI instruction after interrupt servicing (this is because bit 0 of the PC is fixed to 0). Set an even value to EIPC, FEPC, and CTPC (bit $0 = 0$).	p. 49	
			Program space	Because the 4 KB area of addresses 03FFF000H to 03FFFFFFH is an on-chip peripheral I/O area, instructions cannot be fetched from this area. Therefore, do not execute an operation in which the result of a branch address calculation affects this area.	p. 57	
			On-chip peripheral I/O area	When a register is accessed in word units, a word area is accessed twice in halfword units in the order of lower area and higher area, with the lower 2 bits of the address ignored.	p. 66	
				If a register that can be accessed in byte units is accessed in halfword units, the higher 8 bits are undefined when the register is read, and data is written to the lower 8 bits.	p. 66	
				Addresses not defined as registers are reserved for future expansion. The operation is undefined and not guaranteed when these addresses are accessed.	p. 66	
			External memory area	The V850ES/JG2 has 22 address pins (A0 to A21), so the external memory area appears as a repeated 4 MB image. In the separate bus mode or when the A20 and A21 pins are used, it is necessary that $EV_{DD} = BV_{DD} = V_{DD}$.	p. 66	

<R>

					(2	2/36)
Chapter	Classification	Function	Details of Function	Cautions	Ρας	je
Chapter 3	Soft	CPU functions	Internal RAM area	If a branch instruction is at the upper limit of the internal RAM area, a prefetch operation (invalid fetch) straddling the on-chip peripheral I/O area does not occur.	p. 67	
Cha			Setting data to special	Five NOP instructions or more must be inserted immediately after setting the IDLE1 mode, IDLE2 mode, or STOP mode (by setting the PSC.STP bit to 1).	p. 81	
			registers	When a store instruction is executed to store data in the command register, interrupts are not acknowledged. This is because it is assumed that steps <3> and <4> above are performed by successive store instructions. If another instruction is placed between <3> and <4>, and if an interrupt is acknowledged by that instruction, the above sequence may not be established, causing malfunction.	p. 81	
				Although dummy data is written to the PRCMD register, use the same general- purpose register used to set the special register (<4> in Example) to write data to the PRCMD register (<3> in Example). The same applies when a general- purpose register is used for addressing.	p. 81	
			SYS register	If 0 is written to the PRERR bit of the SYS register, which is not a special register, immediately after a write access to the PRCMD register, the PRERR bit is cleared to 0 (the write access takes precedence).	p. 83	
				If data is written to the PRCMD register, which is not a special register, immediately after a write access to the PRCMD register, the PRERR bit is set to 1.	p. 83	
			Registers to be set first	 Be sure to set the following registers first when using the V850ES/JG2. System wait control register (VSWC) On-chip debug mode register (OCDM) Watchdog timer mode register 2 (WDTM2) 	p. 84	
			VSWC register	Three clocks are required to access an on-chip peripheral I/O register (without a wait cycle). The V850ES/JG2 requires wait cycles according to the operating frequency. Set the following value to the VSWC register in accordance with the frequency used.	p. 84	
			Accessing specific on-chip peripheral I/O registers	 Accessing the above registers is prohibited in the following statuses. If a wait cycle is generated, it can only be cleared by a reset. When the CPU operates with the subclock and the main clock oscillation is stopped When the CPU operates with the internal oscillation clock 	p. 85	
	Hard		System reserved area	In the V850ES/JG2, 0000007AH to 0000007FH is a system reserved area for function expansion, and therefore it is recommended that this area not be used.	p. 86	
				When the data in the flash memory has been deleted, all the bits are cleared to 1.	p. 86	
Chapter 4	Hard	Port functions	Basic port configuration	Ports 0, 3 to 5, and 9 are 5 V tolerant.	p. 88	
Cha	Soft		PFn register	The PFnm bit of the PFn register is valid only when the PMnm bit of the PMn register is 0 (when the output mode is specified) in port mode (PMCnm bit = 0). When the PMnm bit is 1 (when the input mode is specified), the set value of the PFn register is invalid.	p. 92	
	Hard, soft		Port 0	The DRST pin is used for on-chip debugging. If on-chip debugging is not used, fix the P05/INTP2/DRST pin to low level between when the reset signal of the RESET pin is released and when the OCDM.OCDM0 bit is cleared (0). For details, see 4.6.3 Cautions on on-chip debug pins.	p. 94	
	Hard			The P02 to P06 pins have hysteresis characteristics in the input mode of the alternate function, but do not have hysteresis characteristics in the port mode.	p. 94	
	Soft		PMC0 register	The P05/INTP2/ \overline{DRST} pin becomes the \overline{DRST} pin regardless of the value of the PMC05 bit when the OCDM.OCDM0 bit = 1.	p. 95	

Chapter	Classification	Function	Details of Function	Cautions		Pag	e
Chapter 4	Soft	Port functions	PF0 register	When an output pin is pulled up at EV_{DD} or higher, be sure to set the PF0n bit to 1.	p.	96	
Cha	Hard		Port 1	When the power is turned on, the P10 and P11 pins may output an undefined level temporarily, even during reset.	p.	97	
	Soft		P1 register	Do not read or write the P1 register during D/A conversion (see 14.4.3 Cautions).	p.	97	
	0)		PM1 register	When using P1n as alternate functions (ANOn pin output), set the PM1n bit to 1.	p.	97	
				When using one of the P10 and P11 pins as an I/O port and the other as a D/A output pin, do so in an application where the port I/O level does not change during D/A output.		97	
	Hard		Port 3	The P31 to P35, P38, and P39 pins have hysteresis characteristics in the input mode of the alternate-function pin, but do not have the hysteresis characteristics in the port mode.	p.	98	
	Soft		P3 register	To read/write bits 8 to 15 of the P3 register in 8-bit or 1-bit units, specify them as bits 0 to 7 of the P3H register.	p.	99	
			PM3 register	To read/write bits 8 to 15 of the PM3 register in 8-bit or 1-bit units, specify them as bits 0 to 7 of the PM3H register.	p.	99	
			PMC3 register	Be sure to clear bits 15 to 10, 7, and 6 to "0".	p.	100	
				To read/write bits 8 to 15 of the PMC3 register in 8-bit or 1-bit units, specify them as bits 0 to 7 of the PMC3H register.	p.	100	
			PFC3 register	To read/write bits 8 to 15 of the PFC3 register in 8-bit or 1-bit units, specify them as bits 0 to 7 of the PFC3H register.	p.	101	
			Port 3 alternate function specifications	INTP7 and RXDA0 are alternate functions. When using the pin as the RXDA0 pin, disable edge detection for the INTP7 alternate-function pin. (Clear the INTF3.INTF31 bit and the INTR3.INTR31 bit to 0.) When using the pin as the INTP7 pin, stop UARTA0 reception. (Clear the UA0CTL0.UA0RXE bit to 0.)	p.	102	
			PF3 register	When a pull-up resistor at EVDD or higher is connected to an output pin, be sure to set the PF3n bit to 1.	p.	103	
				To read/write bits 8 to 15 of the PF3 register in 8-bit or 1-bit units, specify them as bits 0 to 7 of the PF3H register.	p.	103	
	Hard		Port 4	The P40 to P42 pins have hysteresis characteristics in the input mode of the alternate-function pin, but do not have the hysteresis characteristics in the port mode.	p.	104	
	Soft		PF4 register	When a pull-up resistor at EV_{DD} or higher is connected to an output pin, be sure to set the PF4n bit to 1.	p.	105	
	Hard, soft		Port 5	The DDI, DDO, DCK, and DMS pins are used for on-chip debugging. If on-chip debugging is not used, fix the P05/INTP2/DRST pin to low level between when the reset signal of the RESET pin is released and when the OCDM.OCDM0 bit is cleared (0). For details, see 4.6.3 Cautions on on-chip debug pins.	p.	106	
	Hard			When the power is turned on, the P53 pin may output undefined level temporarily even during reset.	p.	106	
				The P50 to P55 pins have hysteresis characteristics in the input mode of the alternate function, but do not have hysteresis characteristics in the port mode.	p.	106	
	Soft		Port 5 alternate function specifications	KRn and TIQ0m are alternate functions. When using the pin as the TIQ0m pin, disable KRn pin key return detection, which is the alternate function. (Clear the KRM.KRMn bit to 0.) Also, when using the pin as the KRn pin, disable TIQ0m pin edge detection, which is the alternate function.	p.	109	
			PF5 register	When an output pin is pulled up at EVDD or higher, be sure to set the PF5n bit to 1.	n	109	

Chapter	Classification	Function	Details of Function	Cautions	F	(4/ Page	/ <u>36)</u> e	
Chapter 4	Soft	Port functions	P7H register, P7L register	Do not read or write the P7H and P7L registers during A/D conversion (see 13.6 (4) Alternate I/O).	p. 1	111		
Cha			PM7H register, PM7L register	When using the P7n pin as its alternate function (ANIn pin), set the PM7n bit to 1.	p. 1	111		
	Hard		characteristics in the input mode of the alternate-funct hysteresis characteristics in the port mode.	The P90 to P97, P99, P910, and P912 to P915 pins have hysteresis characteristics in the input mode of the alternate-function pin, but do not have the hysteresis characteristics in the port mode.	p. 1	112		
	Soft		P9 register	To read/write bits 8 to 15 of the P9 register in 8-bit or 1-bit units, specify them as bits 0 to 7 of the P9H register.	p. 1	113		
			PM9 register	To read/write bits 8 to 15 of the PM9 register in 8-bit or 1-bit units, specify them as bits 0 to 7 of the PM9H register.	p. 1	113		
			PMC9 register	To read/write bits 8 to 15 of the PMC9 register in 8-bit or 1-bit units, specify them as bits 0 to 7 of the PMC9H register.	p. 1	114		
				Only when using the A0 to A15 pins as the alternate functions of the P90 to P915 pins, set all 16 bits of the PMC9 register to FFFFH at once.	p. 1	115		
			PFC9 register	When performing separate address bus output (A0 to A15), set the PMC9 register to FFFFH for all 16 bits at once after clearing the PFC9 register to 0000H.	p. 1	116		
				To read/write bits 8 to 15 of the PFC9 register in 8-bit or 1-bit units, specify them as bits 0 to 7 of the PFC9H register.	p. 1	116		
			PFCE9 register	To read/write bits 8 to 15 of the PFCE9 register in 8-bit or 1-bit units, specify them as bits 0 to 7 of the PFCE9H register.	p. 1	116		
			Specification of port 9 alternate function	The RXDA1 and KR7 pins must not be used at the same time. When using the RXDA1 pin, do not use the KR7 pin. When using the KR7 pin, do not use the RXDA1 pin (it is recommended to set the PFC91 bit to 1 and clear the PFCE91 bit to 0).	p. 1	118		
			PF9 register	When a pull-up resistor at EV_{DD} or higher is connected to an output pin, be sure to set the PF9n bit to 1.	p. 1	119		
				To read/write bits 8 to 15 of the PF9 register in 8-bit or 1-bit units, specify them as bits 0 to 7 of the PF9H register.	p. 1	119		
			PDL register	To read/write bits 8 to 15 of the PDL register in 8-bit or 1-bit units, specify them as bits 0 to 7 of the PDLH register.	p. 1	127		
			as bits 0 to 7 of th PMCDL register When the SMSEL	PMDL register	To read/write bits 8 to 15 of the PMDL register in 8-bit or 1-bit units, specify them as bits 0 to 7 of the PMDLH register.	p. 1	127	
				When the SMSEL bit of the EXIMC register = 1 (separate mode) and the BS30 to BS00 bits of the BSC register = 0 (8-bit bus width), do not specify the AD8 to AD15 pins.	p. 1	128		
				To read/write bits 8 to 15 of the PMCDL register in 8-bit or 1-bit units, specify them as bits 0 to 7 of the PMCDLH register.	p. 1	128		
			Using port pins as alternate- function pins	INTP7 and RXDA0 are alternate functions. When using the pin as the RXDA0 pin, disable edge detection for the INTP7 alternate-function pin (clear the INTF3.INTF31 bit and the INRT3.INTR31 bit to 0). When using the pin as the INTP7 pin, stop UARTA0 reception (clear the UA0CTL0.UA0RXE bit to 0).	p. 1	160		
				When using one of the P10 and P11 pins as an I/O port and the other as a D/A output pin (ANO0, ANO1), do so in an application where the port I/O level does not change during D/A output.	p. 1	160		
				When setting pins A0 to A15 as the alternate function, set all 16 bits of the PMC9 register to FFFFH at once.	p. 1	163		

						(5/	/36)
Chapter	Classification	Function	Details of Function	Cautions	P	age)
Chapter 4	Soft	Port functions	Using port pins as alternate- function pins	The RXDA1 and KR7 pins must not be used at the same time. When using the RXDA1 pin, do not use the KR7 pin. When using the KR7 pin, do not use the RXDA1 pin (it is recommended to set the PFC91 bit to 1 and clear the PFCE91 bit to 0).	p. 1	63	
			Cautions on switching from port mode to alternate- function mode	To switch from the port mode to alternate-function mode in the following order. <1> Set the PFn register: N-ch open-drain setting <2> Set the PFCn and PFCEn registers: Alternate-function selection <3> Set the corresponding bit of the PMCn register to 1: Switch to alternate- function mode If the PMCn register is set first, note with caution that, at that moment or depending on the change of the pin states in accordance with the setting of the PFn, PFCn, and PFCEn registers, unexpected operations may occur.	p. 1	67	
		Cautions on alternate- function mode (input) PFn.PFnm bit in port mode		 Regardless of the port mode/alternate-function mode, the Pn register is read and written as follows. Pn register read: Read the port output latch value (when PMn.PMnm bit = 0), or read the pin states (PMn.PMnm bit = 1). Pn register write: Write to the port output latch 	p. 1	67	
			 The input signal to the alternate-function block is low level when the PMCn.PMCnm bit is 0 due to the output of the PMCn register set value and the pin level. Thus, depending on the port setting and alternatefunction operation enable timing, unexpected operations may occur. Therefore, switch between the mode and alternate-function mode in the following sequence. To switch from port mode to alternate-function mode (input) Set the pins to the alternate-function mode using the PMCn register and then enable the alternate-function operation. To switch from alternate-function mode (input) to port mode Stop the alternate-function operation and then switch the pins to the port mode. 	p. 1	68		
					In port mode, the PFn.PFnm bit is valid only in the output mode (PMn.PMnm bit = 0). In the input mode (PMnm bit = 1), the value of the PFnm bit is not reflected in the buffer.	p. 1	69
			Cautions on bit manipulation instruction for port n register (Pn)	When a 1-bit manipulation instruction is executed on a port that provides both input and output functions, the value of the output latch of an input port that is not subject to manipulation may be written in addition to the targeted bit. Therefore, it is recommended to rewrite the output latch when switching a port from input mode to output mode.	p. 1	70	
	Hard, Soft		Cautions on on- chip debug pins	The following action must be taken if on-chip debugging is not used. • Clear the OCDM0 bit of the OCDM register (special register) (0) At this time, fix the P05/INTP2/DRST pin to low level from when reset by the RESET pin is released until the above action is taken. If a high level is input to the DRST pin before the above action is taken, it may cause a malfunction (CPU deadlock). Handle the P05 pin with the utmost care.	p. 1	71	
	Hard			After reset by the WDT2RES signal, clock monitor (CLM), or low-voltage detector (LVI), the P05/INTP2/DRST pin is not initialized to function as an on-chip debug pin (DRST). The OCDM register holds the current value.	p. 1 ⁻	71	
			Cautions on P05/INTP2/ DRST pin	The P05/INTP2/DRST pin has an internal pull-down resistor (30 k Ω TYP.). After a reset by the RESET pin, a pull-down resistor is connected. The pull-down resistor is disconnected when the OCDM0 bit is cleared (0).	p. 1 ⁻	71	
			Cautions on P10, P11, and P53 pins when power is turned on	When the power is turned on, the following pins may output an undefined level temporarily, even during reset. • P10/ANO0 pin • P11/ANO1 pin • P53/SIB2/KR3/TIQ00/TOQ00/RTP03/DDO pin	p. 1 ⁻	71	

