
WWW.MOTOROLA.COM/SEMICONDUCTORS

M68HC08
Microcontrollers

CPU08RM/AD
Rev. 3, 2/2001

CPU08
Central Processor Unit

Reference Manual

blank

CPU08
Central Processor Unit
Reference Manual

Motorola reserves the right to make changes without further notice to any products
herein. Motorola makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Motorola assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. "Typical" parameters which may be provided in Motorola data sheets and/or
specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including "Typicals" must be validated for
each customer application by customer’s technical experts. Motorola does not convey
any license under its patent rights nor the rights of others. Motorola products are not
designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized use, even if such claim
alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Motorola and are registered trademarks of Motorola, Inc.
DigitalDNA is a trademark of Motorola, Inc. © Motorola, Inc., 2001
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA 3

Reference Manual
Reference Manual CPU08 — Rev. 3.0

4 MOTOROLA

Reference Manual — CPU08

List of Sections
Section 1. General Description .19

Section 2. Architecture .23

Section 3. Resets and Interrupts37

Section 4. Addressing Modes .55

Section 5. Instruction Set .89

Section 6. Instruction Set Examples 189

Glossary . 223

Index . 237
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA List of Sections 5

List of Sections
Reference Manual CPU08 — Rev. 3.0

6 List of Sections MOTOROLA

Reference Manual — CPU08

Table of Contents
Section 1. General Description

1.1 Contents .19

1.2 Introduction .19

1.3 Features .20

1.4 Programming Model .20

1.5 Memory Space .21

1.6 Addressing Modes .21

1.7 Arithmetic Instructions .22

1.8 Binary-Coded Decimal (BCD) Arithmetic Support 22

1.9 High-Level Language Support .22

1.10 Low-Power Modes .22

Section 2. Architecture

2.1 Contents .23

2.2 Introduction .23

2.3 CPU08 Registers .24
2.3.1 Accumulator .25
2.3.2 Index Register .25
2.3.3 Stack Pointer .26
2.3.4 Program Counter. .27
2.3.5 Condition Code Register .28
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Table of Contents 7

Table of Contents
2.4 CPU08 Functional Description. .30
2.4.1 Internal Timing .31
2.4.2 Control Unit .32
2.4.3 Execution Unit .33
2.4.4 Instruction Execution .33

Section 3. Resets and Interrupts

3.1 Contents .37

3.2 Introduction .38

3.3 Elements of Reset and Interrupt Processing 39
3.3.1 Recognition .39
3.3.2 Stacking .40
3.3.3 Arbitration .41
3.3.4 Masking .43
3.3.5 Returning to Calling Program .45

3.4 Reset Processing .46
3.4.1 Initial Conditions Established .47
3.4.2 CPU .47
3.4.3 Operating Mode Selection .47
3.4.4 Reset Sources .48
3.4.5 External Reset .49
3.4.6 Active Reset from an Internal Source.49

3.5 Interrupt Processing .49
3.5.1 Interrupt Sources and Priority. .51
3.5.2 Interrupts in Stop and Wait Modes .52
3.5.3 Nesting of Multiple Interrupts .52
3.5.4 Allocating Scratch Space on the Stack 53
Reference Manual CPU08 — Rev. 3.0

8 Table of Contents MOTOROLA

Table of Contents
Section 4. Addressing Modes

4.2 Introduction .55

4.3 Addressing Modes .56
4.3.1 Inherent .57
4.3.2 Immediate .59
4.3.3 Direct .61
4.3.4 Extended .63
4.3.5 Indexed, No Offset .65
4.3.6 Indexed, 8-Bit Offset. .65
4.3.7 Indexed, 16-Bit Offset. .66
4.3.8 Stack Pointer, 8-Bit Offset .68
4.3.9 Stack Pointer, 16-Bit Offset .68
4.3.10 Relative .71
4.3.11 Memory-to-Memory Immediate to Direct 73
4.3.12 Memory-to-Memory Direct to Direct73
4.3.13 Memory-to-Memory Indexed to Direct

with Post Increment. .74
4.3.14 Memory-to-Memory Direct to Indexed

with Post Increment. .76
4.3.15 Indexed with Post Increment .77
4.3.16 Indexed, 8-Bit Offset with Post Increment 78

4.4 Instruction Set Summary .79

4.5 Opcode Map .87

Section 5. Instruction Set

5.1 Contents .89

5.2 Introduction .92

5.3 Nomenclature .92

5.4 Convention Definitions .96
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Table of Contents 9

Table of Contents
5.5 Instruction Set. .96
ADC Add with Carry . 97
ADD Add without Carry . 98
AIS Add Immediate Value (Signed)

to Stack Pointer . 99
AIX Add Immediate Value (Signed)

to Index Register . 100
AND Logical AND . 101
ASL Arithmetic Shift Left . 102
ASR Arithmetic Shift Right . 103
BCC Branch if Carry Bit Clear 104
BCLR n Clear Bit n in Memory . 105
BCS Branch if Carry Bit Set . 106
BEQ Branch if Equal . 107
BGE Branch if Greater Than or Equal To 108
BGT Branch if Greater Than . 109
BHCC Branch if Half Carry Bit Clear 110
BHCS Branch if Half Carry Bit Set 111
BHI Branch if Higher. 112
BHS Branch if Higher or Same 113
BIH Branch if IRQ Pin High . 114
BIL Branch if IRQ Pin Low . 115
BIT Bit Test . 116
BLE Branch if Less Than or Equal To. 117
BLO Branch if Lower . 118
BLS Branch if Lower or Same. 119
BLT Branch if Less Than . 120
BMC Branch if Interrupt Mask Clear. 121
BMI Branch if Minus . 122
BMS Branch if Interrupt Mask Set 123
BNE Branch if Not Equal . 124
BPL Branch if Plus . 125
BRA Branch Always. 126
BRA Branch Always. 127
BRCLR n Branch if Bit n in Memory Clear. 128
BRN Branch Never . 129
BRSET n Branch if Bit n in Memory Set 130
BSET n Set Bit n in Memory . 131
Reference Manual CPU08 — Rev. 3.0

10 Table of Contents MOTOROLA

Table of Contents
BSR Branch to Subroutine. 132
CBEQ Compare and Branch if Equal 133
CLC Clear Carry Bit . 134
CLI Clear Interrupt Mask Bit. 135
CLR Clear . 136
CMP Compare Accumulator with Memory 137
COM Complement (One’s Complement) 138
CPHX Compare Index Register with Memory 139
CPX Compare X (Index Register Low)

with Memory . 140
DAA Decimal Adjust Accumulator 141
DBNZ Decrement and Branch if Not Zero 143
DEC Decrement. 144
DIV Divide . 145
EOR Exclusive-OR Memory with Accumulator 146
INC Increment . 147
JMP Jump . 148
JSR Jump to Subroutine . 149
LDA Load Accumulator from Memory 150
LDHX Load Index Register from Memory 151
LDX Load X (Index Register Low) from Memory. 152
LSL Logical Shift Left . 153
LSR Logical Shift Right . 154
MOV Move . 155
MUL Unsigned Multiply . 156
NEG Negate (Two’s Complement). 157
NOP No Operation . 158
NSA Nibble Swap Accumulator 159
ORA Inclusive-OR Accumulator and Memory 160
PSHA Push Accumulator onto Stack 161
PSHH Push H (Index Register High) onto Stack 162
PSHX Push X (Index Register Low) onto Stack 163
PULA Pull Accumulator from Stack 164
PULH Pull H (Index Register High) from Stack 165
PULX Pull X (Index Register Low) from Stack. 166
ROL Rotate Left through Carry 167
ROR Rotate Right through Carry 168
RSP Reset Stack Pointer. 169
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Table of Contents 11

Table of Contents
RTI Return from Interrupt . 170
RTS Return from Subroutine . 171
SBC Subtract with Carry . 172
SEC Set Carry Bit . 173
SEI Set Interrupt Mask Bit . 174
STA Store Accumulator in Memory 175
STHX Store Index Register . 176
STOP Enable IRQ Pin, Stop Oscillator 177
STX Store X (Index Register Low) in Memory 178
SUB Subtract . 179
SWI Software Interrupt . 180
TAP Transfer Accumulator to Processor

Status Byte . 181
TAX Transfer Accumulator to X

(Index Register Low) 182
TPA Transfer Processor Status Byte

to Accumulator . 183
TST Test for Negative or Zero 184
TSX Transfer Stack Pointer to Index Register 185
TXA Transfer X (Index Register Low)

to Accumulator . 186
TXS Transfer Index Register to Stack Pointer 187
WAIT Enable Interrupts; Stop Processor 188

Section 6. Instruction Set Examples

6.1 Contents .189

6.2 Introduction .190

6.3 M68HC08 Unique Instructions .190

6.4 Code Examples .191
AIS Add Immediate Value (Signed)

to Stack Pointer . 192
AIX Add Immediate Value (Signed)

to Index Register . 194
BGE Branch if Greater Than or Equal To 195
BGT Branch if Greater Than . 196
Reference Manual CPU08 — Rev. 3.0

12 Table of Contents MOTOROLA

Table of Contents
BLE Branch if Less Than or Equal To. 197
BLT Branch if Less Than . 198
CBEQ Compare and Branch if Equal 199
CBEQA Compare A with Immediate 200
CBEQX Compare X with Immediate 201
CLRH Clear H (Index Register High) 202
CPHX Compare Index Register with Memory 203
DAA Decimal Adjust Accumulator 204
DBNZ Decrement and Branch if Not Zero 205
DIV Divide . 206
LDHX Load Index Register with Memory 209
MOV Move . 210
NSA Nibble Swap Accumulator 211
PSHA Push Accumulator onto Stack 212
PSHH Push H (Index Register High) onto Stack 213
PSHX Push X (Index Register Low) onto Stack. 214
PULA Pull Accumulator from Stack 215
PULH Pull H (Index Register High) from Stack 216
PULX Pull X (Index Register Low) from Stack. 217
STHX Store Index Register . 218
TAP Transfer Accumulator

to Condition Code Register 219
TPA Transfer Condition Code Register

to Accumulator . 220
TSX Transfer Stack Pointer to Index Register 221
TXS Transfer Index Register to Stack Pointer 222

Glossary

Glossary .223

Index

Index . 237
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Table of Contents 13

Table of Contents
Reference Manual CPU08 — Rev. 3.0

14 Table of Contents MOTOROLA

Reference Manual — CPU08

List of Figures
Figure Title Page

2-1 CPU08 Programming Model. .24
2-2 Accumulator (A) .25
2-3 Index Register (H:X) .25
2-4 Stack Pointer (SP) .26
2-5 Program Counter (PC) .27
2-6 Condition Code Register (CCR) .28
2-7 CPU08 Block Diagram .30
2-8 Internal Timing Detail .31
2-9 Control Unit Timing .33
2-10 Instruction Boundaries .34
2-11 Instruction Execution Timing Diagram35

3-1 Interrupt Stack Frame. .40
3-2 H Register Storage .41
3-3 Interrupt Processing Flow and Timing 42
3-4 Interrupt Recognition Example 1 .43
3-5 Interrupt Recognition Example 2 .44
3-6 Interrupt Recognition Example 3 .44
3-7 Exiting Reset. .46
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA List of Figures 15

List of Figures
Reference Manual CPU08 — Rev. 3.0

16 List of Figures MOTOROLA

Reference Manual — CPU08

List of Tables
Table Title Page

3-1 Mode Selection .48
3-2 M68HC08 Vectors .51

4-1 Inherent Addressing Instructions .58
4-2 Immediate Addressing Instructions. .60
4-3 Direct Addressing Instructions .62
4-4 Extended Addressing Instructions .64
4-5 Indexed Addressing Instructions. .67
4-6 Stack Pointer Addressing Instructions 70
4-7 Relative Addressing Instructions .72
4-8 Memory-to-Memory Move Instructions77
4-9 Indexed and Indexed, 8-Bit Offset

with Post Increment Instructions .78
4-10 Instruction Set Summary .79
4-11 Opcode Map .88

5-1 Branch Instruction Summary .127
5-2 DAA Function Summary .142
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA List of Tables 17

List of Tables
Reference Manual CPU08 — Rev. 3.0

18 List of Tables MOTOROLA

Reference Manual — CPU08

Section 1. General Description
1.1 Contents

1.2 Introduction .19

1.3 Features .20

1.4 Programming Model .20

1.5 Memory Space .21

1.6 Addressing Modes .21

1.7 Arithmetic Instructions .22

1.8 Binary-Coded Decimal (BCD) Arithmetic Support 22

1.9 High-Level Language Support .22

1.10 Low-Power Modes .22

1.2 Introduction

The CPU08 is the central processor unit (CPU) of the Motorola
M68HC08 Family of microcontroller units (MCU). The fully object code
compatible CPU08 offers M68HC05 users increased performance with
no loss of time or software investment in their M68HC05-based
applications. The CPU08 also appeals to users of other MCU
architectures who need the CPU08 combination of speed, low power,
processing capabilities, and cost effectiveness.
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA General Description 19

General Description
1.3 Features

CPU08 features include:

• Full object-code compatibility with M68HC05 Family

• 16-bit stack pointer with stack manipulation instructions

• 16-bit index register (H:X) with high-byte and low-byte
manipulation instructions

• 8-MHz CPU standard bus frequency

• 64-Kbyte program/data memory space

• 16 addressing modes

• 78 new opcodes

• Memory-to-memory data moves without using accumulator

• Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions

• Enhanced binary-coded decimal (BCD) data handling

• Expandable internal bus definition for extension of addressing
range beyond 64 Kbytes

• Flexible internal bus definition to accommodate CPU
performance-enhancing peripherals such as a direct memory
access (DMA) controller

• Low-power stop and wait modes

1.4 Programming Model

The CPU08 programming model consists of:

• 8-bit accumulator

• 16-bit index register

• 16-bit stack pointer

• 16-bit program counter

• 8-bit condition code register

See Figure 2-1. CPU08 Programming Model.
Reference Manual CPU08 — Rev. 3.0

20 General Description MOTOROLA

General Description
Memory Space
1.5 Memory Space

Program memory space and data memory space are contiguous over a
64-Kbyte addressing range. Addition of a page-switching peripheral
allows extension of the addressing range beyond 64 Kbytes.

