

NPN SILICON TRANSISTOR

NE680M03

FEATURES

NEW M03 PACKAGE:

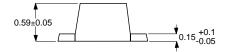
- Smallest transistor outline package available
- Low profile/0.59 mm package height
- Flat lead style for better RF performance

HIGH GAIN BANDWIDTH PRODUCT:

fT = 8 GHz

• LOW NOISE FIGURE:


NF = 1.9 dB at 2 GHz


DESCRIPTION

The NE680M03 transistor is designed for low noise, high gain, and low cost applications. This high fT part is ideal for low voltage/low current applications. NEC's new low profile/flat lead style "M03" package is ideal for today's portable wireless applications. The NE680 is also available in chip, Micro-x, and six different low cost plastic surface mount package styles.

OUTLINE DIMENSIONS (Units in mm)

PACKAGE OUTLINE M03

Note:

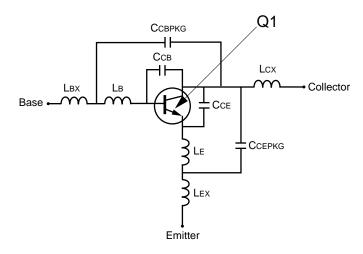
This dimension was changed effective 04/2000 from 1.4 mm to 1.2 mm. Products with "04" or a higher number indicated for month of manufacture in lot numbers have the new dimension.

PIN CONNECTIONS

- 1. Emitter
- 2. Base
- 3. Collector

Example of Lot No. Identification

ELECTRICAL CHARACTERISTICS (TA = 25°C)


PART NUMBER EIAJ¹ REGISTERED NUMBER PACKAGE OUTLINE		NE680M03 2SC5434 M03			
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
fτ	Gain Bandwidth at VcE = 3 V, Ic = 5 mA, f = 2 GHz	GHz	5.5	8.0	
NF	Noise Figure at VcE = 3 V, Ic = 6 mA, f = 2 GHz	dB		1.9	3.2
S21E ²	Insertion Power Gain at VcE = 3 V, Ic = 5 mA, f = 2 GHz	dB	5.5	7.5	
hFE ²	Forward Current Gain at VcE = 3 V, Ic = 5 mA		80		145
Ісво	Collector Cutoff Current at VcB = 10 V, IE = 0	μΑ			1.0
ІЕВО	Emitter Cutoff Current at VEB = 1 V, IC = 0	μΑ			1.0
CRE ³	Feedback Capacitance at VcB = 3 V, IE = 0, f = 1 MHz	pF		0.3	0.7

Notes:

- 1. Electronic Industrial Association of Japan.
- 2. Pulsed measurement, pulse width \leq 350 μ s, duty cycle \leq 2 %.
- 3. Capacitance is measured with emitter and case connected to the guard terminal at the bridge.

NONLINEAR MODEL

SCHEMATIC

BJT NONLINEAR MODEL PARAMETERS (1)

Parameters	Q1	Parameters	Q1
IS	5.98e-16	MJC	0.15
BF	179	XCJC	1
NF	1.04	CJS	0
VAF	17	VJS	0.75
IKF	0.02	MJS	0
ISE	1.0e-6	FC	0.5
NE	30	TF	8.7e-12
BR	16	XTF	20
NR	1.04	VTF	0.3
VAR	100	ITF	0.04
IKR	6.85e-3	PTF	120
ISC	1.5e-9	TR	0.635e-9
NC	20	EG	1.11
RE	0.50	XTB	0
RB	8.54	XTI	3
RBM	2	KF	0
IRB	4e-4	AF	1
RC	10		
CJE	0.358e-12		
VJE	0.86		
MJE	0.5		
CJC	0.162e-12		
VJC	0.52		

(1) Gummel-Poon Model

UNITS

Parameter	Units
time	seconds
capacitance	farads
inductance	henries
resistance	ohms
voltage	volts
current	amps

ADDITIONAL PARAMETERS

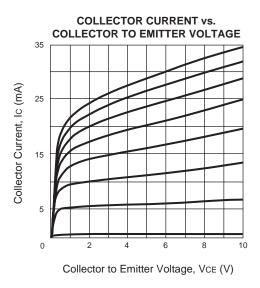
Parameters	680M03
Ссв	0.08e-12
CCE	0.08e-12
Lв	0.4e-9
LE	0.8e-9
Ссвркс	0.08e-12
Ссеркс	0.08e-12
LBX	0.12e-9
Lcx	0.10e-9
LEX	0.12e-9

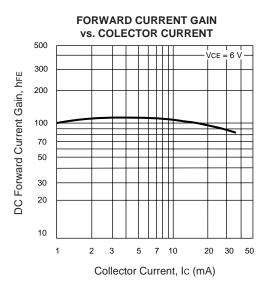
MODEL RANGE

Frequency: 0.1 to 3.0 GHz

Bias: VCE = 0.5 V to 6 V, IC = 0.5 mA to 15 mA

Date: 11/98


ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C)


SYMBOLS	PARAMETERS	UNITS	RATINGS		
Vсво	Collector to Base Voltage	V	20		
VCEO	Collector to Emitter Voltage	V	10		
VEBO	Emitter to Base Voltage	V	1.5		
Ic	Collector Current	mA	35		
Рт	Total Power Dissipation	mW	125		
TJ	Junction Temperature	°C	150		
Tstg	Storage Temperature	°C	-65 to +150		

Note:

 Operation in excess of any one of these parameters may result in permanent damage.

TYPICAL PERFORMANCE CURVES (TA = 25°C)

Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.