						(6/	/36)
Chapter	Classification	Function	Details of Function	Cautions		Page	÷
Chapter 4	Soft	Port functions	Hysteresis characteristics	In port mode, the following port pins do not have hysteresis characteristics. P02 to P06 P31 to P35, P38, P39 P40 to P42 P50 to P55 P90 to P97, P99, P910, P912 to P915	p.	171	
Chapter 5	Soft	Bus control functions	Pin status when internal ROM is accessed	When a write access is performed to the internal ROM area, address, data, and control signals are activated in the same way as access to the external memory area.	p.	173	
			EXIMC register	Set the EXIMC register from the internal ROM or internal RAM area before making an external access. After setting the EXIMC register, be sure to insert a NOP instruction.	p.	175	
			BSC register	Write to the BSC register after reset, and then do not change the set values. Also, do not access an external memory area until the initial settings of the BSC register are complete.	p.	176	
				Be sure to set bits 14, 12, 10, and 8 to "1", and clear bits 15, 13, 11, 9, 7, 5, 3, and 1 to "0".	p.	176	
			DWC0 register	The internal ROM and internal RAM areas are not subject to programmable wait, and are always accessed without a wait state. The on-chip peripheral I/O area is also not subject to programmable wait, and only wait control from each peripheral function is performed.	p.	184	
				Write to the DWC0 register after reset, and then do not change the set values. Also, do not access an external memory area until the initial settings of the DWC0 register are complete.	p.	184	
				Be sure to clear bits 15, 11, 7, and 3 to "0".	p.	184	
			AWC register	Address setup wait and address hold wait cycles are not inserted when the internal ROM area, internal RAM area, and on-chip peripheral I/O areas are accessed.	p.	187	
				Write to the AWC register after reset, and then do not change the set values. Also, do not access an external memory area until the initial settings of the AWC register are complete.	p.	187	
					Be sure to set bits 15 to 8 to "1".	p.	187
			BCC register	The internal ROM, internal RAM, and on-chip peripheral I/O areas are not subject to idle state insertion.	p.	188	
				Write to the BCC register after reset, and then do not change the set values. Also, do not access an external memory area until the initial settings of the BCC register are complete.	p.	188	
				Be sure to set bits 15, 13, 11, and 9 to "1", and clear bits 14, 12, 10, 8, 6, 4, 2, and 0 to "0".	p.	188	
Chapter 6	Soft	Clock generation	PCC register	Do not change the CPU clock (by using the CK3 to CK0 bits) while CLKOUT is being output.	p. 1	202	
Che		function		Use a bit manipulation instruction to manipulate the CK3 bit. When using an 8-bit manipulation instruction, do not change the set values of the CK2 to CK0 bits.	p. :	202	
				When stopping the main clock, stop the PLL. Also stop the operations of the on- chip peripheral functions operating with the main clock.		203	
				If the following conditions are not satisfied, change the CK2 to CK0 bits so that the conditions are satisfied, then change to the subclock operation mode. Internal system clock (f_{CLK}) > Subclock (f_{XT} : 32.768 kHz) × 4	p. 1	203	

					(7	/36)													
Chapter	Classification	Function	Details of Function	Cautions	Pag	e													
Chapter 6	Soft	Clock generation function	PCC register	Enable operation of the on-chip peripheral functions operating with the main clock only after the oscillation of the main clock stabilizes. If their operations are enabled before the lapse of the oscillation stabilization time, a malfunction may occur.	p. 204														
			RCM register	The internal oscillator cannot be stopped while the CPU is operating on the internal oscillation clock (CCLS.CCLSF bit = 1). Do not set the RSTOP bit to 1.	p. 205														
				The internal oscillator oscillates if the CCLS.CCLSF bit is set to 1 (when WDT overflow occurs during oscillation stabilization) even when the RSTOP bit is set to 1. At this time, the RSTOP bit remains being set to 1.	p. 205														
			PLLCTL register	When the PLLON bit is cleared to 0, the SELPLL bit is automatically cleared to 0 (clockthrough mode).	p. 207														
				The SELPLL bit can be set to 1 only when the PLL clock frequency is stabilized. If not (unlocked), "0" is written to the SELPLL bit if data is written to it.	p. 207														
			CKC register	The PLL mode cannot be used at $f_x = 5.0$ to 10.0 MHz.	p. 208														
				Before changing the multiplication factor between 4 and 8 by using the CKC register, set the clock-through mode and stop the PLL.	p. 208														
												Be sure to set bits 3 and 1 to "1" and clear bits 7 to 4 and 2 to "0".	p. 208						
					LOCKR register	The LOCK register does not reflect the lock status of the PLL in real time.	p. 209												
							PLLS register	Set so that the lockup time is 800 μ s or longer.	p. 210										
				Do not change the PLLS register setting during the lockup period.	p. 210														
Chapter 7	Soft	16-bit timer/ event counter P (TMP)	TPnCTL0 register	Set the TPnCKS2 to TPnCKS0 bits when the TPnCE bit = 0. When the value of the TPnCE bit is changed from 0 to 1, the TPnCKS2 to TPnCKS0 bits can be set simultaneously.	p. 215														
0				Be sure to clear bits 3 to 6 to "0".	p. 215														
			(TMP)	TPnCTL1 register	The TPnEST bit is valid only in the external trigger pulse output mode or one-shot pulse output mode. In any other mode, writing 1 to this bit is ignored.	p. 216													
				External event count input is selected in the external event count mode regardless of the value of the TPnEEE bit.	p. 216														
																	Set the TPnEEE and TPnMD2 to TPnMD0 bits when the TPnCTL0.TPnCE bit = 0. (The same value can be written when the TPnCE bit = 1.) The operation is not guaranteed when rewriting is performed with the TPnCE bit = 1. If rewriting was mistakenly performed, clear the TPnCE bit to 0 and then set the bits again.	p. 216	
				Be sure to clear bits 3, 4, and 7 to "0".	p. 216														
											TPnIOC0 register	Rewrite the TPnOL1, TPnOE1, TPnOL0, and TPnOE0 bits when the TPnCTL0.TPnCE bit = 0. (The same value can be written when the TPnCE bit = 1.) If rewriting was mistakenly performed, clear the TPnCE bit to 0 and then set the bits again.	p. 217						
				Even if the TPnOLm bit is manipulated when the TPnCE and TPnOEm bits are 0, the TOPnm pin output level varies ($m = 0, 1$).	p. 217														
			TPnIOC1 register	Rewrite the TPnIS3 to TPnIS0 bits when the TPnCTL0.TPnCE bit = 0. (The same value can be written when the TPnCE bit = 1.) If rewriting was mistakenly performed, clear the TPnCE bit to 0 and then set the bits again.	p. 218														
				The TPnIS3 to TPnIS0 bits are valid only in the freerunning timer mode and the pulse width measurement mode. In all other modes, a capture operation is not possible.	p. 218														
			TPnIOC2 register	Rewrite the TPnEES1, TPnEES0, TPnETS1, and TPnETS0 bits when the TPnCTL0.TPnCE bit = 0. (The same value can be written when the TPnCE bit = 1.) If rewriting was mistakenly performed, clear the TPnCE bit to 0 and then set the bits again.	p. 219														

	u	Function	Details of	Cautions	(8 Pag	3/36) 1e
Chapter	Classification		Function			
Chapter 7	Soft	16-bit timer/ event	TPnIOC2 register	The TPnEES1 and TPnEES0 bits are valid only when the TPnCTL1.TPnEEE bit = 1 or when the external event count mode (TPnCTL1.TPnMD2 to TPnCTL1.TPnMD0 bits = 001) has been set.	p. 219	
U		counter P (TMP)		The TPnETS1 and TPnETS0 bits are valid only when the external trigger pulse output mode (TPnCTL1.TPnMD2 to TPnCTL1.TPnMD0 bits = 010) or the one-shot pulse output mode (TPnCTL1.TPnMD2 to TPnCTL1.TPnMD0 = 011) is set.	p. 219	
			TPnOPT0 register	Rewrite the TPnCCS1 and TPnCCS0 bits when the TPnCE bit = 0. (The same value can be written when the TPnCE bit = 1.) If rewriting was mistakenly performed, clear the TPnCE bit to 0 and then set the bits again.	p. 220	
				Be sure to clear bits 1 to 3, 6, and 7 to "0".	p. 220	_
			TPnCCR0 register	 Accessing the TPnCCR0 register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers. When the CPU operates with the subclock and the main clock oscillation is stopped When the CPU operates with the internal oscillation clock 	p. 221	
			TPnCCR1 register	 Accessing the TPnCCR1 register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers. When the CPU operates with the subclock and the main clock oscillation is stopped When the CPU operates with the internal oscillation clock 	p. 223	
			TPnCNT register	 Accessing the TPnCNT register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers. When the CPU operates with the subclock and the main clock oscillation is stopped When the CPU operates with the internal oscillation clock 	p. 225	
			Operation	To use the external event count mode, specify that the valid edge of the TIPn0 pin capture trigger input is not detected (by clearing the TPnIOC1.TPnIS1 and TPnIOC1.TPnIS0 bits to "00").	p. 226	
				When using the external trigger pulse output mode, one-shot pulse output mode, and pulse width measurement mode, select the internal clock as the count clock (by clearing the TPnCTL1.TPnEEE bit to 0).	p. 226	
			Interval timer mode (TPnMD2 to TPnMD0 bits = 000)	This bit can be set to 1 only when the interrupt request signals (INTTPnCC0 and INTTPnCC1) are masked by the interrupt mask flags (TPnCCMK0 and TPnCCMK1) and timer output (TOPn1) is performed at the same time. However, set the TPnCCR0 and TPnCCR1 registers to the same value (see 7.5.1 (2) (d) Operation of TPnCCR1 register).	p. 228	
			Notes on rewriting TPnCCR0 register	To change the value of the TPnCCR0 register to a smaller value, stop counting once and then change the set value. If the value of the TPnCCR0 register is rewritten to a smaller value during counting, the 16-bit counter may overflow.	p. 233	
			Register setting for operation in external event count mode	When an external clock is used as the count clock, the external clock can be input only from the TIPn0 pin. At this time, set the TPnIOC1.TPnIS1 and TPnIOC1.TPnIS0 bits to 00 (capture trigger input (TIPn0 pin): no edge detection).	p. 239	
			Operation timing in	In the external event count mode, do not set the TPnCCR0 register to 0000H.	p. 241 p. 241	
			external event count mode	In the external event count mode, use of the timer output is disabled. If performing timer output using external event count input, set the interval timer mode, and select the operation enabled by the external event count input for the count clock (TPnCTL1.TPnMD2 to TPnCTL1.TPnMD0 bits = 000, TPnCTL1.TPnEEE bit = 1).	p. 241	

			ſ		(9	9/36)	
Chapter	Classification	Function	Details of Function	Cautions	Pag	e	
Chapter 7	Х	16-bit timer/ event counter P	Notes on rewriting the TPnCCR0 register	To change the value of the TPnCCR0 register to a smaller value, stop counting once and then change the set value. If the value of the TPnCCR0 register is rewritten to a smaller value during counting, the 16-bit counter may overflow.	p. 242		
		(TMP)	TPnIOC0, TPnOE0, TPnOL0 bits	Clear this bit to 0 when the TOPn0 pin is not used in the external trigger pulse output mode.	p. 247		
			Note on changing pulse width during operation	To change the PWM waveform while the counter is operating, write the TPnCCR1 register last. Rewrite the TPnCCRm register after writing the TPnCCR1 register after the INTTPnCC0 signal is detected.	p. 251		
			TPnIOC0.TPnOE0, TPnOL0 bits	Clear this bit to 0 when the TOPn0 pin is not used in the one-shot pulse output mode.	p. 259		
			Register setting for operation in one-shot pulse output mode	One-shot pulses are not output even in the one-shot pulse output mode, if the value set in the TPnCCR1 register is greater than that for the TPnCCR0 register.	p. 260		
			Note on rewriting TPnCCRm register	To change the set value of the TPnCCRm register to a smaller value, stop counting once, and then change the set value. If the value of the TPnCCRm register is rewritten to a smaller value during counting, the 16-bit counter may overflow.	p. 262		
			TPnIOC0.TPnOE0, TPnOL0 bits	Clear this bit to 0 when the TOPn0 pin is not used in the PWM output mode.	p. 266		
			Selector function	When using the selector function, set the capture trigger input of TMP before connecting the timer.	p. 297		
				When setting the selector function, first disable the peripheral I/O to be connected (TMP or UARTA).	p. 297		
			SELCNT0 register	To set ISEL3 and ISEL4 bits to 1, set the corresponding pin in the capture input mode.	p. 297		
				Be sure to clear bits 7 to 5 and 2 to 1 to "0".	p. 297		
			Capture operation	When the capture operation is used and a slow clock is selected as the count clock, FFFFH, not 0000H, may be captured in the TPnCCR0 and TPnCCR1 registers if the capture trigger is input immediately after the TPnCE bit is set to 1.	p. 298		
Chapter 8	Soft	16-bit timer/ event	timer/ event	TQ0CTL0 register	Set the TQ0CKS2 to TQ0CKS0 bits when the TQ0CE bit = 0. When the value of the TQ0CE bit is changed from 0 to 1, the TQ0CKS2 to TQ0CKS0 bits can be set simultaneously.	p. 303	
Ŭ		counter		Be sure to clear bits 3 to 6 to "0".	p. 303		
		Q (TMQ)	TQ0CTL1 register	The TQ0EST bit is valid only in the external trigger pulse output mode or one-shot pulse output mode. In any other mode, writing 1 to this bit is ignored.	p. 304		
				External event count input is selected in the external event count mode regardless of the value of the TQ0EEE bit.	p. 304		
				Set the TQ0EEE and TQ0MD2 to TQ0MD0 bits when the TQ0CTL0.TQ0CE bit = 0. (The same value can be written when the TQ0CE bit = 1.) The operation is not guaranteed when rewriting is performed with the TQ0CE bit = 1. If rewriting was mistakenly performed, clear the TQ0CE bit to 0 and then set the bits again.	p. 304		
				Be sure to clear bits 3, 4, and 7 to "0".	p. 304		
			TQ0IOC0 register	Rewrite the TQ0OLm and TQ0OEm bits when the TQ0CTL0.TQ0CE bit = 0. (The same value can be written when the TQ0CE bit = 1.) If rewriting was mistakenly performed, clear the TQ0CE bit to 0 and then set the bits again.	p. 305		