1.6 Addressing Modes

The CPU08 has a total of 16 addressing modes:

• Inherent

• Immediate

• Direct

• Extended

• Indexed

– No offset

– No offset, post increment

– 8-bit offset

– 8-bit offset, post increment

– 16-bit offset

• Stack pointer

– 8-bit offset

– 16-bit offset

• Relative

• Memory-to-memory (four modes)

Refer to Section 4. Addressing Modes for a detailed description of the
CPU08 addressing modes.
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA General Description 21

General Description
1.7 Arithmetic Instructions

The CPU08 arithmetic functions include:

• Addition with and without carry

• Subtraction with and without carry

• A fast 16-bit by 8-bit unsigned division

• A fast 8-bit by 8-bit unsigned multiply

1.8 Binary-Coded Decimal (BCD) Arithmetic Support

To support binary-coded decimal (BCD) arithmetic applications, the
CPU08 has a decimal adjust accumulator (DAA) instruction and a nibble
swap accumulator (NSA) instruction.

1.9 High-Level Language Support

The 16-bit index register, 16-bit stack pointer, 8-bit signed branch
instructions, and associated instructions are designed to support the
efficient use of high-level language (HLL) compilers with the CPU08.

1.10 Low-Power Modes

The WAIT and STOP instructions reduce the power consumption of the
CPU08-based MCU. The WAIT instruction stops only the CPU clock and
therefore uses more power than the STOP instruction, which stops both
the CPU clock and the peripheral clocks. In most modules, clocks can
be shut off in wait mode.
Reference Manual CPU08 — Rev. 3.0

22 General Description MOTOROLA

Reference Manual — CPU08

Section 2. Architecture
2.1 Contents

2.2 Introduction .23

2.3 CPU08 Registers .24
2.3.1 Accumulator .25
2.3.2 Index Register .25
2.3.3 Stack Pointer .26
2.3.4 Program Counter. .27
2.3.5 Condition Code Register .28

2.4 CPU08 Functional Description. .30
2.4.1 Internal Timing .31
2.4.2 Control Unit .32
2.4.3 Execution Unit .33
2.4.4 Instruction Execution .33

2.2 Introduction

This section describes the CPU08 registers.
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Architecture 23

Architecture
2.3 CPU08 Registers

Figure 2-1 shows the five CPU08 registers. The CPU08 registers are
not part of the memory map.

7 0

A ACCUMULATOR (A)

15 8 7 0

H X INDEX REGISTER (H:X)

15 0

STACK POINTER (SP)

15 0

PROGRAM COUNTER (PC)

7 0
CONDITION CODE
REGISTER (CCR)V 1 1 H I N Z C

CARRY/BORROW FLAG (C)
TWO’S COMPLEMENT OVERFLOW

FLAG (V)
ZERO FLAG (Z)

HALF-CARRY FLAG (H)
NEGATIVE FLAG (N)

INTERRUPT MASK (I)

Figure 2-1. CPU08 Programming Model
Reference Manual CPU08 — Rev. 3.0

24 Architecture MOTOROLA

Architecture
CPU08 Registers
2.3.1 Accumulator

The accumulator (A) shown in Figure 2-2 is a general-purpose 8-bit
register. The central processor unit (CPU) uses the accumulator to hold
operands and results of arithmetic and non-arithmetic operations.

2.3.2 Index Register

The 16-bit index register (H:X) shown in Figure 2-3 allows the user to
index or address a 64-Kbyte memory space. The concatenated 16-bit
register is called H:X. The upper byte of the index register is called H.
The lower byte of the index register is called X. H is cleared by reset.
When H = 0 and no instructions that affect H are used, H:X is functionally
identical to the IX register of the M6805 Family.

In the indexed addressing modes, the CPU uses the contents of H:X to
determine the effective address of the operand. H:X can also serve as a
temporary data storage location. See 4.3.5 Indexed, No Offset;
4.3.6 Indexed, 8-Bit Offset; and 4.3.7 Indexed, 16-Bit Offset.

Bit 7 6 5 4 3 2 1 Bit 0

Read:

Write:

Reset: X X X X X X X X

X = Indeterminate

Figure 2-2. Accumulator (A)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0

Read:

Write:

Reset: X X X X X X X X X X X X X X X X

X = Indeterminate

Figure 2-3. Index Register (H:X)
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Architecture 25

Architecture
2.3.3 Stack Pointer

The stack pointer (SP) shown in Figure 2-4 is a 16-bit register that
contains the address of the next location on the stack. During a reset, the
stack pointer is preset to $00FF to provide compatibility with the M6805
Family.

NOTE: The reset stack pointer (RSP) instruction sets the least significant byte
to $FF and does not affect the most significant byte.

The address in the stack pointer decrements as data is pushed onto the
stack and increments as data is pulled from the stack. The SP always
points to the next available (empty) byte on the stack.

The CPU08 has stack pointer 8- and 16-bit offset addressing modes that
allow the stack pointer to be used as an index register to access
temporary variables on the stack. The CPU uses the contents in the SP
register to determine the effective address of the operand. See
4.3.8 Stack Pointer, 8-Bit Offset and 4.3.9 Stack Pointer, 16-Bit
Offset.

NOTE: Although preset to $00FF, the location of the stack is arbitrary and may
be relocated by the user to anywhere that random-access memory
(RAM) resides within the memory map. Moving the SP out of page 0
($0000 to $00FF) will free up address space, which may be accessed
using the efficient direct addressing mode.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0

Read:

Write:

Reset: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Figure 2-4. Stack Pointer (SP)
Reference Manual CPU08 — Rev. 3.0

26 Architecture MOTOROLA

Architecture
CPU08 Registers
2.3.4 Program Counter

The program counter (PC) shown in Figure 2-5 is a 16-bit register that
contains the address of the next instruction or operand to be fetched.

Normally, the address in the program counter automatically increments
to the next sequential memory location every time an instruction or
operand is fetched. Jump, branch, and interrupt operations load the
program counter with an address other than that of the next sequential
location.

During reset, the PC is loaded with the contents of the reset vector
located at $FFFE and $FFFF. This represents the address of the first
instruction to be executed after the reset state is exited.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0

Read:

Write:

Reset: Loaded with vector from $FFFE and $FFFF

Figure 2-5. Program Counter (PC)
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Architecture 27

Architecture
2.3.5 Condition Code Register

The 8-bit condition code register (CCR) shown in Figure 2-6 contains
the interrupt mask and five flags that indicate the results of the instruction
just executed. Bits five and six are permanently set to logic 1.

V — Overflow Flag

The CPU sets the overflow flag when a two's complement overflow
occurs as a result of an operation. The overflow flag bit is utilized by
the signed branch instructions:

Branch if greater than, BGT

Branch if greater than or equal to, BGE

Branch if less than or equal to, BLE

Branch if less than, BLT

This bit is set by these instructions, although its resulting value holds
no meaning:

Arithmetic shift left, ASL

Arithmetic shift right, ASR

Logical shift left, LSL

Logical shift right, LSR

Rotate left through carry, ROL

Rotate right through carry, ROR

H — Half-Carry Flag

The CPU sets the half-carry flag when a carry occurs between bits 3
and 4 of the accumulator during an add-without-carry (ADD) or
add-with-carry (ADC) operation. The half-carry flag is required for

Bit 7 6 5 4 3 2 1 Bit 0

Read:
V 1 1 H I N Z C

Write:

Reset: X 1 1 X 1 X X X

X = Indeterminate

Figure 2-6. Condition Code Register (CCR)
Reference Manual CPU08 — Rev. 3.0

28 Architecture MOTOROLA

Architecture
CPU08 Registers
binary-coded (BCD) arithmetic operations. The decimal adjust
accumulator (DAA) instruction uses the state of the H and C flags to
determine the appropriate correction factor.

I — Interrupt Mask

When the interrupt mask is set, all interrupts are disabled. Interrupts
are enabled when the interrupt mask is cleared. When an interrupt
occurs, the interrupt mask is automatically set after the CPU registers
are saved on the stack, but before the interrupt vector is fetched.

NOTE: To maintain M6805 compatibility, the H register is not stacked
automatically. If the interrupt service routine uses X (and H is not clear),
then the user must stack and unstack H using the push H (index register
high) onto stack (PSHH) and pull H (index register high) from stack
(PULH) instructions within the interrupt service routine.

If an interrupt occurs while the interrupt mask is set, the interrupt is
latched. Interrupts in order of priority are serviced as soon as the I bit
is cleared.

A return-from-interrupt (RTI) instruction pulls the CPU registers from
the stack, restoring the interrupt mask to its cleared state. After any
reset, the interrupt mask is set and can only be cleared by a software
instruction. See Section 3. Resets and Interrupts.

N — Negative Flag

The CPU sets the negative flag when an arithmetic operation, logical
operation, or data manipulation produces a negative result.

Z — Zero Flag

The CPU sets the zero flag when an arithmetic operation, logical
operation, or data manipulation produces a result of $00.

C — Carry/Borrow Flag

The CPU sets the carry/borrow flag when an addition operation
produces a carry out of bit 7 of the accumulator or when a subtraction
operation requires a borrow. Some logical operations and data
manipulation instructions also clear or set the carry/borrow flag (as in
bit test and branch instructions and shifts and rotates).
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Architecture 29

Architecture
2.4 CPU08 Functional Description

This subsection is an overview of the architecture of the M68HC08 CPU
with functional descriptions of the major blocks of the CPU.

The CPU08, as shown in Figure 2-7, is divided into two main blocks:

• Control unit

• Execution unit

The control unit contains a finite state machine along with miscellaneous
control and timing logic. The outputs of this block drive the execution
unit, which contains the arithmetic logic unit (ALU), registers, and bus
interface.

Figure 2-7. CPU08 Block Diagram

CONTROL UNIT

EXECUTION UNIT

INTERNAL
ADDRESS BUS

INTERNAL
DATA BUS

STATUS
SIGNALS

CONTROL
SIGNALS
Reference Manual CPU08 — Rev. 3.0

30 Architecture MOTOROLA

Architecture
CPU08 Functional Description
2.4.1 Internal Timing

The CPU08 derives its timing from a 4-phase clock, each phase
identified as either T1, T2, T3, or T4. A CPU bus cycle consists of one
clock pulse from each phase, as shown in Figure 2-8. To simplify
subsequent diagrams, the T clocks have been combined into a single
signal called the CPU clock. The start of a CPU cycle is defined as the
leading edge of T1, though the address associated with this cycle does
not drive the address bus until T3. Note that the new address leads the
associated data by one-half of a bus cycle.

For example, the data read associated with a new PC value generated
in T1/T2 of cycle 1 in Figure 2-8 would not be read into the control unit
until T2 of the next cycle.

Figure 2-8. Internal Timing Detail

T1 T2 T3 T4 T1 T2 T3 T4CPU CLOCK

INTERNAL
ADDRESS BUS

INTERNAL
DATA BUS DATA CYCLE

ADDR. CYCLE N

EXECUTE
CYCLE N

CYCLE 1 CYCLE 2

T1

T2

T3

T4
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Architecture 31

Architecture
2.4.2 Control Unit

The control unit consists of:

• Sequencer

• Control store

• Random control logic

These blocks make up a finite state machine, which generates all the
controls for the execution unit.

The sequencer provides the next state of the machine to the control store
based on the contents of the instruction register (IR) and the current state
of the machine. The control store is strobed (enabled) when the next state
input is stable, producing an output that represents the decoded next state
condition for the execution unit (EU). This result, with the help of some
random logic, is used to generate the control signals that configure the
execution unit. The random logic selects the appropriate signals and adds
timing to the outputs of the control store. The control unit fires once per bus
cycle but runs almost a full cycle ahead of the execution unit to decode
and generate all the controls for the next cycle. The sequential nature of
the machine is shown in Figure 2-9.

The sequencer also contains and controls the opcode lookahead
register, which is used to prefetch the next sequential instruction. Timing
of this operation is discussed in 2.4.4 Instruction Execution.
Reference Manual CPU08 — Rev. 3.0

32 Architecture MOTOROLA

Architecture
CPU08 Functional Description
Figure 2-9. Control Unit Timing

2.4.3 Execution Unit

The execution unit (EU) contains all the registers, the arithmetic logic
unit (ALU), and the bus interface. Once per bus cycle a new address is
computed by passing selected register values along the internal address
buses to the address buffers. Note that the new address leads the
associated data by one half of a bus cycle. The execution unit also
contains some special function logic for unusual instructions such as
DAA, unsigned multiply (MUL), and divide (DIV).

2.4.4 Instruction Execution

Each instruction has defined execution boundaries and executes in a
finite number of T1-T2-T3-T4 cycles. All instructions are responsible for
fetching the next opcode into the opcode lookahead register at some
time during execution. The opcode lookahead register is copied into the
instruction register during the last cycle of an instruction. This new
instruction begins executing during the T1 clock after it has been loaded
into the instruction register.