	u	Function	Details of	Cautions	(10) Page	
Chapter	Classification		Function			-
Chapter 8	Soft	16-bit timer/ event counter Q (TMQ)	TQ0IOC0 register	Even if the TQ0OLm bit is manipulated when the TQ0CE and TQ0OEm bits are 0, the TOQ0m pin output level varies.	p. 305	
Cha			TQ0IOC1 register	Rewrite the TQ0IS7 to TQ0IS0 bits when the TQ0CTL0.TQ0CE bit = 0. (The same value can be written when the TQ0CE bit = 1.) If rewriting was mistakenly performed, clear the TQ0CE bit to 0 and then set the bits again.	p. 306	
				The TQ0IS7 to TQ0IS0 bits are valid only in the free-running timer mode and the pulse width measurement mode. In all other modes, a capture operation is not possible.	p. 306	
			TQ0IOC2 register	Rewrite the TQ0EES1, TQ0EES0, TQ0ETS1, and TQ0ETS0 bits when the TQ0CTL0.TQ0CE bit = 0. (The same value can be written when the TQ0CE bit = 1.) If rewriting was mistakenly performed, clear the TQ0CE bit to 0 and then set the bits again.	p. 307	
				The TQ0EES1 and TQ0EES0 bits are valid only when the TQ0CTL1.TQ0EEE bit = 1 or when the external event count mode (TQ0CTL1.TQ0MD2 to TQ0CTL1.TQ0MD0 bits = 001) has been set.	p. 307	
				The TQ0ETS1 and TQ0ETS0 bits are valid only when the external trigger pulse output mode (TQ0CTL1.TQ0MD2 to TQ0CTL1.TQ0MD0 bits = 010) or the one-shot pulse output mode (TQ0CTL1.TQ0MD2 to TQ0CTL1.TQ0MD0 = 011) is set.	p. 307	
			TQ0OPT0 register	Rewrite the TQ0CCS3 to TQ0CCS0 bits when the TQ0CTL0.TQ0CE bit = 0. (The same value can be written when the TQ0CE bit = 1.) If rewriting was mistakenly performed, clear the TQ0CE bit to 0 and then set the bits again.	p. 308	
			Be sure to clear bits 1 to 3 to "0".	Be sure to clear bits 1 to 3 to "0".	p. 308	
			TQ0CCR0 register	 Accessing the TQ0CCR0 register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers. When the CPU operates with the subclock and the main clock oscillation is stopped When the CPU operates with the internal oscillation clock 	p. 309	
			TQ0CCR1 register	 Accessing the TQ0CCR1 register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers. When the CPU operates with the subclock and the main clock oscillation is stopped When the CPU operates with the internal oscillation clock 	p. 311	
			TQ0CCR2 register	 Accessing the TQ0CCR2 register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers. When the CPU operates with the subclock and the main clock oscillation is stopped When the CPU operates with the internal oscillation clock 	p. 313	
			TQ0CCR3 register	 Accessing the TQ0CCR3 register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers. When the CPU operates with the subclock and the main clock oscillation is stopped When the CPU operates with the internal oscillation clock 	p. 315	
			TQ0CNT register	 Accessing the TQ0CNT register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers. When the CPU operates with the subclock and the main clock oscillation is stopped When the CPU operates with the internal oscillation clock 	p. 317	
			External event count mode	To use the external event count mode, specify that the valid edge of the TIQ00 pin capture trigger input is not detected (by clearing the TQ0IOC1.TQ0IS1 and TQ0IOC1.TQ0IS0 bits to "00").	p. 318	

					(11	/36	
Chapter	Classification	Function	Details of Function	Cautions	Pag	e	
Chapter 8	Soft	16-bit timer/ event counter Q (TMQ)	External trigger pulse output mode, one-shot pulse output mode, pulse width measurement mode	When using the external trigger pulse output mode, one-shot pulse output mode, and pulse width measurement mode, select the internal clock as the count clock (by clearing the TQ0CTL1.TQ0EEE bit to 0).	p. 318		
			TQ0CTL1.TQ0EEE bit	This bit can be set to 1 only when the interrupt request signals (INTTQ0CC0 and INTTQ0CCk) are masked by the interrupt mask flags (TQ0CCMK0 to TQ0CCMKk) and the timer output (TOQ0k) is performed at the same time. However, the TQ0CCR0 and TQ0CCRk registers must be set to the same value (see 8.5.1 (2) (d) Operation of TQ0CCR1 to TQ0CCR3 registers).	p. 320		
				Notes on rewriting TQ0CCR0 register	To change the value of the TQ0CCR0 register to a smaller value, stop counting once and then change the set value. If the value of the TQ0CCR0 register is rewritten to a smaller value during counting, the 16-bit counter may overflow.	pp. 324, 333	
					Register setting for operation in external event count mode	When an external clock is used as the count clock, the external clock can be input only from the TIQ00 pin. At this time, set the TQ0IOC1.TQ0IS1 and TQ0IOC1.TQ0IS0 bits to 00 (capture trigger input (TIQ00 pin): no edge detection).	p. 330
			Operation timing	In the external event count mode, do not set the TQ0CCR0 register to 0000H.	p. 332		
			in external event count mode	In the external event count mode, use of the timer output is disabled. If performing timer output using external event count input, set the interval timer mode, and select the operation enabled by the external event count input for the count clock (TQ0CTL1.TQ0MD2 to TQ0CTL1.TQ0MD0 bits = 000, TQ0CTL1.TQ0EEE bit = 1).	p. 332		
			TQ0IOC0.TQ0OE0, TQ0OL0 bits	Clear this bit to 0 when the TOQ00 pin is not used in the external trigger pulse output mode.	p. 340		
			Note on changing pulse width during operation	To change the PWM waveform while the counter is operating, write the TQ0CCR1 register last. Rewrite the TQ0CCRk register after writing the TQ0CCR1 register after the INTTQ0CC0 signal is detected.	p. 344		
			TQ0IOC0.TQ0OE0, TQ0OL0 bits	Clear this bit to 0 when the TOQ00 pin is not used in the one-shot pulse output mode.	p. 353		
			Register setting for operation in one-shot pulse output mode	One-shot pulses are not output even in the one-shot pulse output mode, if the value set in the TQ0CCRk register is greater than that set in the TQ0CCR0 register.	p. 354		
			Note on rewriting TQ0CCRm register	To change the set value of the TQ0CCRm register to a smaller value, stop counting once, and then change the set value. If the value of the TQ0CCR0 register is rewritten to a smaller value during counting, the 16-bit counter may overflow.	p. 357		
			TQ0IC0.TQ0OE0, TQ0OL0 bits	Clear this bit to 0 when the TOQ00 pin is not used in the PWM output mode.	p. 362		
			Capture operation	When the capture operation is used and a slow clock is selected as the count clock, FFFFH, not 0000H, may be captured in the TQ0CCR0, TQ0CCR1, TQ0CCR2, and TQ0CCR3 registers if the capture trigger is input immediately after the TQ0CE bit is set to 1.	p. 397		

	c		[2/36)		
Chapter	Classification	Function	Details of Function	Cautions	Pag	e		
Chapter 9	Soft	16-bit interval timer M	TM0CTL0 register	Set the TM0CKS2 to TM0CKS0 bits when TM0CE bit = 0. When changing the value of TM0CE from 0 to 1, it is not possible to set the value of the TM0CKS2 to TM0CKS0 bits simultaneously.	p. 400			
		(TMM)		Be sure to clear bits 3 to 6 to "0".	p. 400			
			Operation in interval timer mode	Do not set the TM0CMP0 register to FFFFH.	pp. 401, 404			
			Count start	It takes the 16-bit counter up to the following time to start counting after the TM0CTL0.TM0CE bit is set to 1, depending on the count clock selected.	p. 405			
	, t		TM0CMP0, TM0CTL0 registers	Rewriting the TM0CMP0 and TM0CTL0 registers is prohibited while TMM0 is operating. If these registers are rewritten while the TM0CE bit is 1, the operation cannot be guaranteed. If they are rewritten by mistake, clear the TM0CTL0.TM0CE bit to 0, and re-set the registers.	p. 405			
Chapter 10	Soft	Watch timer	PRSM0 register	Do not change the values of the BGCS00 and BGCS01 bits during watch timer operation.	p. 409			
hap		functions		Set the PRSM0 register before setting the BGCE0 bit to 1.	p. 409			
0				Set the PRSM0 and PRSCM0 registers according to the main clock frequency that is used so as to obtain an f_{BRG} frequency of 32.768 kHz.	p. 409			
			PRSCM0	Do not rewrite the PRSCM0 register during watch timer operation.	p. 410			
			register	Set the PRSCM0 register before setting the PRSM0.BGCE0 bit to 1.	p. 410			
				Set the PRSM0 and PRSCM0 registers according to the main clock frequency that is used so as to obtain an fBRG frequency of 32.768 kHz.	p. 410			
			WTM register	Rewrite the WTM2 to WTM7 bits while both the WTM0 and WTM1 bits are 0.	p. 412			
			Cautions	Some time is required before the first watch timer interrupt request signal (INTWT) is generated after operation is enabled (WTM.WTM1 and WTM.WTM0 bits = 1).	p. 415			
	Hard			It takes 0.515625 seconds (max.) for the first INTWT signal to be generated $(2^9 \times 1/32768 = 0.015625$ seconds longer (max.)). The INTWT signal is then generated every 0.5 seconds.	p. 415			
Chapter 11	Soft	Watchdog timer 2 function	Default-start watchdog timer	Watchdog timer 2 automatically starts in the reset mode following reset release. When watchdog timer 2 is not used, either stop its operation before reset is executed via this function, or clear watchdog timer 2 once and stop it within the next interval time. Also, write to the WDTM2 register for verification purposes only once, even if the default settings (reset mode, interval time: $f_R/2^{19}$) do not need to be changed.	p. 416			
				For the non-maskable interrupt servicing due to a non-maskable interrupt request signal (INTWDT2), see 19.2.2 (2) From INTWDT2 signal.	p. 416			
			WDTM2 register	 Accessing the WDTM2 register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers. When the CPU operates with the subclock and the main clock oscillation is stopped When the CPU operates with the internal oscillation clock 	p. 418			
				For details of the WDCS20 to WDCS24 bits, see Table 11-2 Watchdog Timer 2 Clock Selection.	p. 418			
						Although watchdog timer 2 can be stopped just by stopping the operation of the internal oscillator, clear the WDTM2 register to 00H to securely stop the timer (to avoid selection of the main clock or subclock due to an erroneous write operation).	p. 418	

					(13	3/36					
Chapter	Classification	Function	Details of Function	Cautions	Pag	е					
Chapter 11	Soft	Watchdog timer 2	WDTM2 register	If the WDTM2 register is rewritten twice after reset, an overflow signal is forcibly generated and the counter is reset.	p. 418						
Chap		function	n	To intentionally generate an overflow signal, write data to the WDTM2 register only twice, or write a value other than "ACH" to the WDTE register only once. However, when watchdog timer 2 is set to stop operation, an overflow signal is not generated even if data is written to the WDTM2 register only twice, or a value other than "ACH" is written to the WDTE register only once.	p. 418						
				To stop the operation of watchdog timer 2, set the RCM.RSTP bit to 1 (to stop the internal oscillator) and write 00H in the WDTM2 register. If the RCM.RSTP bit cannot be set to 1, set the WDCS23 bit to 1 ($2^n/f_{XX}$ is selected and the clock can be stopped in the IDLE1, IDLW2, sub-IDLE, and subclock operation modes).	p. 418						
			WDTE register	When a value other than "ACH" is written to the WDTE register, an overflow signal is forcibly output.	p. 420						
				When a 1-bit memory manipulation instruction is executed for the WDTE register, an overflow signal is forcibly output.	p. 420						
				To intentionally generate an overflow signal, write a value other than "ACH" to the WDTE register only once, or write data to the WDTM2 register only twice. However, when the watchdog timer 2 is set to stop operation, an overflow signal is not generated even if data is written to the WDTM2 register only twice, or a value other than "ACH" is written to the WDTE register only once.	p. 420						
				The read value of the WDTE register is "9AH" (which differs from written value "ACH").	p. 420						
12	Soft	Real-time	RTBL0, RTBH0	When writing to bits 6 and 7 of the RTBH0 register, always write 0.	p. 423						
Chapter 12	S	output function (RTO)	ction	 Accessing the RTBL0 and RTBH0 registers is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers. When the CPU operates with the subclock and the main clock oscillation is stopped When the CPU operates with the internal oscillation clock 	p. 423						
				After setting the real-time output port, set output data to the RTBL0 and RTBH0 registers by the time a real-time output trigger is generated.	p. 423						
								RTPM0 register	By enabling the real-time output operation (RTPC0.RTPOE0 bit = 1), the bits enabled to real-time output among the RTP00 to RTP05 signals perform real-time output, and the bits set to port mode output 0.	p. 424	
					If real-time output is disabled (RTPOE0 bit = 0), the real-time output pins (RTP00 to RTP05) all output 0, regardless of the RTPM0 register setting.	p. 424					
				In order to use this register as the real-time output pins (RTP00 to RTP05), set these pins as real-time output port pins using the PMC and PFC registers.	p. 424						
			RTPC0 register	Set the RTPEG0, BYTE0, and EXTR0 bits only when RTPOE0 bit = 0.	p. 425						
			Cautions	 Prevent the following conflicts by software. Conflict between real-time output disable/enable switching (RTPOE0 bit) and selected real-time output trigger. Conflict between writing to the RTBH0 and RTBL0 registers in the real-time output enabled status and the selected real-time output trigger. 	p. 427						
				Before performing initialization, disable real-time output (RTPOE0 bit = 0).	p. 427						
				Once real-time output has been disabled (RTPOE0 bit = 0), be sure to initialize the RTBH0 and RTBL0n registers before enabling real-time output again (RTPOE0 bit = $0 \rightarrow 1$).	p. 427						

	u	Function	Details of	Cautions	(14 Pag	1/36 1e
Chapter	Classification		Function			
Chapter 13	Hard	A/D converter	ANI0 to ANI15 pins	Make sure that the voltages input to the ANI0 to ANI15 pins do not exceed the rated values. In particular if a voltage of AV_{REF0} or higher is input to a channel, the conversion value of that channel becomes undefined, and the conversion values of the other channels may also be affected.	p. 431	
	Soft		ADA0M0 register	 Accessing the ADA0M0 register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers. When the CPU operates with the subclock and the main clock oscillation is stopped When the CPU operates with the internal oscillation clock 	p. 432	
				A write operation to bit 0 is ignored.	p. 433	
				Changing the ADA0M1.ADA0FR2 to ADA0M1.ADA0FR0 bits is prohibited while A/D conversion is enabled (ADA0CE bit = 1).	p. 433	
				 In the following modes, write data to the ADA0M0, ADA0M2, ADA0S, ADA0PFM, or ADA0PFT registers while A/D conversion is stopped (ADA0CE bit = 0), and then enable the A/D conversion operation (ADA0CE bit = 1). Normal conversion mode One-shot select mode/one-shot scan mode in high-speed conversion mode If the ADA0M0, ADA0M2, ADA0S, ADA0PFM, and ADA0PFT registers are written in the other modes during A/D conversion (ADA0EF bit = 1), the following will be performed according to the mode. In software trigger mode A/D conversion is stopped and started again from the beginning. In hardware trigger mode A/D conversion is stopped, and the trigger standby status is set. 	p. 433	
				To select the external trigger mode/timer trigger mode (ADA0TMD bit = 1), set the high-speed conversion mode (ADA0M1.ADA0HS1 bit = 1). Do not input a trigger during stabilization time that is inserted once after the A/D conversion operation is enabled (ADA0CE bit = 1).	p. 433	
				When not using the A/D converter, stop the operation by setting the ADA0CE bit to 0 to reduce the power consumption.	p. 433	
			ADA0M1 register	Changing the ADA0M1 register is prohibited while A/D conversion is enabled (ADA0M0.ADA0CE bit = 1).	p. 434	
				To select the external trigger mode/timer trigger mode (ADA0M0.ADA0TMD bit = 1), set the high-speed conversion mode (ADA0HS1 bit = 1). Do not input a trigger during stabilization time that is inserted once after the A/D conversion operation is enabled (ADA0CE bit = 1).	p. 434	
				Be sure to clear bits 6 to 3 to "0".	p. 434	
			Conversion time	Set as 2.6 μ s \leq conversion time \leq 10.4 μ s.	p. 435	
			selection in normal conversion mode (ADA0HS1 bit = 0)	During A/D conversion, if the ADA0M0, ADA0M2, ADA0S, ADA0PFM, and ADA0PFT registers are written or trigger is input, reconversion is carried out. However, if the stabilization time end timing conflicts with the writing to these registers, or if the stabilization time end timing conflicts with the trigger input, the stabilization time of 64 clocks is reinserted. If a conflict occurs again with the reinserted stabilization time end timing, the stabilization time is reinserted. Therefore do not set the trigger input interval and control register write interval to 64 clocks or below.	p. 435	