T1 T2 T3 T4 T1 T2 T3 T4CPU CLOCK

IR/CONTROL UNIT
STATE INPUT

T1 T2 T3 T4

CONTROL UNIT
STROBE

CONTROL UNIT
 OUTPUT TO

INTERNAL
ADDRESS BUS

INTERNAL
DATA BUS

CYCLE N STATE

CYCLE N STROBE

CYCLE N
EU CONTROL

ADDRESS
CYCLE N

DATA CYCLE N

FETCH/DECODE
CYCLE N

EXECUTE
CYCLE N

EXECUTION UNIT
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Architecture 33

Architecture
Note that all instructions are also responsible for incrementing the PC
after the next instruction prefetch is under way. Therefore, when an
instruction finishes (that is, at an instruction boundary), the PC will be
pointing to the byte following the opcode fetched by the instruction. An
example sequence of instructions concerning address and data bus
activity with respect to instruction boundaries is shown in Figure 2-10.

A signal from the control unit, OPCODE LOOKAHEAD, indicates the
cycle when the next opcode is fetched. Another control signal,
LASTBOX, indicates the last cycle of the currently executing instruction.
In most cases, OPCODE LOOKAHEAD and LASTBOX are active at the
same time. For some instructions, however, the OPCODE
LOOKAHEAD signal is asserted earlier in the instruction and the next
opcode is prefetched and held in the lookahead register until the end of
the currently executing instruction.

In the instruction boundaries example (Figure 2-10) the OPCODE
LOOKAHEAD and LASTBOX are asserted simultaneously during TAX
and increment INCX execution, but the load accumulator from memory
(LDA) indexed with 8-bit offset instruction prefetches the next opcode
before the last cycle. Refer to Figure 2-11. The boldface instructions in
Figure 2-10 are illustrated in Figure 2-11.

ORG $50

FCB $12 $34 $56

ORG $100

0100 A6 50 LDA #$50 ;A = $50 PC=$0103

0102 97 TAX ;A -> X PC=$0104

0103 e6 02 LDA 2,X ;[X+2] -> A PC=$0106

0105 5c INCX ;X = X+1 PC=$0107

0106 c7 80 00 STA $8000 ;A -> $8000 PC=$010A

Figure 2-10. Instruction Boundaries
Reference Manual CPU08 — Rev. 3.0

34 Architecture MOTOROLA

Architecture
CPU08 Functional Description
Figure 2-11. Instruction Execution Timing Diagram

T1 T2 T3 T4 T1 T2 T3 T4CPU CLOCK T1 T2 T3 T4 T1 T2 T3 T4

TAX OPCODE LDA OPCODE INCX OPCODE

TAX
STATE 1 LDA STATE 1 LDA STATE 2 LDA STATE 3 INCX STATE 1

LDA CYCLE
1 STROBE

LDA CYCLE
2 STROBE

LDA CYCLE
3 STROBE

TAX EU CONTROL LDA CYCLE 1
EU CONTROL

LDA CYCLE 2
EU CONTROL

LDA CYCLE 3
EU CONTROL

$0103 $0104 $0105 $0052 $0106

LDA OPCODE
LDA OFFSET FETCH INCX OPCODE PREFETCH LDA OPERAND READ

LDA OPCODE INCX OPCODE

$E6 $02 $5C $56

TAX LDA

OPCODE
LOOKAHEAD

REGISTER

LASTBOX

OPCODE LOOKAHEAD

IR/CONTROL
UNIT STATE

INPUT

CONTROL UNIT
STROBE

CONTROL UNIT
 OUTPUT TO

INTERNAL
ADDRESS BUS

INTERNAL
DATA BUS

INSTRUCTION
EXECUTION

BOUNDARIES

OPCODE LOOKAHEAD/DECODE
LDA INSTRUCTION

OPCODE LOOKAHEAD DECODE INCX
INSTRUCTION

PREFETCH
STA OPCODE
PREFETCH

INCX INSTRUCTION

EXECUTION UNIT
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Architecture 35

Architecture
Reference Manual CPU08 — Rev. 3.0

36 Architecture MOTOROLA

Reference Manual — CPU08

Section 3. Resets and Interrupts
3.1 Contents

3.2 Introduction .38

3.3 Elements of Reset and Interrupt Processing 39
3.3.1 Recognition .39
3.3.2 Stacking .40
3.3.3 Arbitration .41
3.3.4 Masking .43
3.3.5 Returning to Calling Program .45

3.4 Reset Processing .46
3.4.1 Initial Conditions Established .47
3.4.2 CPU .47
3.4.3 Operating Mode Selection .47
3.4.4 Reset Sources .48
3.4.5 External Reset .49
3.4.6 Active Reset from an Internal Source.49

3.5 Interrupt Processing .49
3.5.1 Interrupt Sources and Priority. .51
3.5.2 Interrupts in Stop and Wait Modes .52
3.5.3 Nesting of Multiple Interrupts .52
3.5.4 Allocating Scratch Space on the Stack 53
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Resets and Interrupts 37

Resets and Interrupts
3.2 Introduction

The CPU08 in a microcontroller executes instructions sequentially. In
many applications it is necessary to execute sets of instructions in
response to requests from various peripheral devices. These requests
are often asynchronous to the execution of the main program. Resets
and interrupts are both types of CPU08 exceptions. Entry to the
appropriate service routine is called exception processing.

Reset is required to initialize the device into a known state, including
loading the program counter (PC) with the address of the first instruction.
Reset and interrupt operations share the common concept of vector
fetching to force a new starting point for further CPU08 operations.

Interrupts provide a way to suspend normal program execution
temporarily so that the CPU08 can be freed to service these requests.
The CPU08 can process up to 128 separate interrupt sources including
a software interrupt (SWI).

On-chip peripheral systems generate maskable interrupts that are
recognized only if the global interrupt mask bit (I bit) in the condition code
register is clear (reset is non-maskable). Maskable interrupts are
prioritized according to a default arrangement. (See Table 3-2 and
3.5.1 Interrupt Sources and Priority.) When interrupt conditions occur
in an on-chip peripheral system, an interrupt status flag is set to indicate
the condition. When the user’s program has properly responded to this
interrupt request, the status flag must be cleared.
Reference Manual CPU08 — Rev. 3.0

38 Resets and Interrupts MOTOROLA

Resets and Interrupts
Elements of Reset and Interrupt Processing
3.3 Elements of Reset and Interrupt Processing

Reset and interrupt processing is handled in discrete, though sometimes
concurrent, tasks. It is comprised of interrupt recognition, arbitration
(evaluating interrupt priority), stacking of the machine state, and fetching
of the appropriate vector. Interrupt processing for a reset is comprised of
recognition and a fetch of the reset vector only. These tasks, together
with interrupt masking and returning from a service routine, are
discussed in this subsection.

3.3.1 Recognition

Reset recognition is asynchronous and is recognized when asserted.
Internal resets are asynchronous with instruction execution except for
illegal opcode and illegal address, which are inherently
instruction-synchronized. Exiting the reset state is always synchronous.

All pending interrupts are recognized by the CPU08 during the last cycle
of each instruction. Interrupts that occur during the last cycle will not be
recognized by the CPU08 until the last cycle of the following instruction.
Instruction execution cannot be suspended to service an interrupt, and
so interrupt latency calculations must include the execution time of the
longest instruction that could be encountered.

When an interrupt is recognized, an SWI opcode is forced into the
instruction register in place of what would have been the next instruction.
(When using the CPU08 with the direct memory access (DMA) module,
the DMA can suspend instruction operation to service the peripheral.)

Because of the opcode “lookahead” prefetch mechanism, at instruction
boundaries the program counter (PC) always points to the address of the
next instruction to be executed plus one. The presence of an interrupt is
used to modify the SWI flow such that instead of stacking this PC value,
the PC is decremented before being stacked. After interrupt servicing is
complete, the return-from-interrupt (RTI) instruction will unstack the
adjusted PC and use it to prefetch the next instruction again. After SWI
interrupt servicing is complete, the RTI instruction then fetches the
instruction following the SWI.
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Resets and Interrupts 39

Resets and Interrupts
3.3.2 Stacking

To maintain object code compatibility, the M68HC08 interrupt stack
frame is identical to that of the M6805 Family, as shown in Figure 3-1.
Registers are stacked in the order of PC, X, A, and CCR. They are
unstacked in reverse order. Note that the condition code register (CCR)
I bit (internal mask) is not set until after the CCR is stacked during cycle 6
of the interrupt stacking procedure. The stack pointer always points to
the next available (empty) stack location.

Figure 3-1. Interrupt Stack Frame

CONDITION CODE REGISTER

ACCUMULATOR

INDEX REGISTER (LOW BYTE X)(1)

PROGRAM COUNTER HIGH

 1. High byte (H) of index register is not stacked.

PROGRAM COUNTER LOW

•

•

•

•

•

•

7 0

$00FF (DEFAULT ADDRESS

UNSTACKING
ORDER

STACKING
ORDER

5

4

3

2

1

1

2

3

4

5

ON RESET)
Reference Manual CPU08 — Rev. 3.0

40 Resets and Interrupts MOTOROLA

Resets and Interrupts
Elements of Reset and Interrupt Processing
NOTE: To maintain compatibility with the M6805 Family, H (the high byte of the
index register) is not stacked during interrupt processing. If the interrupt
service routine modifies H or uses the indexed addressing mode, it is
the user’s responsibility to save and restore it prior to returning.
See Figure 3-2.

IRQINT PSHH

|

|Interrupt service routine

|

|

PULH

RTI

Figure 3-2. H Register Storage

3.3.3 Arbitration

All reset sources always have equal and highest priority and cannot be
arbitrated. Interrupts are latched, and arbitration is performed in the
system integration module (SIM) at the start of interrupt processing. The
arbitration result is a constant that the CPU08 uses to determine which
vector to fetch. Once an interrupt is latched by the SIM, no other interrupt
may take precedence, regardless of priority, until the latched interrupt is
serviced (or the I bit is cleared). See Figure 3-3.
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Resets and Interrupts 41

Resets and Interrupts
Figure 3-3. Interrupt Processing Flow and Timing

LAST CYCLE OF
CURRENT INSTRUCTION

(A)

COMPLETE NEXT
INSTRUCTION (B)

FETCH (REDUNDANT)

STACK PCL

STACK PCH

STACK X

STACK A

STACK CCR

FETCH VECTOR
INTERRUPT HIGH BYTE

FETCH VECTOR
INTERRUPT LOW BYTE

FETCH INTERRUPT
SERVICE ROUTINE

FIRST INSTRUCTION

COMPLETE NEXT
INSTRUCTION

FETCH (REDUNDANT)

UNSTACK CCR

UNSTACK A

UNSTACK X

UNSTACK PCH

UNSTACK PCL

FETCH NEXT
INSTRUCTION (B)

FIRST CYCLE OF
NEXT INSTRUCTION (B)

START INTERRUPT
PROCESSING

INTERRUPT
PENDING?

IN
TE

R
RU

PT
 P

RO
C

ES
SI

N
G

RT
I

EX
EC

U
TE

 IN
TE

R
RU

PT

YES

NO

1

NOTE 1

Note 1. Interrupts that occur before this point are recognized.

 S
ER

VI
CE

 R
O

UT
IN

E

BUS CYCLE #

1

2

3

4

5

6

7

BUS CYCLE #

1

2

3

4

5

6

7

8

9

Reference Manual CPU08 — Rev. 3.0

42 Resets and Interrupts MOTOROLA

Resets and Interrupts
Elements of Reset and Interrupt Processing
3.3.4 Masking

Reset is non-maskable. All other interrupts can be enabled or disabled
by the I mask bit in the CCR or by local mask bits in the peripheral control
registers. The I bit may also be modified by execution of the set interrupt
mask bit (SEI), clear interrupt mask bit (CLI), or transfer accumulator to
condition code register (TAP) instructions. The I bit is modified in the first
cycle of each instruction (these are all 2-cycle instructions). The I bit is
also set during interrupt processing (see 3.3.1 Recognition) and is
cleared during the second cycle of the RTI instruction when the CCR is
unstacked, provided that the stacked CCR I bit is not modified at the
interrupt service routine. (See 3.3.5 Returning to Calling Program.)

In all cases where the I bit can be modified, it is modified at least one
cycle prior to the last cycle of the instruction or operation, which
guarantees that the new I-bit state will be effective prior to execution of
the next instruction. For example, if an interrupt is recognized during the
CLI instruction, the load accumulator from memory (LDA) instruction will
not be executed before the interrupt is serviced. See Figure 3-4.

Figure 3-4. Interrupt Recognition Example 1

Background

 CLI

 LDA #$FF

INT1 PSHH
 |
 |
 |
 PULH
 RTI

INT1 Interrupt Service
Routine

Routine
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Resets and Interrupts 43

Resets and Interrupts
If an interrupt is pending upon exit from the original interrupt service
routine, it will also be serviced before the LDA instruction is executed.
Note that the LDA opcode is prefetched by both the INT1 and INT2 RTI
instructions. However, in the case of the INT1 RTI prefetch, this is a
redundant operation. See Figure 3-5.

Figure 3-5. Interrupt Recognition Example 2

Similarly, in Figure 3-6, if an interrupt is recognized during the CLI
instruction, it will be serviced before the SEI instruction sets the I bit in
the CCR.

Figure 3-6. Interrupt Recognition Example 3

 CLI

 LDA #$FF

INT1 PSHH

 |

 |

 PULH
 RTI

INT1 Interrupt Service
Routine

INT2 PSHH

 |

 RTI

INT2 Interrupt Service
Routine

Background
Routine

 PULH
 |

 CLI

INT1 PSHH
 |

 |

 PULH
 RTI

INT1 Interrupt Service
Routine

 SEI
Reference Manual CPU08 — Rev. 3.0

44 Resets and Interrupts MOTOROLA

Resets and Interrupts
Elements of Reset and Interrupt Processing
3.3.5 Returning to Calling Program

When an interrupt has been serviced, the RTI instruction terminates
interrupt processing and returns to the program that was running at the
time of the interrupt. In servicing the interrupt, some or all of the CPU08
registers will have changed. To continue the former program as though
uninterrupted, the registers must be restored to the values present at the
time the former program was interrupted. The RTI instruction takes care
of this by pulling (loading) the saved register values from the stack
memory. The last value to be pulled from the stack is the program
counter, which causes processing to resume at the point where it was
interrupted.

Unstacking the CCR generally clears the I bit, which is cleared during the
second cycle of the RTI instruction.

NOTE: Since the return I bit state comes from the stacked CCR, the user, by
setting the I bit in the stacked CCR, can block all subsequent interrupts
pending or otherwise, regardless of priority, from within an interrupt
service routine.

LDA #$08
ORA 1,SP
STA 1,SP
RTI

This capability can be useful in handling a transient situation where the
interrupt handler detects that the background program is temporarily
unable to cope with the interrupt load and needs some time to recover.
At an appropriate juncture, the background program would reinstate
interrupts after it has recovered.
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Resets and Interrupts 45

Resets and Interrupts
3.4 Reset Processing

Reset forces the microcontroller unit (MCU) to assume a set of initial
conditions and to begin executing instructions from a predetermined
starting address. For the M68HC08 Family, reset assertion is
asynchronous with instruction execution, and so the initial conditions can
be assumed to take effect almost immediately after applying an active
low level to the reset pin, regardless of whether the clock has started.
Internally, reset is a clocked process, and so reset negation is
synchronous with an internal clock, as shown in Figure 3-7, which
shows the internal timing for exiting a pin reset.

Figure 3-7. Exiting Reset

The reset system is able to actively pull down the reset output if
reset-causing conditions are detected by internal systems. This feature
can be used to reset external peripherals or other slave MCU devices.

CPU CLOCK

INTERNAL
ADDRESS BUS

INTERNAL
DATA BUS

RESET PIN

T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

PCH

$FFFF$FFFE

INDETERMINATE

INDETERMINATE

RESET PIN SAMPLING
Reference Manual CPU08 — Rev. 3.0

46 Resets and Interrupts MOTOROLA

Resets and Interrupts
Reset Processing
3.4.1 Initial Conditions Established

Once the reset condition is recognized, internal registers and control bits
are forced to an initial state. These initial states are described throughout
this manual. These initial states in turn control on-chip peripheral
systems to force them to known startup states. Most of the initial
conditions are independent of the operating mode. This subsection
summarizes the initial conditions of the CPU08 and input/output (I/O) as
they leave reset.

3.4.2 CPU

After reset the CPU08 fetches the reset vector from locations $FFFE and
$FFFF (when in monitor mode, the reset vector is fetched from $FEFE
and $FEFF), loads the vector into the PC, and begins executing
instructions. The stack pointer is loaded with $00FF. The H register is
cleared to provide compatibility for existing M6805 object code. All other
CPU08 registers are indeterminate immediately after reset; however, the
I interrupt mask bit in the condition code register is set to mask any
interrupts, and the STOP and WAIT latches are both cleared.

3.4.3 Operating Mode Selection

The CPU08 has two modes of operation useful to the user:

• User mode

• Monitor mode

The monitor mode is the same as user mode except that alternate
vectors are used by forcing address bit A8 to 0 instead of 1. The reset
vector is therefore fetched from addresses $FEFE and FEFF instead of
FFFE and FFFF. This offset allows the CPU08 to execute code from the
internal monitor firmware instead of the user code. (Refer to the
appropriate technical data manual for specific information regarding the
internal monitor description.)
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Resets and Interrupts 47

Resets and Interrupts
The mode of operation is latched on the rising edge of the reset pin. The
monitor mode is selected by connecting two port lines to Vss and
applying an over-voltage of approximately 2 x VDD to the IRQ1 pin
concurrent with the rising edge of reset (see Table 3-1). Port allocation
varies from port to port.

3.4.4 Reset Sources

The system integration module (SIM) has master reset control and may
include, depending on device implementation, any of these typical reset
sources:

• External reset (RESET pin)

• Power-on reset (POR) circuit

• COP watchdog

• Illegal opcode reset

• Illegal address reset

• Low voltage inhibit (LVI) reset

A reset immediately stops execution of the current instruction. All resets
produce the vector $FFFE/$FFFF and assert the internal reset signal.
The internal reset causes all registers to return to their default values and
all modules to return to their reset state.

Table 3-1. Mode Selection

IRQ1 Pin Port x Port y Mode

≤ VDD X X User

2 x VDD 1 0 Monitor
Reference Manual CPU08 — Rev. 3.0

48 Resets and Interrupts MOTOROLA

Resets and Interrupts
Interrupt Processing
3.4.5 External Reset

A logic 0 applied to the RESET pin asserts the internal reset signal,
which halts all processing on the chip. The CPU08 and peripherals are
reset.

3.4.6 Active Reset from an Internal Source

All internal reset sources actively pull down the RESET pin to allow the
resetting of external peripherals. The RESET pin will be pulled down for
16 bus clock cycles; the internal reset signal will continue to be asserted
for an additional 16 cycles after that. If the RESET pin is still low at the
the end of the second 16 cycles, then an external reset has occurred. If
the pin is high, the appropriate bit will be set to indicate the source of the
reset.

The active reset feature allows the part to issue a reset to peripherals
and other chips within a system built around an M68HC08 MCU.

3.5 Interrupt Processing

The group of instructions executed in response to an interrupt is called
an interrupt service routine. These routines are much like subroutines
except that they are called through the automatic hardware interrupt
mechanism rather than by a subroutine call instruction, and all CPU08
registers, except the H register, are saved on the stack. Refer to the
description of the interrupt mask (I) found in 2.3.5 Condition Code
Register.

An interrupt (provided it is enabled) causes normal program flow to be
suspended as soon as the currently executing instruction finishes. The
interrupt logic then pushes the contents of all CPU08 registers onto the
stack, except the H register, so that the CPU08 contents can be restored
after the interrupt is finished. After stacking the CPU08 registers, the
vector for the highest priority pending interrupt source is loaded into the
program counter and execution continues with the first instruction of the
interrupt service routine.
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Resets and Interrupts 49

Resets and Interrupts
An interrupt is concluded with a return-from-interrupt (RTI) instruction,
which causes all CPU08 registers and the return address to be
recovered from the stack, so that the interrupted program can resume as
if there had been no interruption.

Interrupts can be enabled or disabled by the mask bit (I bit) in the
condition code register and by local enable mask bits in the on-chip
peripheral control registers. The interrupt mask bits in the CCR provide
a means of controlling the nesting of interrupts.

In rare cases it may be useful to allow an interrupt routine to be
interrupted (see 3.5.3 Nesting of Multiple Interrupts). However,
nesting is discouraged because it greatly complicates a system and
rarely improves system performance.

By default, the interrupt structure inhibits interrupts during the interrupt
entry sequence by setting the interrupt mask bit(s) in the CCR. As the
CCR is recovered from the stack during the return from interrupt, the
condition code bits return to the enabled state so that additional
interrupts can be serviced.

Upon reset, the I bit is set to inhibit all interrupts. After minimum system
initialization, software may clear the I bit by a TAP or CLI instruction, thus
enabling interrupts.
Reference Manual CPU08 — Rev. 3.0

50 Resets and Interrupts MOTOROLA

Resets and Interrupts
Interrupt Processing
3.5.1 Interrupt Sources and Priority

The CPU08 can have 128 separate vectors including reset and software
interrupt (SWI), which leaves 126 inputs for independent interrupt
sources. See Table 3-2.

NOTE: Not all CPU08 versions use all available interrupt vectors.

When the system integration module (SIM) receives an interrupt
request, processing begins at the next instruction boundary. The SIM
performs the priority decoding necessary if more than one interrupt
source is active at the same time. Also, the SIM encodes the highest
priority interrupt request into a constant that the CPU08 uses to generate
the corresponding interrupt vector.

NOTE: The interrupt source priority for any specific module may not always be
the same in different M68HC08 versions. For details about the priority
assigned to interrupt sources in a specific M68HC08 device, refer to the
SIM section of the technical data manual written for that device.

As an instruction, SWI has the highest priority other than reset; once the
SWI opcode is fetched, no other interrupt can be honored until the SWI
vector has been fetched.

Table 3-2. M68HC08 Vectors

Address Reset Priority

FFFE Reset 1

FFFC SWI 2

FFFA IREQ[0] 3

: : :

FF02 IREQ[124] 127

FF00 IREQ[125] 128
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Resets and Interrupts 51

Resets and Interrupts
3.5.2 Interrupts in Stop and Wait Modes

In wait mode the CPU clocks are disabled, but other module clocks
remain active. A module that is active during wait mode can wake the
CPU08 by an interrupt if the interrupt is enabled. Processing of the
interrupt begins immediately.

In stop mode, the system clocks do not run. The system control module
inputs are conditioned so that they can be asynchronous. A particular
module can wake the part from stop mode with an interrupt provided that
the module has been designed to do so.

3.5.3 Nesting of Multiple Interrupts

Under normal circumstances, CPU08 interrupt processing arbitrates
multiple pending interrupts, selects the highest, and leaves the rest
pending. The I bit in the CCR is also set, preventing nesting of interrupts.
While an interrupt is being serviced, it effectively becomes the highest
priority task for the system. When servicing is complete, the assigned
interrupt priority is re-established.

In certain systems where, for example, a low priority interrupt contains a
long interrupt service routine, it may not be desirable to lock out all higher
priority interrupts while the low priority interrupt executes. Although not
generally advisable, controlled nesting of interrupts can be used to solve
problems of this nature.

If nesting of interrupts is desired, the interrupt mask bit(s) must be
cleared after entering the interrupt service routine. Care must be taken
to specifically mask (disable) the present interrupt with a local enable
mask bit or clear the interrupt source flag before clearing the mask bit in
the CCR. Failure to do so will cause the same source to immediately
interrupt, which will rapidly consume all available stack space.
Reference Manual CPU08 — Rev. 3.0

52 Resets and Interrupts MOTOROLA

Resets and Interrupts
Interrupt Processing
3.5.4 Allocating Scratch Space on the Stack

In some systems, it is useful to allocate local variable or scratch space
on the stack for use by the interrupt service routine. Temporary storage
can also be obtained using the push (PSH) and pull (PUL) instructions;
however, the last-in-first-out (LIFO) structure of the stack makes this
impractical for more than one or two bytes. The CPU08 features the
16-bit add immediate value (signed) to stack pointer (AIS) instruction to
allocate space. The stack pointer indexing instructions can then be used
to access this data space, as demonstrated in this example.

IRQINT PSHH ;Save H register
AIS #-16 ;Allocate 16 bytes of local storage
STA 3,SP ;Store a value in the second byte

;of local space

* Note: The stack pointer must always point to the next
* empty stack location. The location addressed
* by 0,SP should therefore never be used unless the
* programmer can guarantee no subroutine calls from
* within the interrupt service routine.

.

.

.
LDA 3,SP ;Read the value at a later time
.
.
.
AIS #16 ;Clean up stack
PULH ;Restore H register
RTI ;Return

* Note: Subroutine calls alter the offset from the SP to
* the local variable data space because of the
* stacked return address. If the user wishes to
* access this data space from subroutines called
* from within the interrupt service routine, then
* the offsets should be adjusted by +2 bytes for each
* level of subroutine nesting.
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Resets and Interrupts 53

Resets and Interrupts
Reference Manual CPU08 — Rev. 3.0

54 Resets and Interrupts MOTOROLA

Addressing Modes
Contents
4.1 Contents

4.2 Introduction .55

4.3 Addressing Modes .56
4.3.1 Inherent .57
4.3.2 Immediate. .59
4.3.3 Direct .61
4.3.4 Extended .63
4.3.5 Indexed, No Offset .65
4.3.6 Indexed, 8-Bit Offset. .65
4.3.7 Indexed, 16-Bit Offset. .66
4.3.8 Stack Pointer, 8-Bit Offset .68
4.3.9 Stack Pointer, 16-Bit Offset .68
4.3.10 Relative .71
4.3.11 Memory-to-Memory Immediate to Direct 73
4.3.12 Memory-to-Memory Direct to Direct73
4.3.13 Memory-to-Memory Indexed to Direct

with Post Increment. .74
4.3.14 Memory-to-Memory Direct to Indexed

with Post Increment. .76
4.3.15 Indexed with Post Increment .77
4.3.16 Indexed, 8-Bit Offset with Post Increment 78

4.4 Instruction Set Summary .79

4.5 Opcode Map .87

4.2 Introduction

This section describes the addressing modes of the M68HC08 central
processor unit (CPU).

Reference Manual — CPU08

Section 4. Addressing Modes
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Addressing Modes 55

Addressing Modes
4.3 Addressing Modes

The CPU08 uses 16 addressing modes for flexibility in accessing data.
These addressing modes define how the CPU finds the data required to
execute an instruction.