_					(15/	/36)						
Chapter	Classification	Function	Details of Function	Cautions	F	'age	¢						
13	Soft	A/D	Conversion time	Set as 2.6 μ s \leq conversion time \leq 10.4 μ s.	p. 4	36							
Chapter 13	S	converter	selection in high-speed conversion mode (ADA0HS1 bit = 1)	In the high-speed conversion mode, rewriting of the ADA0M0, ADA0M2, ADA0S, ADA0PFM, and ADA0PFT registers and trigger input are prohibited during the stabilization time.	p. 4	36							
			ADA0M2 register	In the following modes, write data to the ADA0M2 register while A/D conversion is stopped (ADA0M0.ADA0CE bit = 0), and then enable the A/D conversion operation (ADA0CE bit = 1). • Normal conversion mode • One-shot select mode/one-shot scan mode in high-speed conversion mode	p. 4	37							
				Be sure to clear bits 7 to 2 to "0".	p. 4	37							
									ADA0S register	In the following modes, write data to the ADA0S register while A/D conversion is stopped (ADA0M0.ADA0CE bit = 0), and then enable the A/D conversion operation (ADA0CE bit = 1). • Normal conversion mode • One-shot select mode/one-shot scan mode in high-speed conversion mode	p. 4	38	
						Be sure to clear bits 7 to 4 to "0".	p. 4	38	Π				
			ADA0CRn, ADA0CRnH registers	 Accessing the ADA0CRn and ADA0CRnH registers is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers. When the CPU operates with the subclock and the main clock oscillation is stopped When the CPU operates with the internal oscillation clock 	p. 4								
				A write operation to the ADA0M0 and ADA0S registers may cause the contents of the ADA0CRn register to become undefined. After the conversion, read the conversion result before writing to the ADA0M0 and ADA0S registers. Correct conversion results may not be read if a sequence other than the above is used.	p. 4	39							
			ADA0PFM register	In the select mode, the 8-bit data set to the ADA0PFT register is compared with the value of the ADA0CRnH register specified by the ADA0S register. If the result matches the condition specified by the ADA0PFC bit, the conversion result is stored in the ADA0CRn register and the INTAD signal is generated. If it does not match, however, the interrupt signal is not generated.	p. 4	41							
				In the scan mode, the 8-bit data set to the ADA0PFT register is compared with the contents of the ADA0CR0H register. If the result matches the condition specified by the ADA0PFC bit, the conversion result is stored in the ADA0CR0 register and the INTAD signal is generated. If it does not match, however, the INTAD signal is not generated. Regardless of the comparison result, the scan operation is continued and the conversion result is stored in the ADA0CRn register until the scan operation is completed. However, the INTAD signal is not generated after the scan operation has been completed.	p. 4	41							
				In the following modes, write data to the ADA0PFM register while A/D conversion is stopped (ADA0M0.ADA0CE bit = 0), and then enable the A/D conversion operation (ADA0CE bit = 1). • Normal conversion mode • One-shot select mode/one-shot scan mode in high-speed conversion mode	p. 4	41							
			ADA0PFT register	In the following modes, write data to the ADA0PFT register while A/D conversion is stopped (ADA0M0.ADA0CE bit = 0), and then enable the A/D conversion operation (ADA0CE bit = 1). • Normal conversion mode • One-shot select mode/one-shot scan mode in high-speed conversion mode	p. 4	42							

(1	6/36)
----	-------

					(16	,00				
Chapter	Classification	Function	Details of Function	Cautions	Pag	le				
Chapter 13	Soft	A/D converter	External trigger mode	To select the external trigger mode, set the high-speed conversion mode. Do not input a trigger during stabilization time that is inserted once after the A/D conversion operation is enabled (ADA0M0.ADA0CE bit = 1).	p. 445					
ō			Timer trigger mode	To select the timer trigger mode, set the high-speed conversion mode. Do not input a trigger during stabilization time that is inserted once after the A/D conversion operation is enabled (ADA0M0.ADA0CE bit = 1).	p. 446					
							When A/D converter is not used	When the A/D converter is not used, the power consumption can be reduced by clearing the ADA0M0.ADA0CE bit to 0.	p. 456	
					Input range of ANI0 to ANI15 pins	Input the voltage within the specified range to the ANI0 to ANI15 pins. If a voltage equal to or higher than AV _{REF0} or equal to or lower than AV _{SS} (even within the range of the absolute maximum ratings) is input to any of these pins, the conversion value of that channel is undefined, and the conversion value of the other channels may also be affected.	p. 456			
							Countermeasures against noise	To maintain the 10-bit resolution, the ANI0 to ANI15 pins must be effectively protected from noise. The influence of noise increases as the output impedance of the analog input source becomes higher. To lower the noise, connecting an external capacitor as shown in Figure 13-12 is recommended.	p. 456	
			Alternate I/O	The analog input pins (ANI0 to ANI15) function alternately as port pins. When selecting one of the ANI0 to ANI15 pins to execute A/D conversion, do not execute an instruction to read an input port or write to an output port during conversion as the conversion resolution may drop. Also the conversion resolution may drop at the pins set as output port pins during A/D conversion if the output current fluctuates due to the effect of the external circuit connected to the port pins. If a digital pulse is applied to a pin adjacent to the pin whose input signal is being converted, the A/D conversion value may not be as expected due to the influence of coupling noise. Therefore, do not apply a pulse to a pin adjacent to the pin undergoing A/D conversion.	p. 456					
			Interrupt request flag (ADIF)	The interrupt request flag (ADIF) is not cleared even if the contents of the ADA0S register are changed. If the analog input pin is changed during A/D conversion, therefore, the result of converting the previously selected analog input signal may be stored and the conversion end interrupt request flag may be set immediately before the ADA0S register is rewritten. If the ADIF flag is read immediately after the ADA0S register is rewritten, the ADIF flag may be set even though the A/D conversion of the newly selected analog input pin has not been completed. When A/D conversion is stopped, clear the ADIF flag before resuming conversion.	p. 457					
	Hard		AVREF0 pin	 (a) The AVREF0 pin is used as the power supply pin of the A/D converter and also supplies power to the alternate-function ports. In an application where a backup power supply is used, be sure to supply the same voltage as VDD to the AVREF0 pin as shown in Figure 13-15. (b) The AVREF0 pin is also used as the reference voltage pin of the A/D converter. If the source supplying power to the AVREF0 pin has a high impedance or if the power supply has a low current supply capability, the reference voltage may fluctuate due to the current that flows during conversion (especially, immediately after the conversion operation enable bit ADAOCE has been set to 1). As a result, the conversion accuracy may drop. To avoid this, it is recommended to connect a capacitor across the AVREF0 and AVSS pins to suppress the reference voltage fluctuation as shown in Figure 13-15. (c) If the source supplying power to the AVREF0 pin has a high DC resistance (for example, because of insertion of a diode), the voltage when conversion is enabled may be lower than the voltage when conversion is stopped, because of a voltage drop caused by the A/D conversion current. 	p. 458					

	ç	Function	Details of	Cautions	,	7/36 <u>)</u>
Chapter	Classification	Function	Details of Function	Cautions	Pag	e
Chapter 13	Soft	A/D converter	Reading ADA0CRn register	When the ADA0M0 to ADA0M2, ADA0S, ADA0PFM, or ADA0PFT register is written, the contents of the ADA0CRn register may be undefined. Read the conversion result after completion of conversion and before writing to the ADA0M0 to ADA0M2, ADA0S, ADA0PFM, or ADA0PFT register. Also, when an external/timer trigger is acknowledged, the contents of the ADA0CRn register may be undefined. Read the conversion result after completion of conversion and before the next external/timer trigger is acknowledged. The correct conversion result may not be read at a timing different from the above.	p. 458	
			Standby mode	Because the A/D converter stops operating in the STOP mode, conversion results are invalid, so power consumption can be reduced. Operations are resumed after the STOP mode is released, but the A/D conversion results after the STOP mode is released are invalid. When using the A/D converter after the STOP mode is released, before setting the STOP mode or releasing the STOP mode, clear the ADA0M0.ADA0CE bit to 0 then set the ADA0CE bit to 1 after releasing the STOP mode. In the IDLE1, IDLE2, or subclock operation mode, operation continues. To lower the power consumption, therefore, clear the ADA0M0.ADA0CE bit to 0. In the IDLE1 and IDLE2 modes, since the analog input voltage value cannot be retained, the A/D conversion results after the IDLE1 and IDLE2 modes are released are invalid.	p. 459	
			High-speed I conversion / mode a	In the high-speed conversion mode, rewriting of the ADA0M0, ADA0M2, ADA0S, ADA0PFM, and ADA0PFT registers and trigger input during the stabilization time are prohibited.	p. 459	
			A/D conversion time	A/D conversion time is the total time of stabilization time, conversion time, wait time, and trigger response time (for details of these times, refer to Table 13-2 Conversion Time Selection in Normal Conversion Mode (ADA0HS1 Bit = 0) and Table 13-3 Conversion Time Selection in High-Speed Conversion Mode (ADA0HS1 Bit = 1)). During A/D conversion in the normal conversion mode, if the ADA0M0, ADA0M2, ADA0S, ADA0PFM, and ADA0PFT registers are written or a trigger is input, reconversion is carried out. However, if the stabilization time end timing conflicts with the writing to these registers, or if the stabilization time end timing conflicts with the trigger input, the stabilization time of 64 clocks is reinserted. If a conflict occurs again with the reinserted stabilization time end timing, the stabilization time is reinserted. Therefore do not set the trigger input interval and control register write interval to 64 clocks or below.	p. 459	
			Variation of A/D conversion results	The results of the A/D conversion may vary depending on the fluctuation of the supply voltage, or may be affected by noise. To reduce the variation, take counteractive measures with the program such as averaging the A/D conversion results.	p. 459	
	Hard		A/D conversion result hysteresis characteristics	 The successive comparison type A/D converter holds the analog input voltage in the internal sample & hold capacitor and then performs A/D conversion. After the A/D conversion has finished, the analog input voltage remains in the internal sample & hold capacitor. As a result, the following phenomena may occur. When the same channel is used for A/D conversions, if the voltage is higher or lower than the previous A/D conversion, then hysteresis characteristics may appear where the conversion result is affected by the previous value. Thus, even if the conversion is performed at the same potential, the result may vary. When switching the analog input channel, hysteresis characteristics may appear where the conversion result is affected by the previous channel value. This is because one A/D converter is used for the A/D conversions. Thus, even if the conversion is performed at the same potential, the result wary. 	p. 459	

				1	(18	3/36)	
Chapter	Classification	Function	Details of Function	Cautions	Ρα	e	
14	Hard	D/A	D/A converter	DAC0 and DAC1 share the AVREF1 pin.	p. 464		
Chapter 14	Ξ	converter		DAC0 and DAC1 share the AVss pin. The AVss pin is also shared by the A/D converter.	p. 464		
0			DA0M register	 The output trigger in the real-time output mode (DA0MDn bit = 1) is as follows. When n = 0: INTTP2CC0 signal (see CHAPTER 7 16-BIT TIMER/EVENT COUNTER P (TMP)) When n = 1: INTTP3CC0 signal (see CHAPTER 7 16-BIT TIMER/EVENT 	p. 645		
				COUNTER P (TMP))			
	Soft		DA0CS0, DA0CS1 registers	In the real-time output mode (DA0M.DA0MDn bit = 1), set the DA0CSn register before the INTTP2CC0/INTTP3CC0 signals are generated. D/A conversion starts when the INTTP2CC0/INTTP3CC0 signals are generated.	p. 466		
			Cautions	Do not change the set value of the DA0CSn register while the trigger signal is being issued in the real-time output mode.	p. 468		
				Before changing the operation mode, be sure to clear the DA0M.DA0CEn bit to 0.	p. 468		
			-	5	When using one of the P10/AN00 and P11/AN01 pins as an I/O port and the other as a D/A output pin, do so in an application where the port I/O level does not change during D/A output.	p. 468	
	Hard			Make sure that $AV_{REF0} = V_{DD} = AV_{REF1} = 3.0$ to 3.6 V. If this range is exceeded, the operation is not guaranteed.	p. 468		
				Apply power to AVREF1 at the same timing as AVREF0.	p. 468		
				No current can be output from the ANOn pin (n = 0, 1) because the output impedance of the D/A converter is high. When connecting a resistor of 2 M Ω or less, insert a JFET input operational amplifier between the resistor and the ANOn pin.	p. 468 p. 468 p. 468		
	Soft			Because the D/A converter stops operation in the STOP mode, the ANO0 and ANO1 pins go into a high-impedance state, and the power consumption can be reduced. In the IDLE1, IDLE2, or subclock operation mode, however, the operation continues. To lower the power consumption, therefore, clear the DA0M.DA0CEn bit to 0.	p. 468		
pter 15	Soft	Asynchro- nous serial interface A	CSIB4 and UARTA0 mode	The transmit/receive operation of CSIB4 and UARTA0 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.	p. 469		
Chapt		(UARTA)	UARTA2 and I ² C00 mode switching	The transmit/receive operation of UARTA2 and I ² C00 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.	p. 470		
			UARTA1 and I ² C02 mode switching	The transmit/receive operation of UARTA1 and I ² C02 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.	p. 471		
			UAnOPT0 register	Do not set the UAnSRT and UAnSTT bits (to 1) during SBF reception (UAnSRF bit = 1).	p. 477		
			SBF reception	If SBF is transmitted during a data reception, a framing error occurs.	p. 487		
				Do not set the SBF reception trigger bit (UAnSRT) and SBF transmission trigger bit (UAnSTT) to 1 during an SBF reception (UAnSRF = 1).	p. 487		
			Continuous transmission	When initializing transmissions during the execution of continuous transmissions, make sure that the UAnSTR.UAnTSF bit is 0, then perform the initialization. Transmit data that is initialized when the UAnTSF bit is 1 cannot be guaranteed.	p. 489		
			UART reception	Be sure to read the UAnRX register even when a reception error occurs. If the UAnRX register is not read, an overrun error occurs during reception of the next data, and reception errors continue occurring indefinitely.	p. 491		