The 16 addressing modes are:

• Inherent

• Immediate

• Direct

• Extended

• Indexed, no offset

• Indexed, 8-bit offset

• Indexed, 16-bit offset

• Stack pointer, 8-bit offset

• Stack pointer, 16-bit offset

• Relative

• Memory-to-memory (four modes):

– Immediate to direct

– Direct to direct

– Indexed to direct with post increment

– Direct to indexed with post increment

• Indexed with post increment

• Indexed, 8-bit offset with post increment
Reference Manual CPU08 — Rev. 3.0

56 Addressing Modes MOTOROLA

Addressing Modes
Addressing Modes
4.3.1 Inherent

Inherent instructions have no operand fetch associated with the
instruction, such as decimal adjust accumulator (DAA), clear index high
(CLRH), and divide (DIV). Some of the inherent instructions act on data
in the CPU registers, such as clear accumulator (CLRA), and transfer
condition code register to the accumulator (TPA). Inherent instructions
require no memory address, and most are one byte long. Table 4-1 lists
the instructions that use inherent addressing.

The assembly language statements shown here are examples of the
inherent addressing mode. In the code example and throughout this
section, bold typeface instructions are examples of the specific
addressing mode being discussed; a pound sign (#) before a number
indicates an immediate operand. The default base is decimal.
Hexadecimal numbers are represented by a dollar sign ($) preceding the
number. Some assemblers use hexadecimal as the default numbering
system. Refer to the documentation for the particular assembler to
determine the proper syntax.

Machine
Code

Label Operation Operand Comments

A657 EX_1 LDA #$57 ;A = $57

AB45 ADD #$45 ;A = $9C

72 DAA ;A = $02 w/carry

;bit set ≡ $102

A614 EX_2 LDA #20 ;LS dividend in A

8C CLRH ;Clear MS dividend

AE03 LDX #3 ;Divisor in X

52 DIV ;(H:A)/X→A=06,H=02

A630 EX_3 LDA #$30 ;A = $30

87 PSHA ;Push $30 on stack and
;decrement stack
;pointer by 1
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Addressing Modes 57

Addressing Modes
Table 4-1. Inherent Addressing Instructions

Instruction Mnemonic

Arithmetic Shift Left ASLA, ASLX

Arithmetic Shift Right ASRA, ASRX

Clear Carry Bit CLC

Clear Interrupt Mask CLI

Clear CLRA, CLRX

Clear H (Index Register High) CLRH

Complement COMA, COMX

Decimal Adjust Accumulator DAA

Decrement Accumulator, Branch if Not Equal ($00) DBNZA

Decrement X (Index Register Low), Branch if Not Equal ($00) DBNZX

Decrement DECA, DECX

Divide (Integer 16-Bit by 8-Bit Divide) DIV

Increment INCA, INCX

Logical Shift Left LSLA, LSLX

Logical Shift Right LSRA, LSRX

Multiply MUL

Negate NEGA, NEGX

Nibble Swap Accumulator NSA

No Operation NOP

Push Accumulator onto Stack PSHA

Push H (Index Register High) onto Stack PSHH

Push X (Index Register Low) onto Stack PSHX

Pull Accumulator from Stack PULA

Pull H (Index Register High) from Stack PULH

Pull X (Index Register Low) from Stack PULX

Rotate Left through Carry ROLA, ROLX

Rotate Right through Carry RORA, RORX

Reset Stack Pointer to $00FF RSP

Return from Interrupt RTI

Return from Subroutine RTS

Set Carry Bit SEC

Set Interrupt Mask SEI
Reference Manual CPU08 — Rev. 3.0

58 Addressing Modes MOTOROLA

Addressing Modes
Addressing Modes
4.3.2 Immediate

The operand in immediate instructions is contained in the bytes
immediately following the opcode. The byte or bytes that follow the
opcode are the value of the statement rather than the address of the
value. In this case, the effective address of the instruction is specified by
the # sign and implicitly points to the byte following the opcode. The
immediate value is limited to either one or two bytes, depending on the
size of the register involved in the instruction. Table 4-2 lists the
instructions that use immediate addressing.

Immediate instructions associated with the index register (H:X) are
3-byte instructions: one byte for the opcode, two bytes for the immediate
data byte.

The example code shown here contains two immediate instructions: AIX
(add immediate to H:X) and CPHX (compare H:X with immediate value).
H:X is first cleared and then incremented by one until it contains $FFFF.
Once the condition specified by the CPHX becomes true, the program
branches to START, and the process is repeated indefinitely.

Enable IRQ and Stop Oscillator STOP

Software Interrupt SWI

Transfer Accumulator to Condition Code Register TAP

Transfer Accumulator to X (Index Register Low) TAX

Transfer Condition Code Register to Accumulator TPA

Test for Negative or Zero TSTA, TSTX

Transfer Stack Pointer to Index Register (H:X) TSX

Transfer X (Index Register Low) to Accumulator TXA

Transfer Index Register (H:X) to Stack Pointer TXS

Enable Interrupts and Halt CPU WAIT

Table 4-1. Inherent Addressing Instructions (Continued)

Instruction Mnemonic
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Addressing Modes 59

Addressing Modes
Machine
Code

Label Operation Operand Comments

5F START CLRX ;X = 0

8C CLRH ;H = 0

AF01 TAG AIX #1 ;(H:X) = (H:X) + 1

65FFFF CPHX #$FFFF ;Compare (H:X) to
;$FFFF

26F9 BNE TAG ;Loop until equal

20F5 BRA START ;Start over

Table 4-2. Immediate Addressing Instructions

Instruction Mnemonic

Add with Carry Immediate Value to Accumulator ADC

Add Immediate Value to Accumulator ADD

Add Immediate Value (Signed) to Stack Pointer AIS

Add Immediate Value (Signed) to Index Register (H:X) AIX

Logical AND Immediate Value with Accumulator AND

Bit Test Immediate Value with Accumulator BIT

Compare A with Immediate and Branch if Equal CBEQA

Compare X (Index Register Low) with Immediate and Branch if Equal CBEQX

Compare Accumulator with Immediate Value CMP

Compare Index Register (H:X) with Immediate Value CPHX

Compare X (Index Register Low) with Immediate Value CPX

Exclusive OR Immediate Value with Accumulator EOR

Load Accumulator from Immediate Value LDA

Load Index Register (H:X) with Immediate Value LDHX

Load X (Index Register Low) from Immediate Value LDX

Inclusive OR Immediate Value ORA

Subtract with Carry Immediate Value SBC

Subtract Immediate Value SUB
Reference Manual CPU08 — Rev. 3.0

60 Addressing Modes MOTOROLA

Addressing Modes
Addressing Modes
4.3.3 Direct

Most direct instructions can access any of the first 256 memory
addresses with only two bytes. The first byte is the opcode, and the
second is the low byte of the operand address. The high-order byte of
the effective address is assumed to be $00 and is not included as an
instruction byte (saving program memory space and execution time).
The use of direct addressing mode is therefore limited to operands in the
$0000–$00FF area of memory (called the direct page or page 0).

Direct addressing instructions take one less byte of program memory
space than the equivalent instructions using extended addressing. By
eliminating the additional memory access, the execution time is reduced
by one cycle. In the course of a long program, this savings can be
substantial. Most microcontroller units place some if not all
random-access memory (RAM) in the $0000–$00FF area; this allows
the designer to assign these locations to frequently referenced data
variables, thus saving execution time.

BRSET and BRCLR are 3-byte instructions that use direct addressing to
access the operand and relative addressing to specify a branch
destination.

CPHX, STHX, and LDHX are 2-byte instructions that fetch a 16-bit
operand. The most significant byte comes from the direct address; the
least significant byte comes from the direct address + 1.

Table 4-3 lists the instructions that use direct addressing.

This example code contains two direct addressing mode instructions:
STHX (store H:X in memory) and CPHX (compare H:X with memory).
The first STHX instruction initializes RAM storage location TEMP to
zero, and the second STHX instruction loads TEMP with $5555. The
CPHX instruction compares the value in H:X with the value of
RAM:(RAM + 1).
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Addressing Modes 61

Addressing Modes
In this example, RAM:(RAM + 1) = TEMP = $50:$51 = $5555.

Machine
Code

Label Operation Operand Comments

RAM EQU $50 ;RAM equate
ROM EQU $6E00 ;ROM equate

ORG $RAM ;Beginning of RAM
TEMP RMB 2 ;Reserve 2 bytes

ORG $ROM ;Beginning of ROM
5F START CLRX ;X = 0
8C CLRH ;H = 0
3550 STHX TEMP ;H:X=0 > temp
455555 LDHX #$5555 ;Load H:X with $5555
3550 STHX TEMP ;Temp=$5555

7550 BAD_PART CPHX RAM ;RAM=temp
26FC BNE BAD_PART ;RAM=temp will be

;same unless something
;is very wrong!

20F1 BRA START ;Do it again

Table 4-3. Direct Addressing Instructions

Instruction Mnemonic

Add Memory and Carry to Accumulator ADC

Add Memory and Accumulator ADD

Logical AND of Memory and Accumulator AND

Arithmetic Shift Left Memory ASL(1)

Arithmetic Shift Right Memory ASR

Clear Bit in Memory BCLR

Bit Test Memory with Accumulator BIT

Branch if Bit n in Memory Clear BRCLR

Branch if Bit n in Memory Set BRSET

Set Bit in Memory BSET

Compare Direct with Accumulator and Branch if Equal CBEQ

Clear Memory CLR

Compare Accumulator with Memory CMP

Complement Memory COM

Compare Index Register (H:X) with Memory CPHX
Reference Manual CPU08 — Rev. 3.0

62 Addressing Modes MOTOROLA

Addressing Modes
Addressing Modes
4.3.4 Extended

Extended instructions can access any address in a 64-Kbyte memory
map. All extended instructions are three bytes long. The first byte is the
opcode; the second and third bytes are the most significant and least
significant bytes of the operand address. This addressing mode is
selected when memory above the direct or zero page ($0000–$00FF) is
accessed.

Compare X (Index Register Low) with Memory CPX

Decrement Memory and Branch if Not Equal ($00) DBNZ

Decrement Memory DEC

Exclusive OR Memory with Accumulator EOR

Increment Memory INC

Jump JMP

Jump to Subroutine JSR

Load Accumulator from Memory LDA

Load Index Register (H:X) from Memory LDHX

Load X (Index Register Low) from Memory LDX

Logical Shift Left Memory LSL(1)

Logical Shift Right Memory LSR

Negate Memory NEG

Inclusive OR Accumulator and Memory ORA

Rotate Memory Left through Carry ROL

Rotate Memory Right through Carry ROR

Subtract Memory and Carry from Accumulator SBC

Store Accumulator in Memory STA

Store Index Register (H:X) in Memory STHX

Store X (Index Register Low) in Memory STX

Subtract Memory from Accumulator SUB

Test Memory for Negative or Zero TST

1. ASL = LSL

Table 4-3. Direct Addressing Instructions (Continued)

Instruction Mnemonic
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Addressing Modes 63

Addressing Modes
When using most assemblers, the programmer does not need to specify
whether an instruction is direct or extended. The assembler
automatically selects the shortest form of the instruction. Table 4-4 lists
the instructions that use the extended addressing mode. An example of
the extended addressing mode is shown here.

Machine
Code

Label Operation Operand Comments

ORG $50 ;Start at $50
FCB $FF ;$50 = $FF

5F CLRX
BE50 LDX $0050 ;Load X direct

ORG $6E00 ;Start at $6E00
FCB $FF ;$6E00 = $FF

5F CLRX
CE6E00 LDX $6E00 ;Load X extended

Table 4-4. Extended Addressing Instructions

Instruction Mnemonic

Add Memory and Carry to Accumulator ADC

Add Memory and Accumulator ADD

Logical AND of Memory and Accumulator AND

Bit Test Memory with Accumulator BIT

Compare Accumulator with Memory CMP

Compare X (Index Register Low) with Memory CPX

Exclusive OR Memory with Accumulator EOR

Jump JMP

Jump to Subroutine JSR

Load Accumulator from Memory LDA

Load X (Index Register Low) from Memory LDX

Inclusive OR Accumulator with Memory ORA

Subtract Memory and Carry from Accumulator SBC

Store Accumulator in Memory STA

Store X (Index Register Low) in Memory STX

Subtract Memory from Accumulator SUB
Reference Manual CPU08 — Rev. 3.0

64 Addressing Modes MOTOROLA

Addressing Modes
Addressing Modes
4.3.5 Indexed, No Offset

Indexed instructions with no offset are 1-byte instructions that access
data with variable addresses. X contains the low byte of the conditional
address of the operand; H contains the high byte. Due to the addition of
the H register, this addressing mode is not limited to the first 256 bytes
of memory as in the M68HC05.

If none of the M68HC08 instructions that modify H are used
(AIX; CBEQ (ix+); LDHX; MOV (dir/ix+); MOV (ix+/dir); DIV; PULH;
TSX), then the H value will be $00, which ensures complete source code
compatibility with M68HC05 Family instructions.

Indexed, no offset instructions can move a pointer through a table or hold
the address of a frequently used RAM or input/output (I/O) location.
Table 4-5 lists instructions that use indexed, no offset addressing.

4.3.6 Indexed, 8-Bit Offset

Indexed, 8-bit offset instructions are 2-byte instructions that can access
data with variable addresses. The CPU adds the unsigned bytes in H:X
to the unsigned byte following the opcode. The sum is the effective
address of the operand.

If none of the M68HC08 instructions that modify H are used
(AIX; CBEQ (ix+); LDHX; MOV (dir/ix+); MOV (ix+/dir); DIV; PULH;
TSX), then the H value will be $00, which ensures complete source code
compatibility with the M68HC05 Family instructions.

Indexed, 8-bit offset instructions are useful in selecting the kth element
in an n-element table. The table can begin anywhere and can extend as
far as the address map allows. The k value would typically be in H:X, and
the address of the beginning of the table would be in the byte following
the opcode. Using H:X in this way, this addressing mode is limited to the
first 256 addresses in memory. Tables can be located anywhere in the
address map when H:X is used as the base address, and the byte
following is the offset.

Table 4-5 lists the instructions that use indexed, 8-bit offset addressing.
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Addressing Modes 65

Addressing Modes
4.3.7 Indexed, 16-Bit Offset

Indexed, 16-bit offset instructions are 3-byte instructions that can access
data with variable addresses at any location in memory. The CPU adds
the unsigned contents of H:X to the 16-bit unsigned word formed by the
two bytes following the opcode. The sum is the effective address of the
operand. The first byte after the opcode is the most significant byte of the
16-bit offset; the second byte is the least significant byte of the offset.

As with direct and extended addressing, most assemblers determine the
shortest form of indexed addressing. Table 4-5 lists the instructions that
use indexed, 16-bit offset addressing.

Indexed, 16-bit offset instructions are useful in selecting the kth element
in an n-element table. The table can begin anywhere and can extend as
far as the address map allows. The k value would typically be in H:X, and
the address of the beginning of the table would be in the bytes following
the opcode.

This example uses the JMP (unconditional jump) instruction to show the
three different types of indexed addressing.

Machine
Code

Label Operation Operand Comments

FC JMP ,X ;No offset
;Jump to address
;pointed to by H:X

ECFF JMP $FF,X ;8-bit offset
;Jump to address
;pointed to by H:X + $FF

DC10FF JMP $10FF,X ;16-bit offset
;Jump to address
;pointed to by H:X + $10FF
Reference Manual CPU08 — Rev. 3.0

66 Addressing Modes MOTOROLA

Addressing Modes
Addressing Modes
Table 4-5. Indexed Addressing Instructions

Instruction Mnemonic
No

Offset
8-Bit

Offset
16-Bit
Offset

Add Memory and Carry to Accumulator ADC ✔ ✔ ✔

Add Memory and Accumulator ADD ✔ ✔ ✔

Logical AND of Memory and Accumulator AND ✔ ✔ ✔

Arithmetic Shift Left Memory ASL(1) ✔ ✔ —

Arithmetic Shift Right Memory ASR ✔ ✔ —

Bit Test Memory with Accumulator BIT ✔ ✔ ✔

Clear Memory CLR ✔ ✔ —

Compare Accumulator with Memory CMP ✔ ✔ ✔

Complement Memory COM ✔ ✔ —

Compare X (Index Register Low)
with Memory

CPX ✔ ✔ ✔

Decrement Memory and Branch if Not Equal
($00)

DBNZ ✔ ✔ —

Decrement Memory DEC ✔ ✔ —

Exclusive OR Memory with Accumulator EOR ✔ ✔ ✔

Increment Memory INC ✔ ✔ —

Jump JMP ✔ ✔ ✔

Jump to Subroutine JSR ✔ ✔ ✔

Load Accumulator from Memory LDA ✔ ✔ ✔

Load X (Index Register Low) from Memory LDX ✔ ✔ ✔

Logical Shift Left Memory LSL(1) ✔ ✔ —

Logical Shift Right Memory LSR ✔ ✔ —

Negate Memory NEG ✔ ✔ —

Inclusive OR Accumulator and Memory ORA ✔ ✔ ✔

Rotate Memory Left through Carry ROL ✔ ✔ —

Rotate Memory Right through Carry ROR ✔ ✔ —

Subtract Memory and Carry from Accumulator SBC ✔ ✔ ✔

Store Accumulator in Memory STA ✔ ✔ ✔

Store X (Index Register Low) in Memory STX ✔ ✔ ✔

Subtract Memory from Accumulator SUB ✔ ✔ ✔

Test Memory for Negative or Zero TST ✔ ✔ —

1. ASL = LSL
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Addressing Modes 67

Addressing Modes
4.3.8 Stack Pointer, 8-Bit Offset

Stack pointer, 8-bit offset instructions are 3-byte instructions that
address operands in much the same way as indexed 8-bit offset
instructions, only they add the 8-bit offset to the value of the stack pointer
instead of the index register.

The stack pointer, 8-bit offset addressing mode permits easy access of
data on the stack. The CPU adds the unsigned byte in the 16-bit stack
pointer (SP) register to the unsigned byte following the opcode. The sum
is the effective address of the operand.

If interrupts are disabled, this addressing mode allows the stack pointer
to be used as a second “index” register. Table 4-6 lists the instructions
that can be used in the stack pointer, 8-bit offset addressing mode.

Stack pointer relative instructions require a pre-byte for access.
Consequently, all SP relative instructions take one cycle longer than
their index relative counterparts.

4.3.9 Stack Pointer, 16-Bit Offset

Stack pointer, 16-bit offset instructions are 4-byte instructions used to
access data relative to the stack pointer with variable addresses at any
location in memory. The CPU adds the unsigned contents of the 16-bit
stack pointer register to the 16-bit unsigned word formed by the two
bytes following the opcode. The sum is the effective address of the
operand.

As with direct and extended addressing, most assemblers determine the
shortest form of stack pointer addressing. Due to the pre-byte, stack
pointer relative instructions take one cycle longer than their index
relative counterparts. Table 4-6 lists the instructions that can be used in
the stack pointer, 16-bit offset addressing mode.
Reference Manual CPU08 — Rev. 3.0

68 Addressing Modes MOTOROLA

Addressing Modes
Addressing Modes
Examples of the 8-bit and 16-bit offset stack pointer addressing modes
are shown here. The first example stores the value of $20 in location
$10, SP = $10 + $FF = $10F and then decrements that location until
equal to zero. The second example loads the accumulator with the
contents of memory location $250, SP = $250 + $FF = $34F.

Stack pointer, 16-bit offset instructions are useful in selecting the kth
element in an n-element table. The table can begin anywhere and can
extend anywhere in memory. With this 4-byte instruction, the k value
would typically be in the stack pointer register, and the address of the
beginning of the table is located in the two bytes following the 2-byte
opcode.

Machine
Code

Label Operation Operand Comments

450100 LDHX #$0100
94 TXS ;Reset stack pointer

;to $00FF
A620 LDA #$20 ;A = $20
9EE710 STA $10,SP ;Location $10F = $20
9E6B10FC LP DBNZ $10,SP,LP ;8-bit offset

;decrement the
;contents of $10F
;until equal to zero

450100 LDHX #$0100
94 TXS ;Reset stack pointer

;to $00FF
9ED60250 LDA $0250,SP ;16-bit offset

;Load A with contents
;of $34F
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Addressing Modes 69

Addressing Modes
Table 4-6. Stack Pointer Addressing Instructions

Instruction Mnemonic
8-Bit

Offset
16-Bit
Offset

Add Memory and Carry to Accumulator ADC ✔ ✔

Add Memory and Accumulator ADD ✔ ✔

Logical AND of Memory and Accumulator AND ✔ ✔

Arithmetic Shift Left Memory ASL(1)

1. ASL = LSL

✔ —

Arithmetic Shift Right Memory ASR ✔ —

Bit Test Memory with Accumulator BIT ✔ ✔

Compare Direct with Accumulator and
Branch if Equal

CBEQ ✔ —

Clear Memory CLR ✔ —

Compare Accumulator with Memory CMP ✔ ✔

Complement Memory COM ✔ —

Compare X (Index Register Low) with Memory CPX ✔ ✔

Decrement Memory and Branch if
Not Equal ($00)

DBNZ ✔ —

Decrement Memory DEC ✔ —

Exclusive OR Memory with Accumulator EOR ✔ ✔

Increment Memory INC ✔ —

Load Accumulator from Memory LDA ✔ ✔

Load X (Index Register Low) from Memory LDX ✔ ✔

Logical Shift Left Memory LSL(1) ✔ —

Logical Shift Right Memory LSR ✔ —

Negate Memory NEG ✔ —

Inclusive OR Accumulator and Memory ORA ✔ ✔

Rotate Memory Left through Carry ROL ✔ —

Rotate Memory Right through Carry ROR ✔ —

Subtract Memory and Carry from Memory SBC ✔ ✔

Store Accumulator in Memory STA ✔ ✔

Store X (Index Register Low) in Memory STX ✔ ✔

Subtract Memory from Accumulator SUB ✔ ✔

Test Memory for Negative or Zero TST ✔ —
Reference Manual CPU08 — Rev. 3.0

70 Addressing Modes MOTOROLA

Addressing Modes
Addressing Modes
4.3.10 Relative

All conditional branch instructions use relative addressing to evaluate
the resultant effective address (EA). The CPU evaluates the conditional
branch destination by adding the signed byte following the opcode to the
contents of the program counter. If the branch condition is true, the PC
is loaded with the EA. If the branch condition is not true, the CPU goes
to the next instruction. The offset is a signed, two’s complement byte that
gives a branching range of –128 to +127 bytes from the address of the
next location after the branch instruction.

Four new branch opcodes test the N, Z, and V (overflow) bits to
determine the relative signed values of the operands. These new
opcodes are BLT, BGT, BLE, and BGE and are designed to be used with
signed arithmetic operations.

When using most assemblers, the programmer does not need to
calculate the offset, because the assembler determines the proper offset
and verifies that it is within the span of the branch.

Table 4-7 lists the instructions that use relative addressing.

This example contains two relative addressing mode instructions: BLT
(branch if less than, signed operation) and BRA (branch always).
In this example, the value in the accumulator is compared to the signed
value –2. Because #1 is greater than –2, the branch to TAG will not
occur.

Machine
Code

Label Operation Operand Comments

A601 TAG LDA #1 ;A = 1

A1FE
91FA

CMP
BLT

#-2
TAG

;Compare with -2
;Branch if value of A
;is less than -2

20FE HERE BRA HERE ;Branch always
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Addressing Modes 71

Addressing Modes
Table 4-7. Relative Addressing Instructions

Instruction Mnemonic

Branch if Carry Clear BCC

Branch if Carry Set BCS

Branch if Equal BEQ

Branch if Greater Than or Equal (Signed) BGE

Branch if Greater Than (Signed) BGT

Branch if Half-Carry Clear BHCC

Branch if Half-Carry Set BHCS

Branch if Higher BHI

Branch if Higher or Same BHS (BCC)

Branch if Interrupt Line High BIH

Branch if Interrupt Line Low BIL

Branch if Less Than or Equal (Signed) BLE

Branch if Lower BLO (BCS)

Branch if Lower or Same BLS

Branch if Less Than (Signed) BLT

Branch if Interrupt Mask Clear BMC

Branch if Minus BMI

Branch if Interrupt Mask Set BMS

Branch if Not Equal BNE

Branch if Plus BPL

Branch Always BRA

Branch if Bit n in Memory Clear BRCLR

Branch if Bit n in Memory Set BRSET

Branch Never BRN

Branch to Subroutine BSR
Reference Manual CPU08 — Rev. 3.0

72 Addressing Modes MOTOROLA

Addressing Modes
Addressing Modes
4.3.11 Memory-to-Memory Immediate to Direct

Move immediate to direct (MOV imm/dir) is a 3-byte, 4-cycle addressing
mode generally used to initialize variables and registers in the direct
page. The operand in the byte immediately following the opcode is
stored in the direct page location addressed by the second byte following
the opcode. The MOV instruction associated with this addressing mode
does not affect the accumulator value. This example shows that by
eliminating the accumulator from the data transfer process, the number
of execution cycles decreases from 9 to 4 for a similar immediate to
direct operation.

4.3.12 Memory-to-Memory Direct to Direct

Move direct to direct (MOV dir/dir) is a 3-byte, 5-cycle addressing mode
generally used in register-to-register movements of data from within the
direct page. The operand in the direct page location addressed by the
byte immediately following the opcode is stored in the direct page
location addressed by the second byte following the opcode. The MOV
instruction associated with this addressing mode does not affect the
accumulator value. As with the previous addressing mode,

Machine
Code

Label Operation Operand Comments

* Data movement with accumulator

B750 (2 cycles) PSHA ;Save current A
; value

A622 (2 cycles) LDA #$22 ;A = $22

B7F0 (3 cycles) STA $F0 ;Store $22 into $F0

B650 (2 cycles) PULA ;Restore A value

 9 cycles

* Data movement without accumulator

6E22F0 (4 cycles) MOV #$22,$F0 ;Location $F0
;= $22
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Addressing Modes 73

Addressing Modes
eliminating the accumulator from the data transfer process reduces the
number of execution cycles from 10 to 5 for similar direct-to-direct
operations (see example). This savings can be substantial for a program
containing numerous register-to-register data transfers.

4.3.13 Memory-to-Memory Indexed to Direct with Post Increment

Move indexed to direct, post increment (MOV ix+/dir) is a 2-byte, 4-cycle
addressing mode generally used to transfer tables addressed by the
index register to a register in the direct page. The tables can be located
anywhere in the 64-Kbyte map and can be any size. This instruction
does not affect the accumulator value. The operand addressed by H:X
is stored in the direct page location addressed by the byte following the
opcode. H:X is incremented after the move.

This addressing mode is effective for transferring a buffer stored in RAM
to a serial transmit register, as shown in the following example. Table 4-8
lists the memory-to-memory move instructions.

NOTE: Move indexed to direct, post increment instructions will increment H if X
is incremented past $FF.