	Ľ	Function	Details of	Cautions	r `	9/	36	
Chapter	Classification	Tunction	Function	Caulons		age	•	
Chapter 15	Soft	Asynchro- nous serial	UART reception	The operation during reception is performed assuming that there is only one stop bit. A second stop bit is ignored.	p. 49)1		
Chap		interface A (UARTA)		When reception is completed, read the UAnRX register after the reception complete interrupt request signal (INTUAnR) has been generated, and clear the UAnPWR or UAnRXE bit to 0. If the UAnPWR or UAnRXE bit is cleared to 0 before the INTUAnR signal is generated, the read value of the UAnRX register cannot be guaranteed.	p. 49)1		
				If receive completion processing (INTUARR signal generation) of UARTAn and the UAnPWR bit = 0 or UAnRXE bit = 0 conflict, the INTUANR signal may be generated in spite of these being no data stored in the UAnRX register. To complete reception without waiting INTUANR signal generation, be sure to clear (0) the interrupt request flag (UAnRIF) of the UAnRIC register, after setting (1) the interrupt mask flag (UAnRMK) of the interrupt control register (UAnRIC) and then set (1) the UAnPWR bit = 0 or UAnRXE bit = 0.	p. 49	91		
				Reception errors	When an INTUAnR signal is generated, the UAnSTR register must be read to check for errors.	p. 49	2	
				If a receive error interrupt occurs during continuous reception, read the contents of the UAnSTR register must be read before the next reception is completed, then perform error processing.	p. 49	3		
			Parity types and operations	When using the LIN function, fix the UAnPS1 and UAnPS0 bits of the UAnCTL0 register to 00.	p. 49	4		
			UAnCTL1 register	Clear the UAnCTL0.UAnPWR bit to 0 before rewriting the UAnCTL1 register.	p. 49)7		
			UAnCTL2 register	Clear the UAnCTL0.UAnPWR bit to 0 or clear the UAnTXE and UAnRXE bits to 00 before rewriting the UAnCTL2 register.		8		
			Baud rate error	The baud rate error during transmission must be within the error tolerance on the receiving side.	p. 49	9		
				The baud rate error during reception must satisfy the range indicated in (5) Allowable baud rate range during reception.	p. 49	9		
			Allowable baud rate range during reception	The baud rate error during reception must be set within the allowable error range using the following equation.	p. 50)1		
			When the clock supply to UARTAn is stopped	When the clock supply to UARTAn is stopped (for example, in IDLE1, IDLE2, or STOP mode), the operation stops with each register retaining the value it had immediately before the clock supply was stopped. The TXDAn pin output also holds and outputs the value it had immediately before the clock supply was stopped. However, the operation is not guaranteed after the clock supply is resumed. Therefore, after the clock supply is resumed, the circuits should be initialized by setting the UAnCTL0.UAnPWR, UAnCTL0.UAnRXEn, and UAnCTL0.UAnTXEn bits to 000.	p. 50	94		
			RXDA1 pin KR7 pin	The RXDA1 and KR7 pins must not be used at the same time. To use the RXDA1 pin, do not use the KR7 pin. To use the KR7 pin, do not use the RXDA1 pin (it is recommended to set the PFC91 bit to 1 and clear PFCE91 bit to 0).	p. 50)4		
			Performing the transfer of transmit data and receive data using DMA transfer	In UARTAn, the interrupt caused by a communication error does not occur. When performing the transfer of transmit data and receive data using DMA transfer, error processing cannot be performed even if errors (parity, overrun, framing) occur during transfer. Either read the UAnSTR register after DMA transfer has been completed to make sure that there are no errors, or read the UAnSTR register during communication to check for errors.	p. 50	94		

					(20	/36)									
Chapter	Classification	Function	Details of Function	Cautions	Pag	e									
Chapter 15	Soft	Asynchro- nous serial interface A (UARTA)	Start up UARTAn	Start up the UARTAn in the following sequence. <1> Set the UAnCTL0.UAnPWR bit to 1. <2> Set the ports. <3> Set the UAnCTL0.UAnTXE bit to 1, UAnCTL0.UAnRXE bit to 1.	p. 504										
			Stop UARTAn	 Stop the UARTAn in the following sequence. <1> Set the UAnCTL0.UAnTXE bit to 0, UAnCTL0.UAnRXE bit to 0. <2> Set the ports and set the UAnCTL0.UAnPWR bit to 0 (it is not a problem if port setting is not changed). 	p. 504										
			Transmit mode	In transmit mode (UAnCTL0.UAnPWR bit = 1 and UAnCTL0.UAnTXE bit = 1), do not overwrite the same value to the UAnTX register by software because transmission starts by writing to this register. To transmit the same value continuously, overwrite the same value.	p. 504										
	LF.		Continuous transmission	In continuous transmission, the communication rate from the stop bit to the next start bit is extended 2 base clocks more than usual. However, the reception side initializes the timing by detecting the start bit, so the reception result is not affected.	p. 504										
Chapter 16		3-wire variable- length	CSIB4 and UARTA0 mode switching	The transmit/receive operation of CSIB4 and UARTA0 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.	p. 505										
C		serial I/O (CSIB)	CSIB0 and I ² C01 mode switching	The transmit/receive operation of CSIB0 and l ² C01 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.	p. 506										
			CBnCTL0 register	To forcibly suspend transmission/reception, clear the CBnPWR bit to 0 instead of the CBnRXE and CBnTXE bits. At this time, the clock output is stopped.	p. 510										
							Be sure to clear bits 3 and 2 to "0".	p. 512							
				Set the communication clock (fccLK) to 8 MHz or lower.	p. 513										
			CBnCTL2 register	The CBnCTL2 register can be rewritten only when the CBnCTL0.CBnPWR bit = 0 or when both the CBnTXE and CBnRXE bits = 0 .	p. 514										
			Continuous transfer mode (master mode, transmission mode)	In continuous transmission mode, the reception completion interrupt request signal (INTCBnR) is not generated.	p. 531										
			Continuous transfer mode (slave mode, transmission mode)	In continuous transmission mode, the reception completion interrupt request signal (INTCBnR) is not generated.	p. 540										
			Clock timing	In single transfer mode, writing to the CBnTX register with the CBnTSF bit set to 1 is ignored. This has no influence on the operation during transfer. For example, if the next data is written to the CBnTX register when DMA is started by generating the INTCBnR signal, the written data is not transferred because the CBnTSF bit is set to 1. Use the continuous transfer mode, not the single transfer mode, for such applications.	p. 549										
			PRSM1 to	Do not rewrite the PRSMm register during operation.	p. 552										
			PRSM3 registers	Set the PRSMm register before setting the BGCEm bit to 1.	p. 552										

	c	Function	Details of	Cautions	(21 Pag	/36)			
Chapter	Classification	Function	Function	Caulons	гау	e			
16	Soft	3-wire	PRSCM1 to	Do not rewrite the PRSCMm register during operation.	p. 553				
Chapter 16		variable- length	PRSCM3 registers	Set the PRSCMm register before setting the PRSMm.BGCEm bit to 1.	p. 553				
0		serial I/O (CSIB)	Baud rate generation	Set fBRGm to 8 MHz or lower.	p. 553				
						When transferring transmit data and receive data using DMA transfer	When transferring transmit data and receive data using DMA transfer, error processing cannot be performed even if an overrun error occurs during serial transfer. Check that the no overrun error has occurred by reading the CBnSTR.CBnOVE bit after DMA transfer has been completed.	p. 554	
			CBnCTL0 register CBnCTL1 register CBnCTL2 register	In regards to registers that are forbidden from being rewritten during operations (CBnCTL0.CBnPWR bit is 1), if rewriting has been carried out by mistake during operations, set the CBnCTL0.CBnPWR bit to 0 once, then initialize CSIBn. Registers to which rewriting during operation are prohibited are shown below. • CBnCTL0 register: CBnTXE, CBnRXE, CBnDIR, CBnTMS bits • CBnCTL1 register: CBnCKP, CBnDAP, CBnCKS2 to CBnCKS0 bits • CBnCTL2 register: CBnCL3 to CBnCL0 bits	p. 554				
			Communication types 2, 4	 In communication type 2 and 4 (CBnCTL1.CBnDAP bit = 1), the CBnSTR.CBnTSF bit is cleared half a SCKBn clock after occurrence of a reception complete interrupt (INTCBnR). In the single transfer mode, writing the next transmit data is ignored during communication (CBnTSF bit = 1), and the next communication is not started. Also if reception-only communication (CBnCTL0.CBnTXE bit = 0, CBnCTL0.CBnRXE bit = 1) is set, the next communication is not started even if the receive data is read during communication (CBnTSF bit = 1). Therefore, when using the single transfer mode with communication type 2 or 4 (CBnDAP bit = 1), pay particular attention to the following. To start the next transmission, confirm that CBnTSF bit = 0 and then write the transmit data to the CBnTX register. To perform the next reception continuously when reception-only communication (CBnTXE bit = 0, CBnRXE bit = 1) is set, confirm that CBnTSF bit = 0 and then read the CBnRX register. Or, use the continuous transfer mode instead of the single transfer mode. Use of the continuous transfer mode is recommend especially for using DMA. 	p. 554				
Chapter 17	Soft	I ² C bus	l ² C bus	To use the I ² C bus function, use the P38/SDA00, P39/SCL00, P40/SDA01, P41/SCL01, P90/SDA02, and P91/SCL02 pins as the serial transmit/receive data I/O pins (SDA00 to SDA02) and serial clock I/O pins (SCL00 to SCL02), respectively, and set them to N-ch open-drain output.	p. 555				
			UARTA2 and I ² C00 mode switching	The transmit/receive operation of UARTA2 and I ² C00 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.	p. 555				
			CSIB0 and I ² C01 mode switching	The transmit/receive operation of CSIB0 and I ² C01 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.	p. 556				
			UARTA1 and I ² C02 mode switching	The transmit/receive operation of UARTA1 and I ² C02 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.	p. 557				
			IICC0 to IICC2 registers	If the l ² Cn operation is enabled (IICEn bit = 1) when the SCL0n line is high level and the SDA0n line is low level, the start condition is detected immediately. To avoid this, after enabling the l ² Cn operation, immediately set the LRELn bit to 1 with a bit manipulation instruction.	p. 564				

	c	Euro etian	Dataila of Function	Coutiene	<u>,</u>	2/36
Chapter	Classification	Function	Details of Function	Cautions	Pag	e
Chapter 17	Soft	I ² C bus	IICC0 to IICC2 registers	Set the SPTn bit to 1 only in master mode. However, when the IICRSVn bit is 0, the SPTn bit must be set to 1 and a stop condition generated before the first stop condition is detected following the switch to the operation enabled status. For details, see 17.15 Cautions.	p. 567	
				When the TRCn bit = 1, the WRELn bit is set to 1 during the ninth clock and the wait state is canceled, after which the TRCn bit is cleared to 0 and the SDA0n line is set to high impedance.	p. 567	
			IICS0 to IICS2 registers	 Accessing the IICSn register is prohibited in the following statuses. For details, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers. When the CPU operates with the subclock and the main clock oscillation is stopped When the CPU operates with the internal oscillation clock 	p. 568	
				The TRCn bit is cleared to 0 and SDA0n line becomes high impedance when the WRELn bit is set to 1 and the wait state is canceled to 0 at the ninth clock by TRCn bit = 1.	p. 569	
			IICF0 to IICF2	Write the STCENn bit only when operation is stopped (IICEn bit = 0).	p. 572	
			registers	When the STCENn bit = 1, the bus released status (IICBSYn bit = 0) is recognized regardless of the actual bus status immediately after the l^2 Cn bus operation is enabled. Therefore, to issue the first start condition (STTn bit = 1), it is necessary to confirm that the bus has been released, so as to not disturb other communications.	p. 572	
				Write the IICRSVn bit only when operation is stopped (IICEn bit = 0).	p. 572	
			IICCL0 to IICCL2 registers	Be sure to clear bits 7 and 6 to "0".	p. 573	
			l ² C0n transfer clock setting	Since the selection clock is fxx regardless of the value set to the OCKS0 register, clear the OCKS0 register to 00H (I ² C division clock stopped status).	p. 575	
			method	Since the selection clock is fxx regardless of the value set to the OCKS1 register, clear the OCKS1 register to 00H (I ² C division clock stopped status).	p. 576	
			Start condition	When the IICCn.IICEn bit of the V850ES/JG2 is set to 1 while communications with other devices are in progress, the start condition may be detected depending on the status of the communication line. Be sure to set the IICCn.IICEn bit to 1 when the SCL0n and SDA0n lines are high level.	p. 580	
			Status during arbitration and interrupt request signal generation	When the IICCn.WTIMn bit = 1, an INTIICn signal occurs at the falling edge of the ninth clock. When the WTIMn bit = 0 and the extension code's slave address is received, an INTIICn signal occurs at the falling edge of the eighth clock ($n = 0$ to 2).	p. 612	
			timing	When there is a possibility that arbitration will occur, set the SPIEn bit to 1 for master device operation (n = 0 to 2).	p. 612	
			When IICFn.STCENn bit = 0	Immediately after the I ² C0n operation is enabled, the bus communication status (IICFn.IICBSYn bit = 1) is recognized regardless of the actual bus status. To execute master communication in the status where a stop condition has not been detected, generate a stop condition and then release the bus before starting the master communication. Use the following sequence for generating a stop condition. <1> Set the IICCLn register. <2> Set the IICCn.IICEn bit. <3> Set the IICCn.SPTn bit.	p. 618	
			When IICFn.STCENn bit = 1	Immediately after l^2COn operation is enabled, the bus released status (IICBSYn bit = 0) is recognized regardless of the actual bus status. To generate the first start condition (IICCn.STTn bit = 1), it is necessary to confirm that the bus has been released, so as to not disturb other communications.	p. 618	

	1	1	1		(23	/36)														
Chapter	Classification	Function	Details of Function	Cautions	Pag	Э														
Chapter 17	Soft	l ² C bus	When communication among other devices are in progress	When the IICCn.IICEn bit of the V850ES/JG2 is set to 1 while communications among other devices are in progress, the start condition may be detected depending on the status of the communication line. Be sure to set the IICCn.IICEn bit to 1 when the SCL0n and SDA0n lines are high level.	p. 618															
					Operation enable	Determine the operation clock frequency by the IICCLn, IICXn, and OCKSm registers before enabling the operation (IICCn.IICEn bit = 1). To change the operation clock frequency, clear the IICCn.IICEn bit to 0 once.	p. 618													
				IICCn.STTn, SPTn bits	After the IICCn.STTn and IICCn.SPTn bits have been set to 1, they must not be re-set without being cleared to 0 first.	p. 618														
				Transmission reservation	If transmission has been reserved, set the IICCN.SPIEn bit to 1 so that an interrupt request is generated by the detection of a stop condition. After an interrupt request has been generated, the wait state will be released by writing communication data to l ² Cn, then transferring will begin. If an interrupt is not generated by the detection of a stop condition, transmission will halt in the wait state because an interrupt request was not generated. However, it is not necessary to set the SPIEn bit to 1 for the software to detect the IICSn.MSTSn bit.	p. 618														
			Master operation in single master system	Release the I ² C0n bus (SCL0n, SDA0n pins = high level) in conformity with the specifications of the product in communication. For example, when the EEPROM outputs a low level to the SDA0n pin, set the SCL0n pin to the output port and output clock pulses from that output port until when the SDA0n pin is constantly high level.	p. 620															
					Master operation in multimaster system	Confirm that the bus release status (IICCLn.CLDn bit = 1, IICCLn.DADn bit = 1) has been maintained for a certain period (1 frame, for example). When the SDA0n pin is constantly low level, determine whether to release the l^2 COn bus (SCL0n, SDA0n pins = high level) by referring to the specifications of the product in communication.	p. 621													
																		Conform the transmission and reception formats to the specifications of the product in communication.	p. 623	
											When using the V850ES/JG2 as the master in the multimaster system, read the IICSn.MSTSn bit for each INTIICn interrupt occurrence to confirm the arbitration result.	p. 623								
				When using the V850ES/JG2 as the slave in the multimaster system, confirm the status using the IICSn and IICFn registers for each INTIICn interrupt occurrence to determine the next processing.	p. 623															
			Slave wait cancellation	To cancel slave wait, write FFH to IICn or set WRELn.	pp. 628 to 630															
			Master wait cancellation	To cancel master wait, write FFH to IICn or set WRELn.	pp. 631 to 633															
18	Soft	DMA	DSA0 to DSA3	Be sure to clear bits 14 to 10 of the DSAnH register to 0.	p. 636															
Chapter 18	S S	function (DMA controller)	registers	 Set the DSAnH and DSAnL registers at the following timing when DMA transfer is disabled (DCHCn.Enn bit = 0). Period from after reset to start of first DMA transfer Period from after channel initialization by DCHCn.INITn bit to start of DMA transfer Period from after completion of DMA transfer (DCHCn.TCn bit = 1) to start of 	p. 636															
0		controller)		Period from after channel initialization by DCHCn.INITn bit to start of DMA																

	Ľ	Function	Details of	Cautions	(2 Pa	4/3	2						
Chapter	Classification		Function		Fa	<u>ye</u>							
Chapter 18	õ	DMA function (DMA	DSA0 to DSA3 registers	When the value of the DSAn register is read, two 16-bit registers, DSAnH and DSAnL, are read. If reading and updating conflict, the value being updated may be read (see 18.13 Cautions).	p. 636	3 L							
ō		controller)		Following reset, set the DSAnH, DSAnL, DDAnH, DDAnL, and DBCn registers before starting DMA transfer. If these registers are not set, the operation when DMA transfer is started is not guaranteed.	p. 636	6							
			DDA0 to DDA3	Be sure to clear bits 14 to 10 of the DDAnH register to 0.	p. 637	7							
			registers	 Set the DDAnH and DDAnL registers at the following timing when DMA transfer is disabled (DCHCn.Enn bit = 0). Period from after reset to start of first DMA transfer Period from after channel initialization by DCHCn.INITn bit to start of DMA transfer Period from after completion of DMA transfer (DCHCn.TCn bit = 1) to start of the next DMA transfer 	p. 637	7]						
						When the value of the DDAn register is read, two 16-bit registers, DDAnH and DDAnL, are read. If reading and updating conflict, a value being updated may be read (see 18.13 Cautions).	p. 637	7 []				
							Following reset, set the DSAnH, DSAnL, DDAnH, DDAnL, and DBCn registers before starting DMA transfer. If these registers are not set, the operation when DMA transfer is started is not guaranteed.	p. 637	7 []			
			DBC0 to DBC3 registers	 Set the DBCn register at the following timing when DMA transfer is disabled (DCHCn.Enn bit = 0). Period from after reset to start of first DMA transfer Period from after channel initialization by DCHCn.INITn bit to start of DMA transfer 	p. 638	3 [כ						
											Period from after completion of DMA transfer (DCHCn.TCn bit = 1) to start of the next DMA transfer		<u> </u>
				Following reset, set the DSAnH, DSAnL, DDAnH, DDAnL, and DBCn registers before starting DMA transfer. If these registers are not set, the operation when DMA transfer is started is not guaranteed.	p. 638	3 L							
			DADC0 to	Be sure to clear bits 15, 13 to 8, and 3 to 0 of the DADCn register to "0".	p. 639) [
			DADC3 registers	 Set the DADCn register at the following timing when DMA transfer is disabled (DCHCn.Enn bit = 0). Period from after reset to start of first DMA transfer Period from after channel initialization by DCHCn.INITn bit to start of DMA transfer Period from after completion of DMA transfer (DCHCn.TCn bit = 1) to start of the next DMA transfer 	p. 639) [כ						
				The DS0 bit specifies the size of the transfer data, and does not control bus sizing. If 8-bit data (DS0 bit = 0) is set, therefore, the lower data bus is not always used.	p. 639	9 E							
				If the transfer data size is set to 16 bits (DS0 bit = 1), transfer cannot be started from an odd address. Transfer is always started from an address with the first bit of the lower address aligned to 0.	p. 639	9 [Ī						
				If DMA transfer is executed on an on-chip peripheral I/O register (as the transfer source or destination), be sure to specify the same transfer size as the register size. For example, to execute DMA transfer on an 8-bit register, be sure to specify 8-bit transfer.	p. 639	ə []						
			DCHC0 to	The TCn bit is read-only.	p. 640) [J						
			DCHC3	The INITn and STGn bits are write-only.	p. 640) [
			registers	Be sure to clear bits 6 to 3 of the DCHCn register to 0.	p. 640) [_						

			1		(2	5/36					
Chapter	Classification	Function	Details of Function	Cautions	Ρα	je					
Chapter 18	Soft	DMA function (DMA controller)	DCHC0 to DCHC3 registers	When DMA transfer is completed (when a terminal count is generated), the Enn bit is cleared to 0 and then the TCn bit is set to 1. If the DCHCn register is read while its bits are being updated, a value indicating "transfer not completed and transfer is disabled" (TCn bit = 0 and Enn bit = 0) may be read.	p. 640						
			DTFR0 to DTFR3 registers	Do not set the DFn bit to 1 by software. Write 0 to this bit to clear a DMA transfer request if an interrupt that is specified as the cause of starting DMA transfer occurs while DMA transfer is disabled.	p. 641						
				 Set the IFCn5 to IFCn0 bits at the following timing when DMA transfer is disabled (DCHCn.Enn bit = 0). Period from after reset to start of first DMA transfer Period from after channel initialization by DCHCn.INITn bit to start of DMA transfer Period from after completion of DMA transfer (DCHCn.TCn bit = 1) to start of the next DMA transfer 	p. 641						
				An interrupt request that is generated in the standby mode (IDEL1, IDLE2, STOP, or sub-IDLE mode) does not start the DMA transfer cycle (nor is the DFn bit set to 1).	p. 641						
									If a DMA start factor is selected by the IFCn5 to IFCn0 bits, the DFn bit is set to 1 when an interrupt occurs from the selected on-chip peripheral I/O, regardless of whether the DMA transfer is enabled or disabled. If DMA is enabled in this status, DMA transfer is immediately started.	p. 641	
			Relationship between transfer targets	The operation is not guaranteed for combinations of transfer destination and source marked with " \times " in Table 18-2.	p. 643						
			Request by on- chip peripheral I/O	Two start factors (software trigger and hardware trigger) cannot be used for one DMA channel. If two start factors are simultaneously generated for one DMA channel, only one of them is valid. The start factor that is valid cannot be identified.	p. 646	;					
				A new transfer request that is generated after the preceding DMA transfer request was generated or in the preceding DMA transfer cycle is ignored (cleared).	p. 646	;					
				The transfer request interval of the same DMA channel varies depending on the setting of bus wait in the DMA transfer cycle, the start status of the other channels, or the external bus hold request. In particular, as described in Caution 2, a new transfer request that is generated for the same channel before the DMA transfer cycle or during the DMA transfer cycle is ignored. Therefore, the transfer request intervals for the same DMA channel must be sufficiently separated by the system. When the software trigger is used, completion of the DMA transfer cycle that was generated before can be checked by updating the DBCn register.	p. 646						
			Caution for VSWC register	When using the DMAC, be sure to set an appropriate value, in accordance with the operating frequency, to the VSWC register. When the default value (77H) of the VSWC register is used, or if an inappropriate value is set to the VSWC register, the operation is not correctly performed (for details of the VSWC register, see 3.4.8 (1) (a) System wait control register (VSWC)).	p. 652	2					
			Caution for DMA transfer executed on internal RAM	 When executing the following instructions located in the internal RAM, do not execute a DMA transfer that transfers data to/from the internal RAM (transfer source/destination), because the CPU may not operate correctly afterward. Bit manipulation instruction located in internal RAM (SET1, CLR1, or NOT1) Data access instruction to misaligned address located in internal RAM Conversely, when executing a DMA transfer to transfer data to/from the internal RAM (transfer source/destination), do not execute the above two instructions. 	p. 652						

	1	1	1	1	(26/36)
Chapter	Classification	Function	Details of Function	Cautions	Page
Chapter 18	Soft	DMA function (DMA controller)	Caution for reading DCHCn.TCn bit	 The TCn bit is cleared to 0 when it is read, but it is not automatically cleared even if it is read at a specific timing. To accurately clear the TCn bit, add the following processing. (a) When waiting for completion of DMA transfer by polling TCn bit Confirm that the TCn bit has been set to 1 (after TCn bit = 1 is read), and then read the TCn bit three more times. (b) When reading TCn bit in interrupt servicing routine Execute reading the TCn bit three times. 	p. 652 🗌
			DMA transfer initialization procedure (setting DCHCn.INITn bit to 1)	 Even if the INITn bit is set to 1 when the channel executing DMA transfer is to be initialized, the channel may not be initialized. To accurately initialize the channel, execute either of the following two procedures. (a) Temporarily stop transfer of all DMA channels Initialize the channel executing DMA transfer using the procedure in <1> to <7> below. Note, however, that TCn bit is cleared to 0 when step <5> is executed. Make sure that the other processing programs do not expect that the TCn bit is 1. <1> Disable interrupts (DI). <2> Read the DCHCn.Enn bit of DMA channels other than the one to be forcibly terminated, and transfer the value to a general-purpose register. <3> Clear the Enn bit of the DMA channels used (including the channel, execute the clear instruction twice. If the target of DMA transfer (transfer source/destination) is the internal RAM, execute the instruction three times. Example: Execute instructions in the following order if channels 0, 1, and 2 are used (if the target of transfer is not the internal RAM). Clear DCHC0.E00 bit to 0. Clear DCHC1.E11 bit to 0. Clear DCHC2.E22 bit to 0 again. <4> Set the INITn bit of the channel not to be forcibly terminated. If both the TCn bit and the Enn bit read in <2> are 1 (logical product (AND) is 1), clear the saved Enn bit to 0. <6> After the operation in <5>, write the Enn bit value to the DCHCn register. <7> Enable interrupts (EI).	p. 653
				Be sure to execute step <5> above to prevent illegal setting of the Enn bit of the channels whose DMA transfer has been normally completed between <2> and <3>.	р. 653 🛛
				 (b) Repeatedly execute setting INITn bit until transfer is forcibly terminated correctly <1> Suppress a request from the DMA request source of the channel to be forcibly terminated (stop operation of the on-chip peripheral I/O). <2> Check that the DMA transfer request of the channel to be forcibly terminated is not held pending, by using the DTFRn.DFn bit. If a DMA transfer request is completed. <3> When it has been confirmed that the DMA request of the channel to be forcibly terminated is not held pending, clear the Enn bit to 0. <4> Again, clear the Enn bit of the channel to be forcibly terminated. If the target of transfer for the channel to be forcibly terminated. <5> Copy the initial number of transfers of the channel to be forcibly terminated to a general-purpose register. <6> Set the INITn bit of the channel to be forcibly terminated to 1. <7> Read the value of the DBCn register of the channel to be forcibly terminated, and compare it with the value copied in <5>. If the two values do not match, repeat operations <6> and <7>. 	p. 654

		r	1		(27/	36)				
Chapter	Classification	Function	Details of Function	Cautions	Page	•				
Chapter 18	Soft	DMA function (DMA controller)	Procedure of temporarily stopping DMA transfer (clearing Enn bit)	 Stop and resume the DMA transfer under execution using the following procedure. <1> Suppress a transfer request from the DMA request source (stop the operation of the on-chip peripheral I/O). <2> Check the DMA transfer request is not held pending, by using the DFn bit (check if the DFn bit = 0). If a request is pending, wait until execution of the pending DMA transfer request is completed. <3> If it has been confirmed that no DMA transfer request is held pending, clear the Enn bit to 0 (this operation stops DMA transfer). <4> Set the Enn bit to 1 to resume DMA transfer. <5> Resume the operation of the DMA request source that has been stopped (start the operation of the on-chip peripheral I/O). 	p. 654					
							Memory boundary	The operation is not guaranteed if the address of the transfer source or destination exceeds the area of the DMA target (external memory, internal RAM, or on-chip peripheral I/O) during DMA transfer.	p. 654	
						Transferring misaligned data	DMA transfer of misaligned data with a 16-bit bus width is not supported. If an odd address is specified as the transfer source or destination, the least significant bit of the address is forcibly assumed to be 0.	p. 654		
			Bus arbitration for CPU	 Because the DMA controller has a higher priority bus mastership than the CPU, a CPU access that takes place during DMA transfer is held pending until the DMA transfer cycle is completed and the bus is released to the CPU. However, the CPU can access the external memory, on-chip peripheral I/O, and internal RAM to/from which DMA transfer is not being executed. The CPU can access the internal RAM when DMA transfer is being executed between the external memory and on-chip peripheral I/O. The CPU can access the internal RAM and on-chip peripheral I/O when DMA transfer is being executed between the external memory and external memory. 	p. 655					
			Registers/bits that must not be rewritten during DMA operation	Set the following registers at the following timing when a DMA operation is not under execution. [Registers] • DSAnH, DSAnL, DDAnH, DDAnL, DBCn, and DADCn registers • DTFRn.IFCn5 to DTFRn.IFCn0 bits [Timing of setting] • Period from after reset to start of the first DMA transfer • Time after channel initialization to start of DMA transfer • Period from after completion of DMA transfer (TCn bit = 1) to start of the next DMA transfer	p. 655					
			DSAnH register DDAnH register DADCn register DCHCn register	Be sure to set the following register bits to 0. • Bits 14 to 10 of DSAnH register • Bits 14 to 10 of DDAnH register • Bits 15, 13 to 8, and 3 to 0 of DADCn register • Bits 6 to 3 of DCHCn register	p. 655					
			DMA start factor	Do not start two or more DMA channels with the same start factor. If two or more channels are started with the same factor, DMA for which a channel has already been set may be started or a DMA channel with a lower priority may be acknowledged earlier than a DMA channel with a higher priority. The operation cannot be guaranteed.	p. 655					