Machine
Code

Label Operation Operand Comments

* Data movement with accumulator

B750 (2 cycles) PSHA ;Save A value

B6F0 (3 cycles) LDA $F0 ;Get contents
;of $F0

B7F1 (3 cycles) STA $F1 ;Location $F1=$F0

B650 (2 cycles) PULA ;Restore A value

10 cycles

* Data movement without accumulator

4EF0F1 (5 cycles) MOV $F0,$F1 ;Move contents of
;$F0 to $F1
Reference Manual CPU08 — Rev. 3.0

74 Addressing Modes MOTOROLA

Addressing Modes
Addressing Modes
This example illustrates an interrupt-driven SCI transmit service routine
supporting a circular buffer.

Machine
Code

Label Operation Operand Comments

SIZE EQU 16 ;TX circular
;buffer length

SCSR1 EQU $16 ;SCI status
;register 1

SCDR EQU $18 ;SCI transmit
;data register

ORG $50

PTR_OUT RMB 2 ;Circular buffer
;data out pointer

PTR_IN RMB 2 ;Circular buffer
;data in pointer

TX_B RMB SIZE ;Circular buffer

*

* SCI transmit data register empty interrupt
* service routine
*

ORG $6E00

55 50 TX_INT LDHX PTR_OUT ;Load pointer

B6 16 LDA SCSR1 ;Dummy read of
;SCSR1 as part of
;the TDRE reset

7E 18 MOV X+, SCDR ;Move new byte to
;SCI data reg.
;Clear TDRE. Post
;increment H:X.

65 00 64 CPHX #TX_B +
SIZE

;Gone past end of
;circular buffer?

23 03 BLS NOLOOP ;If not, continue

45 00 54 LDHX #TX_B ;Else reset to
;start of buffer

35 50 NOLOOP STHX PTR_OUT ;Save new
;pointer value

80 RTI ;Return
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Addressing Modes 75

Addressing Modes
4.3.14 Memory-to-Memory Direct to Indexed with Post Increment

Move direct to indexed, post increment (MOV dir/ix+) is a 2-byte, 4-cycle
addressing mode generally used to fill tables from registers in the direct
page. The tables can be located anywhere in the 64-Kbyte map and can
be any size. The instruction associated with this addressing mode does
not affect the accumulator value. The operand in the direct page location
addressed by the byte immediately following the opcode is stored in the
location addressed by H:X. H:X is incremented after the move.

An example of this addressing mode would be in filling a serial receive
buffer located in RAM from the receive data register. Table 4-8 lists the
memory-to-memory move instructions.

NOTE: Move direct to indexed, post increment instructions will increment H if X
is incremented past $FF.

This example illustrates an interrupt-driven SCI receive service routine
supporting a circular buffer.

Machine
Code

Label Operation Operand Comments

SIZE EQU 16 ;RX circular
;buffer length

SCSR1 EQU $16 ;SCI status reg.1

SCDR EQU $18 ;SCI receive
;data reg.

ORG $70

PTR_OUT RMB 2 ;Circular buffer
;data out pointer

PTR_IN RMB 2 ;Circular buffer
;data in pointer

RX_B RMB SIZE ;Circular buffer

*

* SCI receive data register full interrupt
* service routine
*

Reference Manual CPU08 — Rev. 3.0

76 Addressing Modes MOTOROLA

Addressing Modes
Addressing Modes
4.3.15 Indexed with Post Increment

Indexed, no offset with post increment instructions are 2-byte
instructions that address operands, then increment H:X. X contains the
low byte of the conditional address of the operand; H contains the high
byte. The sum is the conditional address of the operand. This addressing
mode is generally used for table searches. Table 4-9 lists the indexed
with post increment instructions.

NOTE: Indexed with post increment instructions will increment H if X is
incremented past $FF.

ORG $6E00

55 72 RX_INT LDHX PTR_IN ;Load pointer

B6 16 LDA SCSR1 ;Dummy read of
;SCSR1 as part of
;the RDRF reset

5E 18 MOV SCDR ,X+ ;Move new byte from
;SCI data reg.
;Clear RDRF. Post
;increment H:X.

65 00 64 CPHX #RX_B +
SIZE

;Gone past end of
;circular buffer?

23 03 BLS NOLOOP ;If not continue

45 00 54 LDHX #RX_B ;Else reset to
;start of buffer

35 52 NOLOOP STHX PTR_IN ;Save new
;pointer value

80 RTI ;Return

Table 4-8. Memory-to-Memory Move Instructions

Instruction Mnemonic

Move Immediate Operand to Direct Memory Location MOV

Move Direct Memory Operand to Another Direct Memory Location MOV

Move Indexed Operand to Direct Memory Location MOV

Move Direct Memory Operand to Indexed Memory Location MOV

Machine
Code

Label Operation Operand Comments
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Addressing Modes 77

Addressing Modes
4.3.16 Indexed, 8-Bit Offset with Post Increment

Indexed, 8-bit offset with post increment instructions are 3-byte
instructions that access operands with variable addresses, then
increment H:X. X contains the low byte of the conditional address of the
operand; H contains the high byte. The sum is the conditional address of
the operand. As with indexed, no offset, this addressing mode is
generally used for table searches. Table 4-9 lists the indexed with post
increment instructions.

NOTE: Indexed, 8-bit offset with post increment instructions will increment H if
X is incremented past $FF.

This example uses the CBEQ (compare and branch if equal) instruction
to show the two different indexed with post increment addressing
modes.

Machine
Code

Label Operation Operand Comments

A6FF LDA #$FF ;A = $FF
B710 STA $10 ;LOC $10 = $FF
4E1060 MOV $10,$60 ;LOC $60 = $FF
5F CLRX ;Zero X

* Compare contents of A with contents of location pointed to by
* H:X and branch to TAG when equal

7102 LOOP CBEQ X+,TAG ;No offset

20FC BRA LOOP ;Check next location
5F TAG CLRX ;Zero X

* Compare contents of A with contents of location pointed to by
* H:X + $50 and branch to TG1 when equal

615002 LOOP2 CBEQ $50,X+,TG1 ;8-bit offset

20FB BRA LOOP2 ;Check next location

20FE TG1 BRA TG1 ;Finished

Table 4-9. Indexed and Indexed, 8-Bit Offset
with Post Increment Instructions

Instruction Mnemonic

Compare and Branch if Equal, Indexed (H:X) CBEQ

Compare and Branch if Equal, Indexed (H:X), 8-Bit Offset CBEQ

Move Indexed Operand to Direct Memory Location MOV

Move Direct Memory Operand to Indexed Memory Location MOV
Reference Manual CPU08 — Rev. 3.0

78 Addressing Modes MOTOROLA

Addressing Modes
Instruction Set Summary
4.4 Instruction Set Summary

Table 4-10 provides a summary of the M68HC08 instruction set in all
possible addressing modes. The table shows operand construction and
the execution time in internal bus clock cycles of each instruction.

Table 4-10. Instruction Set Summary (Sheet 1 of 9)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

od
e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

ADC #opr8i
ADC opr8a
ADC opr16a
ADC oprx16,X
ADC oprx8,X
ADC ,X
ADC oprx16,SP
ADC oprx8,SP

Add with Carry A ← (A) + (M) + (C) ↕ ↕ – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A9
B9
C9
D9
E9
F9

9ED9
9EE9

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

ADD #opr8i
ADD opr8a
ADD opr16a
ADD oprx16,X
ADD oprx8,X
ADD ,X
ADD oprx16,SP
ADD oprx8,SP

Add without Carry A ← (A) + (M) ↕ ↕ – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AB
BB
CB
DB
EB
FB

9EDB
9EEB

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

AIS #opr8i
Add Immediate Value
(Signed) to Stack Pointer

SP ← (SP) + (M)
M is sign extended to a 16-bit value

– – – – – – IMM A7 ii 2

AIX #opr8i
Add Immediate Value
(Signed) to Index
Register (H:X)

H:X ← (H:X) + (M)
M is sign extended to a 16-bit value

– – – – – – IMM AF ii 2

AND #opr8i
AND opr8a
AND opr16a
AND oprx16,X
AND oprx8,X
AND ,X
AND oprx16,SP
AND oprx8,SP

Logical AND A ← (A) & (M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A4
B4
C4
D4
E4
F4

9ED4
9EE4

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

ASL opr8a
ASLA
ASLX
ASL oprx8,X
ASL ,X
ASL oprx8,SP

Arithmetic Shift Left
(Same as LSL)

↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

38
48
58
68
78

9E68

dd

ff

ff

4
1
1
4
3
5

C

b0b7

0

CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Addressing Modes 79

Addressing Modes
ASR opr8a
ASRA
ASRX
ASR oprx8,X
ASR ,X
ASR oprx8,SP

Arithmetic Shift Right ↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

37
47
57
67
77

9E67

dd

ff

ff

4
1
1
4
3
5

BCC rel Branch if Carry Bit Clear Branch if (C) = 0 – – – – – – REL 24 rr 3

BCLR n,opr8a Clear Bit n in Memory Mn ← 0 – – – – – –

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

11
13
15
17
19
1B
1D
1F

dd
dd
dd
dd
dd
dd
dd
dd

4
4
4
4
4
4
4
4

BCS rel
Branch if Carry Bit Set
(Same as BLO)

Branch if (C) = 1 – – – – – – REL 25 rr 3

BEQ rel Branch if Equal Branch if (Z) = 1 – – – – – – REL 27 rr 3

BGE rel
Branch if Greater Than or
Equal To
(Signed Operands)

Branch if (N ⊕ V) = 0 – – – – – – REL 90 rr 3

BGT rel
Branch if Greater Than
(Signed Operands)

Branch if (Z) | (N ⊕ V) = 0 – – – – – – REL 92 rr 3

BHCC rel
Branch if Half Carry Bit
Clear

Branch if (H) = 0 – – – – – – REL 28 rr 3

BHCS rel
Branch if Half Carry Bit
Set

Branch if (H) = 1 – – – – – – REL 29 rr 3

BHI rel Branch if Higher Branch if (C) | (Z) = 0 – – – – – – REL 22 rr 3

BHS rel
Branch if Higher or Same
(Same as BCC)

Branch if (C) = 0 – – – – – – REL 24 rr 3

BIH rel Branch if IRQ Pin High Branch if IRQ pin = 1 – – – – – – REL 2F rr 3

BIL rel Branch if IRQ Pin Low Branch if IRQ pin = 0 – – – – – – REL 2E rr 3

BIT #opr8i
BIT opr8a
BIT opr16a
BIT oprx16,X
BIT oprx8,X
BIT ,X
BIT oprx16,SP
BIT oprx8,SP

Bit Test
(A) & (M)

(CCR Updated but Operands
Not Changed)

0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A5
B5
C5
D5
E5
F5

9ED5
9EE5

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

BLE rel
Branch if Less Than
or Equal To
(Signed Operands)

Branch if (Z) | (N ⊕ V) = 1 – – – – – – REL 93 rr 3

BLO rel
Branch if Lower
(Same as BCS)

Branch if (C) = 1 – – – – – – REL 25 rr 3

Table 4-10. Instruction Set Summary (Sheet 2 of 9)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

od
e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

b0b7

C

Reference Manual CPU08 — Rev. 3.0

80 Addressing Modes MOTOROLA

Addressing Modes
Instruction Set Summary
BLS rel Branch if Lower or Same Branch if (C) | (Z) = 1 – – – – – – REL 23 rr 3

BLT rel
Branch if Less Than
(Signed Operands)

Branch if (N ⊕ V) = 1 – – – – – – REL 91 rr 3

BMC rel
Branch if Interrupt Mask
Clear

Branch if (I) = 0 – – – – – – REL 2C rr 3

BMI rel Branch if Minus Branch if (N) = 1 – – – – – – REL 2B rr 3

BMS rel
Branch if Interrupt Mask
Set

Branch if (I) = 1 – – – – – – REL 2D rr 3

BNE rel Branch if Not Equal Branch if (Z) = 0 – – – – – – REL 26 rr 3

BPL rel Branch if Plus Branch if (N) = 0 – – – – – – REL 2A rr 3

BRA rel Branch Always No Test – – – – – – REL 20 rr 3

BRCLR n,opr8a,rel
Branch if Bit n in Memory
Clear

Branch if (Mn) = 0 – – – – – ↕

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

01
03
05
07
09
0B
0D
0F

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BRN rel Branch Never Uses 3 Bus Cycles – – – – – – REL 21 rr 3

BRSET n,opr8a,rel
Branch if Bit n in Memory
Set

Branch if (Mn) = 1 – – – – – ↕

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

00
02
04
06
08
0A
0C
0E

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BSET n,opr8a Set Bit n in Memory Mn ← 1 – – – – – –

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

10
12
14
16
18
1A
1C
1E

dd
dd
dd
dd
dd
dd
dd
dd

4
4
4
4
4
4
4
4

BSR rel Branch to Subroutine

PC ← (PC) + $0002
push (PCL); SP ← (SP) – $0001
push (PCH); SP ← (SP) – $0001

PC ← (PC) + rel

– – – – – – REL AD rr 4

CBEQ opr8a,rel
CBEQA #opr8i,rel
CBEQX #opr8i,rel
CBEQ oprx8,X+,rel
CBEQ ,X+,rel
CBEQ oprx8,SP,rel

Compare and Branch if
Equal

Branch if (A) = (M)
Branch if (A) = (M)
Branch if (X) = (M)
Branch if (A) = (M)
Branch if (A) = (M)
Branch if (A) = (M)