					(28	/36)				
Chapter	Classification	Function	Details of Function	Cautions	Page	Э				
Chapter 18	Soft	DMA function (DMA controller)	Read values of DSAn and DDAn registers	 Values in the middle of updating may be read from the DSAn and DDAn registers during DMA transfer (n = 0 to 3). For example, if the DSAnH register and then the DSAnL register are read when the DMA transfer source address (DSAn register) is 0000FFFFH and the count direction is incremental (DADCn.SAD1 and DADCn.SAD0 bits = 00), the value of the DSAn register differs as follows, depending on whether DMA transfer is executed immediately after the DSAnH register is read. (a) If DMA transfer does not occur while DSAn register is read <1> Read value of DSAnL register: DSAnH = 0000H <2> Read value of DSAnH register: DSAnL = FFFFH (b) If DMA transfer occurs while DSAn register is read <1> Read value of DSAnH register: DSAnH = 0000H <2> Occurrence of DMA transfer <3> Incrementing DSAn register: DSAn = 00100000H <4> Read value of DSAnL register: DSAnL = 0000H 	p. 656					
Chapter 19	Soft	Interrupt/ exception processing function	Non-maskable interrupts	For the non-maskable interrupt servicing executed by the non-maskable interrupt request signal (INTWDT2), see 19.2.2 (2) From INTWDT2 signal. When the EP and NP bits are changed by the LDSR instruction during non-maskable interrupt servicing, in order to restore the PC and PSW correctly during recovery by the RETI instruction, it is necessary to set the EP bit back to 0 and the NP bit back to 1 using the LDSR instruction immediately before the RETI instruction.	p. 661 p. 664					
			Maskable interrupt	When the EP and NP bits are changed by the LDSR instruction during maskable interrupt servicing, in order to restore the PC and PSW correctly during recovery by the RETI instruction, it is necessary to set the EP bit back to 0 and the NP bit back to 0 using the LDSR instruction immediately before the RETI instruction.	p. 668					
			Multiple interrupt	To perform multiple interrupt servicing, the values of the EIPC and EIPSW registers must be saved before executing the EI instruction. When returning from multiple interrupt servicing, restore the values of EIPC and EIPSW after executing the DI instruction.	pp. 670 to 672					
								Interrupt control register	Disable interrupts (DI) or mask the interrupt to read the xxICn.xxIFn bit. If the xxIFn bit is read while interrupts are enabled (EI) or while the interrupt is unmasked, the correct value may not be read when acknowledging an interrupt and reading the bit conflict.	p. 673
				The flag xxIFn is reset automatically by the hardware if an interrupt request signal is acknowledged.	p. 673					
			IMR0 to IMR3 registers	The device file defines the xxICn.xxMKn bit as a reserved word. If a bit is manipulated using the name of xxMKn, the contents of the xxICn register, instead of the IMRm register, are rewritten (as a result, the contents of the IMRm register are also rewritten).	p. 675					
				To read bits 8 to 15 of the IMR0 to IMR3 registers in 8-bit or 1-bit units, specify them as bits 0 to 7 of IMR0H to IMR3H registers.	p. 676					
				Set bits 13 to 15 of the IMR3 register to 1. If the setting of these bits is changed, the operation is not guaranteed.	p. 676					
			ISPR register	If an interrupt is acknowledged while the ISPR register is being read in the interrupt enabled (EI) status, the value of the ISPR register after the bits of the register have been set by acknowledging the interrupt may be read. To accurately read the value of the ISPR register before an interrupt is acknowledged, read the register while interrupts are disabled (DI).	p. 677					

					(29	9/36)		
Chapter	Classification	Function	Details of Function	Cautions	Ραξ	le		
Chapter 19	Soft	Interrupt/ exception processing function	Restoration from software exception processing	When the EP and NP bits are changed by the LDSR instruction during the software exception processing, in order to restore the PC and PSW correctly during recovery by the RETI instruction, it is necessary to set the EP bit back to 1 and the NP bit back to 0 using the LDSR instruction immediately before the RETI instruction.	p. 680			
			Illegal opcode	It is recommended not to use an illegal opcode because instructions may newly be assigned in the future.	p. 682			
			Restoration from exception trap	DBPC and DBPSW can be accessed only during the interval between the execution of an illegal opcode and the DBRET instruction.	p. 683			
			Restoration from debug trap	DBPC and DBPSW can be accessed only during the interval between the execution of the DBTRAP instruction and the DBRET instruction.	p. 685			
					INTF0, INTR0 registers	When the function is changed from the external interrupt function (alternate function) to the port function, an edge may be detected. Therefore, clear the INTF0n and INTR0n bits to 00, and then set the port mode.	p. 687	
				Be sure to clear the INTF0n and INTR0n bits to 00 when these registers are not used as the NMI or INTP0 to INTP3 pins.	p. 687			
			INTF3, INTR3 registers	When the function is changed from the external interrupt function (alternate function) to the port function, an edge may be detected. Therefore, clear the INTF31 and INTR31 bits to 00, and then set the port mode.	p. 688			
				The INTP7 pin and RXDA0 pin are alternate-function pins. When using the pin as the RXDA0 pin, disable edge detection for the INTP7 alternate-function pin (clear the INTF3.INTF31 bit and the INRT3.INTR31 bit to 0). When using the pin as the INTP7 pin, stop UARTA0 reception (clear the UA0CTL0.UA0RXE bit to 0).	p. 688			
				Be sure to clear the INTF31 and INTR31 bits to 00 when these registers are not used as INTP7 pin.	p. 688			
			INTF9H, INTR9H registers	When the function is changed from the external interrupt function (alternate function) to the port function, an edge may be detected. Therefore, clear the INTF9n and INTR9n bits to 0, and then set the port mode.	p. 689			
				Be sure to clear the INTF9n and INTR9n bits to 00 when these registers are not used as INTP4 to INTP6 pins.	p. 689			
			NFC register	 After the sampling clock has been changed, it takes 3 sampling clocks to initialize the digital noise eliminator. Therefore, if an INTP3 valid edge is input within these 3 sampling clocks after the sampling clock has been changed, an interrupt request signal may be generated. Therefore, be careful about the following points when using the interrupt and DMA functions. When using the interrupt function, after the 3 sampling clocks have elapsed, enable interrupts after the interrupt request flag (PIC3.PIF3 bit) has been cleared. When using the DMA function (started by INTP3), enable DMA after 3 sampling clocks have elapsed. 	p. 690			
			NMI pin	The NMI pin alternately functions as the P02 pin, and functions as a normal port pin after being reset. To enable the NMI pin, validate the NMI pin with the PMC0 register. The initial setting of the NMI pin is "No edge detected". Select the NMI pin valid edge using the INTF0 and INTR0 registers.	p. 692			
er 20	Soft	Key interrupt	KRM register	Rewrite the KRM register after once clearing the KRM register to 00H.	p. 694			
Chapter 20		function		If the KRM register is changed, an interrupt request signal (INTKR) may be generated. To prevent this, change the KRM register after disabling interrupts (DI) or masking, then clear the interrupt request flag (KRIC.KRIF bit) to 0, and enable interrupts (EI) or clear the mask.	p. 694			

		1			(30	/36)				
Chapter	Classification	Function	Details of Function	Cautions	Pag	e				
er 20	Soft	Key interrupt	KR0 to KR7 pins	If a low level is input to any of the KR0 to KR7 pins, the INTKR signal is not generated even if the falling edge of another pin is input.	p. 694					
Chapt er 20		function	RXDA1 pin KR7 pin	The RXDA1 and KR7 pins must not be used at the same time. To use the RXDA1 pin, do not use the KR7 pin. To use the KR7 pin, do not use the RXDA1 pin (it is recommended to set the PFC91 bit to 1 and clear PFCE91 bit to 0).	p. 694					
			Use the key interrupt function	To use the key interrupt function, be sure to set the port pin to the key return pin and then enable the operation with the KRM register. To switch from the key return pin to the port pin, disable the operation with the KRM register and then set the port pin.	p. 694					
Chapter 21	Soft	Standby function	PSC register	Before setting the IDLE1, IDLE2, STOP, or sub-IDLE mode, set the PSMR.PSM1 and PSMR.PSM0 bits and then set the STP bit.	p. 697					
Chapt				Settings of the NMI1M, NMI0M, and INTM bits are invalid when HALT mode is released.	p. 697					
				If the NMI1M, NMI0M, or INTM bit is set to 1 at the same time the STP bit is set to 1, the setting of NMI1M, NMI0M, or INTM bit becomes invalid. If there is an unmasked interrupt request signal being held pending when the IDLE1/IDLE2/STOP mode is set, set the bit corresponding to the interrupt request signal (NMI1M, NMI0M, or INTM) to 1, and then set the STP bit to 1.	p. 697					
			PSMR register	Be sure to clear bits 2 to 7 to "0".	p. 698					
			_	The PSM0 and PSM1 bits are valid only when the PSC.STP bit is 1.	p. 698					
			OSTS register	The wait time following release of the STOP mode does not include the time until the clock oscillation starts ("a" in the figure below) following release of the STOP mode, regardless of whether the STOP mode is released by reset or the occurrence of an interrupt request signal.	p. 699					
								Be sure to clear bits 3 to 7 to "0".	p. 699	
				The oscillation stabilization time following reset release is 2^{16} /fx (because the initial value of the OSTS register = 06H).	p. 699					
			HALT mode	Insert five or more NOP instructions after the HALT instruction.	p. 700					
				If the HALT instruction is executed while an unmasked interrupt request signal is being held pending, the status shifts to HALT mode, but the HALT mode is then released immediately by the pending interrupt request.	p. 700					
			IDLE1 mode	Insert five or more NOP instructions after the instruction that stores data in the PSC register to set the IDLE1 mode.	p. 702					
				If the IDLE1 mode is set while an unmasked interrupt request signal is being held pending, the IDLE1 mode is released immediately by the pending interrupt request.	p. 702					
			Releasing IDLE1 mode	An interrupt request signal that is disabled by setting the PSC.NMI1M, PSC.NMI0M, and PSC.INTM bits to 1 becomes invalid and IDLE1 mode is not released.	p. 702					
			IDLE2 mode	Insert five or more NOP instructions after the instruction that stores data in the PSC register to set the IDLE2 mode.	p. 704					
				If the IDLE2 mode is set while an unmasked interrupt request signal is being held pending, the IDLE2 mode is released immediately by the pending interrupt request.	p. 704					
			Releasing IDLE2 mode	The interrupt request signal that is disabled by setting the PSC.NMI1M, PSC.NMI0M, and PSC.INTM bits to 1 becomes invalid and IDLE2 mode is not released.	p. 704					

					(3	1/36													
Chapter	Classification	Function	Details of Function	Cautions	Pa	је													
Chapter 21	Soft	Standby function	STOP mode	Insert five or more NOP instructions after the instruction that stores data in the PSC register to set the STOP mode.	p. 707	/ [
Chap				If the STOP mode is set while an unmasked interrupt request signal is being held pending, the STOP mode is released immediately by the pending interrupt request.	p. 707	′ □													
			Releasing STOP mode	The interrupt request that is disabled by setting the PSC.NMI1M, PSC.NMI0M, and PSC.INTM bits to 1 becomes invalid and STOP mode is not released.	p. 707	7													
			Subclock operation mode	When manipulating the CK3 bit, do not change the set values of the PCC.CK2 to PCC.CK0 bits (using a bit manipulation instruction to manipulate the bit is recommended). For details of the PCC register, see 6.3 (1) Processor clock control register (PCC).	p. 71														
										If the following conditions are not satisfied, change the CK2 to CK0 bits so that the conditions are satisfied and set the subclock operation mode. Internal system clock (f_{CLK}) > Subclock (f_{XT} = 32.768 kHz) × 4	p. 71 ⁻								
					Releasing subclock operation mode	When manipulating the CK3 bit, do not change the set values of the CK2 to CK0 bits (using a bit manipulation instruction to manipulate the bit is recommended). For details of the PCC register, see 6.3 (1) Processor clock control register (PCC).	p. 71 ⁻												
				Be sure to stop the PLL (PLLCTL.PLLON bit = 0) before stopping the main clock.	p. 712	2													
				When the CPU is operating on the subclock and main clock oscillation is stopped, accessing a register in which a wait occurs is disabled. If a wait is generated, it can be released only by reset (see 3.4.8 (2)).	p. 712	2													
			Sub-IDLE mode	Following the store instruction to the PSC register to set the sub-IDLE mode, insert the five or more NOP instructions.	p. 713	3 [
				If the sub-IDLE mode is set while an unmasked interrupt request signal is being held pending, the sub-IDLE mode is then released immediately by the pending interrupt request.	p. 713	3 [
																Releasing sub- IDLE mode	The interrupt request signal that is disabled by setting the PSC.NMI1M, PSC.NMI0M, and PSC.INTM bits to 1 becomes invalid and sub-IDLE mode is not released.	p. 713	3
									When the sub-IDLE mode is released, 12 cycles of the subclock (about 366 μ s) elapse from when the interrupt request signal that releases the sub-IDLE mode is generated to when the mode is released.	p. 713	3 [
				Be sure to stop the PLL (PLLCTL.PLLON bit = 0) before stopping the main clock.	p. 714	1													
Chapter 22	Soft	Reset function	Emergency operation mode	When the CPU operates on the internal oscillation clock, access to the register in which a wait state is generated is prohibited. For the register in which a wait state is generated, see 3.4.8 (2) Accessing specific on-chip peripheral I/O registers.	p. 718	5 🗆													
Ċ			Reset function	An LVI circuit internal reset does not reset the LVI circuit.	p. 715	5 [
			RESF register	Only "0" can be written to each bit of this register. If writing "0" conflicts with setting the flag (occurrence of reset), setting the flag takes precedence.	p. 716	3 [
	Hard		Internal RAM status after reset	The firmware of the V850ES/JG2 uses a part of the internal RAM after the internal system reset status has been released because it supports a boot swap function. Therefore, the contents of some RAM areas are not retained after power-on reset. For details, see 22.3.4 Operation after reset release.	pp. 717, 719, 721														
			Hardware status on RESET pin input	When the power is turned on, the following pins may output an undefined level temporarily, even during reset. • P10/ANO0 pin • P11/ANO1 pin • P53/SIB2/KR3/TIQ00/TOQ00/RTP03/DDO pin	p. 717	7													

					(3	2/3	6)
Chapter	Classification	Function	Details of Function	Cautions	Pa	је	
Chapter 22	Hard, Soft	Reset function	Har <u>dware s</u> tatus on RESET pin input	The OCDM register is initialized by the RESET pin input. Therefore, note with caution that, if a high level is input to the P05/DRST pin after a reset release before the OCDM.OCDM0 bit is cleared, the on-chip debug mode is entered. For details, see CHAPTER 4 PORT FUNCTIONS.	p. 71 ⁻	7 [
Chapter 23	Soft	Clock monitor	CLM register	Once the CLME bit has been set to 1, it cannot be cleared to 0 by any means other than reset.	p. 72 ⁻	7 [
Chap				When a reset by the clock monitor occurs, the CLME bit is cleared to 0 and the RESF.CLMRF bit is set to 1.	p. 72 ⁻	7 [
			Internal	Internal oscillator can be stopped by setting the RCM.RSTOP bit to 1.	p. 72	3 [
			oscillator	The clock monitor is stopped while the internal oscillator is stopped.	p. 72	3 [
				The internal oscillator cannot be stopped by software.	p. 72	3 [
Chapter 24	Soft	Low- voltage	LVIM register	When the LVION and LVIMD bits to 1, the low-voltage detector cannot be stopped until the reset request due to other than the low-voltage detection is generated.	p. 73	5 [
Chap	detector (LVI)		When the LVION bit is set to 1, the comparator in the LVI circuit starts operating. Wait 0.2 ms or longer by software before checking the voltage at the LVIF bit after the LVION bit is set.	p. 73	2 [
				Be sure to clear bits 6 to 2 to "0".	p. 73	2 [
		LVIS register	LVIS register	This register cannot be written until a reset request due to something other than low-voltage detection is generated after the LVIM.LVION and LVIM.LVIMD bits are set to 1.	p. 73	3 [
				Be sure to clear bits 7 to 1 to "0".	p. 73	3 [
			To use for internal reset signal	If the LVIMD bit is set to 1, the contents of the LVIM and LVIS registers cannot be changed until a reset request other than LVI is generated.	p. 734	1 [
			PEMU1 register	This bit is not automatically cleared.	p. 73	7 [
Chapter 25	Hard	Regulator	Regulator	Use the regulator with a setting of V_{DD} = EV_{DD} = AV_{REF0} = $AV_{\text{REF1}} \ge BV_{\text{DD}}$.	p. 73	3 [
ter 26	Hard	Flash memory	FLMD1 pin	Connect the FLMD1 pin to the flash programmer or connect to a GND via a pull- down resistor on the board.	pp. 745 to) 74 o	 ₽7
Chapt			PG-FP4	Wire these pins as shown in Figure 26-6, or connect then to GND via pull-down resistor on board.	p. 74 ⁻	7 [
				Clock cannot be supplied via the CLK pin of the flash programmer. Create an oscillator on board and supply the clock.	p. 74 ⁻	7 [
			Wiring of V850ES/JG2	Be sure to connect the REGC pin to GND via a 4.7 μ F capacitor.	pp. 748, 7] 49'	
		flash writing adapters (FA- 100GF-3BA-A, FA-100GC- 8EU-A)	A clock cannot be supplied from the CLK pin of the flash programmer. Create an oscillator on the board and supply the clock.	pp. 748, 7	[49		
			Wiring example of V850ES/JG2	Wire the FLMD1 pin as shown below, or connect it to GND on board via a pull- down resistor.	p. 751	[
			flash writing adapter (FA-	Create an oscillator on the flash writing adapter (shown in broken lines) and supply a clock.	p. 751	[
			100GF-3BA-A)	Do not input a high level to the DRST pin.	p. 751	[

					(33	8/36)							
Chapter	Classification	Function	Details of Function	Cautions	Pag	e							
Chapter 26	Hard	Flash memory	Wiring example of V850ES/JG2	Wire the FLMD1 pin as shown below, or connect it to GND on board via a pull- down resistor.	p. 753								
Chap			flash writing adapter (FA-	Create an oscillator on the flash writing adapter (shown in broken lines) and supply a clock.	p. 753								
			100GC-8EU-A)	Do not input a high level to the DRST pin.	p. 753								
			Selection of communication mode	When UARTA0 is selected, the receive clock is calculated based on the reset command sent from the dedicated flash programmer after receiving the FLMD0 pulse.	p. 755								
			FLMD1 pin	If the V_{DD} signal is input to the FLMD1 pin from another device during on-board writing and immediately after reset, isolate this signal.	p. 757								
			FLMD0 pin	Make sure that the FLMD0 pin is at 0 V when reset is released.	p. 764								
Chapter 27	Hard, soft	On-chip debug function	OCDM register	 When using the DDI, DDO, DCK, and DMS pins not as on-chip debug pins but as port pins after external reset, any of the following actions must be taken. Input a low level to the P05/INTP2/DRST pin. Set the OCDM0 bit. In this case, take the following actions. <1> Clear the OCDM0 bit to 0. <2> Fix the P05/INTP2/DRST pin to low level until <1> is completed. 	p. 770								
				The $\overline{\text{DRST}}$ pin has an on-chip pull-down resistor. This resistor is disconnected when the OCDM0 flag is cleared to 0.	p. 770								
	Soft		Cautions (DUC)	If a reset signal is input (from the target system or a reset signal from an internal reset source) during RUN (program execution), the break function may malfunction.	p. 771								
				Even if the reset signal is masked by the mask function, the I/O buffer (port pin) may be reset if a reset signal is input from a pin.	p. 771								
				Because a software breakpoint set in the internal flash memory is made temporarily invalid by target reset or internal reset generated by watchdog timer 2. The breakpoint becomes valid again when a hardware break or forced break occurs, but a software break does not occur until then.	p. 771								
												Pin reset during a break is masked and the CPU and peripheral I/O are not reset. If pin reset or internal reset is generated as soon as the flash memory is rewritten by DMM or read by the RAM monitor function while the user program is being executed, the CPU and peripheral I/O may not be correctly reset.	p. 771
				 When the following conditions (a) and (b) are satisfied and operation is stopped on the emulator (IECUBE, MINICUBE) due to a break, etc., watchdog timer 2 does not stop and a reset or non-maskable interrupt occurs. When a reset occurs, the debugger hangs up. (a) The main clock or subclock is used as the source clock for watchdog timer 2. (b) The internal oscillation clock is stopped (RCM.RSTOP bit = 1). To avoid this, perform either of the following. When an emulator is used, use the internal oscillation clock as the source clock. When an emulator is used, do not stop the internal oscillator. 	p. 772								
				 When the following conditions (a) and (b) are satisfied and operation is stopped on the emulator (IECUBE, MINICUBE) due to a break, etc., TMM does not stop even if the peripheral break function is set to "Break". (a) Either the INTWT, internal oscillation clock (fr/8), or subclock are selected as the TMM source clock. (b) The main clock is stopped. To avoid this, perform either of the following. When an emulator is used, the main clock (fxx, fxx/2, fxx/4, fxx/64, fxx/512) is used as the source clock. When an emulator is used, disable the main clock oscillation. 	p. 772								

			1		(34/36	<u> </u>	
Chapter	Classification	Function	Details of Function	Cautions	Page		
27	Soft Hard	On-chip	Cautions (DUC)	In the on-chip debug mode, the DDO pin is forcibly set to the high-level output.	p. 772 🛛		
Chapter 27		debug function	Cautions (other than DUC)	Do not mount a device that was used for debugging on a mass-produced product, because the flash memory was rewritten during debugging and the number of rewrites of the flash memory cannot be guaranteed. Moreover, do not embed the debug monitor program into mass-produced products.	p. 781 🛛		
					 Forced breaks cannot be executed if one of the following conditions is satisfied. Interrupts are disabled (DI) Interrupts issued for the serial interface, which is used for communication between MINICUBE2 and the target device, are masked Standby mode is entered while standby release by a maskable interrupt is prohibited Mode for communication between MINICUBE2 and the target device is UARTA0, and the main clock has been stopped 	p. 781	
				 The pseudo RRM function and DMM function do not operate if one of the following conditions is satisfied. Interrupts are disabled (DI) Interrupts issued for the serial interface, which is used for communication between MINICUBE2 and the target device, are masked Standby mode is entered while standby release by a maskable interrupt is prohibited Mode for communication between MINICUBE2 and the target device is UARTA0, and the main clock has been stopped Mode for communication between MINICUBE2 and the target device is UARTA0, and a clock different from the one specified in the debugger is used for communication 	p. 782 [
				 The standby mode is released by the pseudo RRM function and DMM function if one of the following conditions is satisfied. Mode for communication between MINICUBE2 and the target device is CSIB0 or CSIB3 Mode for communication between MINICUBE2 and the target device is UARTA0, and the main clock has been supplied. 	p. 782 🗌		
				Peripheral I/O registers that requires a specific sequence cannot be written with the DMM function.	p. 782 🗌	ב	
				Chip erase and writing of the monitor program for debugging are conducted when the debugger is first started up, but this operation takes about a dozen seconds.	p. 782 🗌	ב	
					p. 782 🛛	ב	
					If a space where the debug monitor program is allocated is rewritten by flash self programming, the debugger can no longer operate normally.	p. 782 🗌	ב
			Security ID	After the flash memory is erased, 1 is written to the entire area.	р. 783 🛛	ב	
ter 28	Hard	Electrical specifica-		Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.	p. 786 🛛	ב	
Chapter 28		tions	ratings	Do not directly connect the output (or I/O) pins of IC products to each other, or to V_{DD} , V_{CC} , and GND. Open-drain pins or open-collector pins, however, can be directly connected to each other. Direct connection of the output pins between an IC product and an external circuit is possible, if the output pins can be set to the high-impedance state and the output timing of the external circuit is designed to avoid output conflict.	p. 787 🛛		

	c					5/36)
Chapter	Classification	Function	Details of Function	Cautions	Ρα	je
Chapter 28	Hard	Electrical specifica- tions	Main clock oscillator characteristics	Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.	p. 787	· 🗆
				The oscillation frequency shown above indicates only oscillator characteristics. Use the V850ES/JG2 so that the internal operation conditions do not exceed the ratings shown in AC Characteristics and DC Characteristics.	p. 789	
				Time required to set up the flash memory. Secure the setup time using the OSTS register.	p. 789	
				 When using the main clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance. Keep the wiring length as short as possible. Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows. Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows. Do not fetch signals from the oscillator. 	p. 789	
	Soft			When the main clock is stopped and the device is operating on the subclock, wait until the oscillation stabilization time has been secured by the program before switching back to the main clock.	p. 789	
	Hard		Crystal resonator Ceramic resonator	This oscillator constant is a reference value based on evaluation under a specific environment by the resonator manufacturer. If optimization of oscillator characteristics is necessary in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit. The oscillation voltage and oscillation frequency indicate only oscillator characteristics. Use the V850ES/JG2 so that the internal operating conditions are within the specifications of the DC and AC characteristics.	p. 790	
			Subclock oscillator characteristics	The oscillation frequency shown above indicates only oscillator characteristics. Use the V850ES/JG2 so that the internal operation conditions do not exceed the ratings shown in AC Characteristics and DC Characteristics.	p. 791	
				 When using the subclock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance. Keep the wiring length as short as possible. Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows. Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows. Do not fetch signals from the oscillator. 	p. 791	

			l .	1	(36	6/36)			
Chapter	Classification	Function	Details of Function	Cautions	Ρας	le			
Chapter 28	Hard	Electrical specifica- tions	Subclock oscillator characteristics	The subclock oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the main clock oscillator. Particular care is therefore required with the wiring method when the subclock is used.	p. 791				
				For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.	p. 791				
			Data retention characteristics	Shifting to STOP mode and restoring from STOP mode must be performed within the rated operating range.	p. 796				
					AC characteristics	If the load capacitance exceeds 50 pF due to the circuit configuration, bring the load capacitance of the device to 50 pF or less by inserting a buffer or by some other means.	p. 797		
	Soft		I ² C bus mode	At the start condition, the first clock pulse is generated after the hold time.	p. 815				
	S			The system requires a minimum of 300 ns hold time internally for the SDA0n signal (at VIHmin. of SCL0n signal) in order to occupy the undefined area at the falling edge of SCL0n.	p. 815				
				If the system does not extend the SCL0n signal low hold time (t_{LOW}), only the maximum data hold time ($t_{HD:DAT}$) needs to be satisfied.	p. 815				
				 The high-speed mode l²C bus can be used in the normal-mode l²C bus system. In this case, set the high-speed mode l²C bus so that it meets the following conditions. If the system does not extend the SCL0n signal's low state hold time: tsu:DAT ≥ 250 ns I If the system extends the SCL0n signal's low state hold time: Transmit the following data bit to the SDA0n line prior to the SCL0n line release (tRmax. + tsu:DAT = 1,000 + 250 = 1,250 ns: Normal mode l²C bus specification). 	p. 815				
			A/D converter	Do not set (read/write) alternate-function ports during A/D conversion; otherwise the conversion resolution may be degraded.	p. 816				
							Programming characteristics	When writing initially to shipped products, it is counted as one rewrite for both "erase to write" and "write only". Example (P: Write, E: Erase) Shipped product $\longrightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: 3 rewrites Shipped product $\rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: 3 rewrites	p. 820
Chapter 30	Hard	Recom- mended soldering conditions	Recommended soldering conditions	Do not use different soldering methods together (except for partial heating).	p. 823				
Appendix A	Soft	Develop- ment tool	RX850, RX850 Pro	To purchase the RX850 or RX850 Pro, first fill in the purchase application form and sign the license agreement.	p. 833				
Appendix C	Soft	Instruction set list	Instruction set	Do not specify the same register for general-purpose registers reg1 and reg3.	p. 854				

E.1 Major Revisions in This Edition

Page	Description
p. 217	Modification of 7.4 (3) TMPn I/O control register 0 (TPnIOC0)
p. 239	Addition of Caution to Figure 7-11 Register Setting for Operation in External Event Count Mode
p. 260	Addition of Caution to Figure 7-22 Setting of Registers in One-Shot Pulse Output Mode
p. 305	Addition of Note to 8.4 (3) TMQ0 I/O control register 0 (TQ0IOC0)
p. 330	Addition of Caution to Figure 8-11 Register Setting for Operation in External Event Count Mode
p. 354	Addition of Caution to Figure 8-22 Register Setting in One-Shot Pulse Output Mode
p. 418	Modification of Caution 4 in 11.3 (1) Watchdog timer mode register 2 (WDTM2)
p. 420	Modification of Caution 3 in 11.3 (2) Watchdog timer enable register (WDTE)
p. 435	Addition of Caution 2 to Table 13-2 Conversion Time Selection in Normal Conversion Mode (ADA0HS1 Bit = 0)
p. 436	Addition of Caution 2 to Table 13-3 Conversion Time Selection in High-Speed Conversion Mode (ADA0HS1 Bit = 1)
p. 458	Addition of description to 13.6 (8) Reading ADA0CRn register
p. 459	Modification of description to 13.6 (10) High-speed conversion mode
p. 459	Addition of 13.6 (11) A/D conversion time
p. 476	Modification of description on UAnDIR and UAnCL bits in 15.4 (1) UARTAn control register 0 (UAnCTL0)
p. 477	Modification of description on UAnSRF bit in 15.4 (4) UARTAn option control register 0 (UAnOPT0)
p. 481	Modification of description in 15.5 (1) Reception complete interrupt request signal (INTUAnR)
p. 487	Addition of Cautions 1 and 2 to 15.6.4 SBF reception
p. 510	Modification of Caution in 16.4 (1) CSIBn control register 0 (CBnCTL0)
p. 517	Addition of 16.5 Interrupt Request Signals
pp. 518 to 550	Modification of 16.6 Operation
p. 614	Modification of Table 17-6 Wait Periods
p. 617	Modification of Table 17-7 Wait Periods
p. 641	Modification of Note in 18.3 (6) DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3)
p. 655	Modification of 18.13 (11) DMA start factor
p. 697	Addition of Caution 3 to 21.2 (1) Power save control register (PSC)
p. 743	Modification of Table 26-2 Basic Functions
p. 743	Modification of Table 26-3 Security Functions
p. 744	Addition of Table 26-4 Security Setting
p. 746	Modification of transfer rate in 26.4.2 (1) UARTA0
p. 756	Modification of Table 26-7 Flash Memory Control Commands
p. 763	Modification of Figure 26-18 Standard Self Programming Flow
p. 766	Modification of CHAPTER 27 ON-CHIP DEBUG FUNCTION
p. 790	Addition of (i) KYOCERA KINSEKI CORPORATION: Crystal resonator (T _A = -40 to +85°C)
p. 790	Addition of (ii) Murata Mfg. Co. Ltd.: Ceramic resonator (T _A = -40 to +85°C)
p. 823	Addition of CHAPTER 30 RECOMMENDED SOLDERING CONDITIONS
p. 824	Addition of APPENDIX A DEVELOPMENT TOOLS
p. 855	Addition of APPENDIX D LIST OF CAUTIONS
p. 891	Addition of APPENDIX E REVISION HISTORY

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc.

2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782 http://www.am.necel.com/ [Europe]

NEC Electronics (Europe) GmbH Arcadiastrasse 10

40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

Hanover Office

Podbielskistrasse 166 B 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office

Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office

Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française

9, rue Paul Dautier, B.P. 52 78142 Velizy-Villacoublay Cédex France Tel: 01-3067-5800

Sucursal en España

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial

Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana

Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Steijgerweg 6 5616 HS Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd

7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: 010-8235-1155 http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.

Room 2511-2512, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai P.R. China P.C:200120 Tel: 021-5888-5400 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

12/F., Cityplaza 4, 12 Taikoo Wan Road, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-8175-9600 http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737 http://www.kr.necel.com/

G06.11A