– – – – – –

DIR
IMM
IMM
IX1+
IX+
SP1

31
41
51
61
71

9E61

dd rr
ii rr
ii rr
ff rr
rr
ff rr

5
4
4
5
4
6

Table 4-10. Instruction Set Summary (Sheet 3 of 9)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

od
e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Addressing Modes 81

Addressing Modes
CLC Clear Carry Bit C ← 0 – – – – – 0 INH 98 1

CLI Clear Interrupt Mask Bit I ← 0 – – 0 – – – INH 9A 2

CLR opr8a
CLRA
CLRX
CLRH
CLR oprx8,X
CLR ,X
CLR oprx8,SP

Clear

M ← $00
A ← $00
X ← $00
H ← $00
M ← $00
M ← $00
M ← $00

0 – – 0 1 –

DIR
INH
INH
INH
IX1
IX
SP1

3F
4F
5F
8C
6F
7F

9E6F

dd

ff

ff

3
1
1
1
3
2
4

CMP #opr8i
CMP opr8a
CMP opr16a
CMP oprx16,X
CMP oprx8,X
CMP ,X
CMP oprx16,SP
CMP oprx8,SP

Compare Accumulator
with Memory

(A) – (M)
(CCR Updated But Operands Not

Changed)
↕ – – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A1
B1
C1
D1
E1
F1

9ED1
9EE1

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

COM opr8a
COMA
COMX
COM oprx8,X
COM ,X
COM oprx8,SP

Complement
(One’s Complement)

M ← (M)= $FF – (M)
A ← (A) = $FF – (A)
X ← (X) = $FF – (X)
M ← (M) = $FF – (M)
M ← (M) = $FF – (M)
M ← (M) = $FF – (M)

0 – – ↕ ↕ 1

DIR
INH
INH
IX1
IX
SP1

33
43
53
63
73

9E63

dd

ff

ff

4
1
1
4
3
5

CPHX #opr
CPHX opr

Compare Index Register
(H:X) with Memory

(H:X) – (M:M + $0001)
(CCR Updated But Operands Not

Changed)
↕ – – ↕ ↕ ↕

IMM
DIR

65
75

jj ii+1
dd

3
4

CPX #opr8i
CPX opr8a
CPX opr16a
CPX oprx16,X
CPX oprx8,X
CPX ,X
CPX oprx16,SP
CPX oprx8,SP

Compare X (Index
Register Low) with
Memory

(X) – (M)
(CCR Updated But Operands Not

Changed)
↕ – – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A3
B3
C3
D3
E3
F3

9ED3
9EE3

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

DAA
Decimal Adjust
Accumulator After ADD or
ADC of BCD Values

(A)10 U – – ↕ ↕ ↕ INH 72 2

DBNZ opr8a,rel
DBNZA rel
DBNZX rel
DBNZ oprx8,X,rel
DBNZ ,X,rel
DBNZ oprx8,SP,rel

Decrement and Branch if
Not Zero

Decrement A, X, or M
Branch if (result) ≠ 0

DBNZX Affects X Not H
– – – – – –

DIR
INH
INH
IX1
IX
SP1

3B
4B
5B
6B
7B

9E6B

dd rr
rr
rr
ff rr
rr
ff rr

5
3
3
5
4
6

Table 4-10. Instruction Set Summary (Sheet 4 of 9)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

od
e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C
Reference Manual CPU08 — Rev. 3.0

82 Addressing Modes MOTOROLA

Addressing Modes
Instruction Set Summary
DEC opr8a
DECA
DECX
DEC oprx8,X
DEC ,X
DEC oprx8,SP

Decrement

M ← (M) – $01
A ← (A) – $01
X ← (X) – $01
M ← (M) – $01
M ← (M) – $01
M ← (M) – $01

↕ – – ↕ ↕ –

DIR
INH
INH
IX1
IX
SP1

3A
4A
5A
6A
7A

9E6A

dd

ff

ff

4
1
1
4
3
5

DIV Divide
A ← (H:A)÷(X)

H ← Remainder
– – – – ↕ ↕ INH 52 7

EOR #opr8i
EOR opr8a
EOR opr16a
EOR oprx16,X
EOR oprx8,X
EOR ,X
EOR oprx16,SP
EOR oprx8,SP

Exclusive OR
Memory with
Accumulator

A ← (A ⊕ M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A8
B8
C8
D8
E8
F8

9ED8
9EE8

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

INC opr8a
INCA
INCX
INC oprx8,X
INC ,X
INC oprx8,SP

Increment

M ← (M) + $01
A ← (A) + $01
X ← (X) + $01
M ← (M) + $01
M ← (M) + $01
M ← (M) + $01

↕ – – ↕ ↕ –

DIR
INH
INH
IX1
IX
SP1

3C
4C
5C
6C
7C

9E6C

dd

ff

ff

4
1
1
4
3
5

JMP opr8a
JMP opr16a
JMP oprx16,X
JMP oprx8,X
JMP ,X

 Jump PC ← Jump Address – – – – – –

DIR
EXT
IX2
IX1
IX

BC
CC
DC
EC
FC

dd
hh ll
ee ff
ff

2
3
4
3
3

JSR opr8a
JSR opr16a
JSR oprx16,X
JSR oprx8,X
JSR ,X

Jump to Subroutine

PC ← (PC) + n (n = 1, 2, or 3)
Push (PCL); SP ← (SP) – $0001
Push (PCH); SP ← (SP) – $0001

PC ← Unconditional Address

– – – – – –

DIR
EXT
IX2
IX1
IX

BD
CD
DD
ED
FD

dd
hh ll
ee ff
ff

4
5
6
5
4

LDA #opr8i
LDA opr8a
LDA opr16a
LDA oprx16,X
LDA oprx8,X
LDA ,X
LDA oprx16,SP
LDA oprx8,SP

Load Accumulator from
Memory

A ← (M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A6
B6
C6
D6
E6
F6

9ED6
9EE6

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

LDHX #opr
LDHX opr

Load Index Register (H:X)
from Memory

H:X ← (M:M + $0001) 0 – – ↕ ↕ –
IMM
DIR

45
55

ii jj
dd

3
4

Table 4-10. Instruction Set Summary (Sheet 5 of 9)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

od
e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Addressing Modes 83

Addressing Modes
LDX #opr8i
LDX opr8a
LDX opr16a
LDX oprx16,X
LDX oprx8,X
LDX ,X
LDX oprx16,SP
LDX oprx8,SP

Load X (Index Register
Low) from Memory

X ← (M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AE
BE
CE
DE
EE
FE

9EDE
9EEE

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

LSL opr8a
LSLA
LSLX
LSL oprx8,X
LSL ,X
LSL oprx8,SP

Logical Shift Left
(Same as ASL)

↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

38
48
58
68
78

9E68

dd

ff

ff

4
1
1
4
3
5

LSR opr8a
LSRA
LSRX
LSR oprx8,X
LSR ,X
LSR oprx8,SP

Logical Shift Right ↕ – – 0 ↕ ↕

DIR
INH
INH
IX1
IX
SP1

34
44
54
64
74

9E64

dd

ff

ff

4
1
1
4
3
5

MOV opr8a,opr8a
MOV opr8a,X+
MOV #opr8i,opr8a
MOV ,X+,opr8a

Move

(M)destination ← (M)source

H:X ← (H:X) + $0001 in
IX+/DIR and DIR/IX+ Modes

0 – – ↕ ↕ –

DIR/DIR
DIR/IX+
IMM/DIR
IX+/DIR

4E
5E
6E
7E

dd dd
dd
ii dd
dd

5
4
4
4

MUL Unsigned multiply X:A ← (X) × (A) – 0 – – – 0 INH 42 5

NEG opr8a
NEGA
NEGX
NEG oprx8,X
NEG ,X
NEG oprx8,SP

Negate
(Two’s Complement)

M ← – (M) = $00 – (M)
A ← – (A) = $00 – (A)
X ← – (X) = $00 – (X)
M ← – (M) = $00 – (M)
M ← – (M) = $00 – (M)
M ← – (M) = $00 – (M)

↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

30
40
50
60
70

9E60

dd

ff

ff

4
1
1
4
3
5

NOP No Operation Uses 1 Bus Cycle – – – – – – INH 9D 1

NSA
Nibble Swap
Accumulator

A ← (A[3:0]:A[7:4]) – – – – – – INH 62 3

ORA #opr8i
ORA opr8a
ORA opr16a
ORA oprx16,X
ORA oprx8,X
ORA ,X
ORA oprx16,SP
ORA oprx8,SP

Inclusive OR Accumulator
and Memory

A ← (A) | (M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AA
BA
CA
DA
EA
FA

9EDA
9EEA

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

PSHA
Push Accumulator onto
Stack

Push (A); SP ← (SP) – $0001 – – – – – – INH 87 2

PSHH
Push H (Index Register
High) onto Stack

Push (H); SP ← (SP) – $0001 – – – – – – INH 8B 2

Table 4-10. Instruction Set Summary (Sheet 6 of 9)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

od
e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

C

b0b7

0

b0b7

C0
Reference Manual CPU08 — Rev. 3.0

84 Addressing Modes MOTOROLA

Addressing Modes
Instruction Set Summary
PSHX
Push X (Index Register
Low) onto Stack

Push (X); SP ← (SP) – $0001 – – – – – – INH 89 2

PULA
Pull Accumulator from
Stack

SP ← (SP + $0001); Pull (A) – – – – – – INH 86 2

PULH
Pull H (Index Register
High) from Stack

SP ← (SP + $0001); Pull (H) – – – – – – INH 8A 2

PULX
Pull X (Index Register
Low) from Stack

SP ← (SP + $0001); Pull (X) – – – – – – INH 88 2

ROL opr8a
ROLA
ROLX
ROL oprx8,X
ROL ,X
ROL oprx8,SP

Rotate Left through Carry ↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

39
49
59
69
79

9E69

dd

ff

ff

4
1
1
4
3
5

ROR opr8a
RORA
RORX
ROR oprx8,X
ROR ,X
ROR oprx8,SP

Rotate Right through
Carry

↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

36
46
56
66
76

9E66

dd

ff

ff

4
1
1
4
3
5

RSP Reset Stack Pointer
SP ← $FF

(High Byte Not Affected)
– – – – – – INH 9C 1

RTI Return from Interrupt

SP ← (SP) + $0001; Pull (CCR)
SP ← (SP) + $0001; Pull (A)
SP ← (SP) + $0001; Pull (X)

SP ← (SP) + $0001; Pull (PCH)
SP ← (SP) + $0001; Pull (PCL)

↕ ↕ ↕ ↕ ↕ ↕ INH 80 7

RTS Return from Subroutine
SP ← SP + $0001; Pull (PCH)
SP ← SP + $0001; Pull (PCL)

– – – – – – INH 81 4

SBC #opr8i
SBC opr8a
SBC opr16a
SBC oprx16,X
SBC oprx8,X
SBC ,X
SBC oprx16,SP
SBC oprx8,SP

Subtract with Carry A ← (A) – (M) – (C) ↕ – – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A2
B2
C2
D2
E2
F2

9ED2
9EE2

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

SEC Set Carry Bit C ← 1 – – – – – 1 INH 99 1

SEI Set Interrupt Mask Bit I ← 1 – – 1 – – – INH 9B 2

STA opr8a
STA opr16a
STA oprx16,X
STA oprx8,X
STA ,X
STA oprx16,SP
STA oprx8,SP

Store Accumulator in
Memory

M ← (A) 0 – – ↕ ↕ –

DIR
EXT
IX2
IX1
IX
SP2
SP1

B7
C7
D7
E7
F7

9ED7
9EE7

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

Table 4-10. Instruction Set Summary (Sheet 7 of 9)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

od
e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

C

b0b7

b0b7

C

CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Addressing Modes 85

Addressing Modes
STHX opr Store H:X (Index Reg.) (M:M + $0001) ← (H:X) 0 – – ↕ ↕ – DIR 35 dd 4

STOP

Enable Interrupts:
Stop Processing
Refer to MCU
Documentation

I bit ← 0; Stop Processing – – 0 – – – INH 8E 1

STX opr8a
STX opr16a
STX oprx16,X
STX oprx8,X
STX ,X
STX oprx16,SP
STX oprx8,SP

Store X (Low 8 Bits of
Index Register)
in Memory

M ← (X) 0 – – ↕ ↕ –

DIR
EXT
IX2
IX1
IX
SP2
SP1

BF
CF
DF
EF
FF

9EDF
9EEF

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

SUB #opr8i
SUB opr8a
SUB opr16a
SUB oprx16,X
SUB oprx8,X
SUB ,X
SUB oprx16,SP
SUB oprx8,SP

Subtract A ← (A) – (M) ↕ – – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A0
B0
C0
D0
E0
F0

9ED0
9EE0

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
2
5
4

SWI Software Interrupt

PC ← (PC) + $0001
Push (PCL); SP ← (SP) – $0001
Push (PCH); SP ← (SP) – $0001

Push (X); SP ← (SP) – $0001
Push (A); SP ← (SP) – $0001

Push (CCR); SP ← (SP) – $0001
I ← 1;

PCH ← Interrupt Vector High Byte
PCL ← Interrupt Vector Low Byte

– – 1 – – – INH 83 9

TAP
Transfer Accumulator to
CCR

CCR ← (A) ↕ ↕ ↕ ↕ ↕ ↕ INH 84 2

TAX
Transfer Accumulator to
X (Index Register Low)

X ← (A) – – – – – – INH 97 1

TPA
Transfer CCR to
Accumulator

A ← (CCR) – – – – – – INH 85 1

TST opr8a
TSTA
TSTX
TST oprx8,X
TST ,X
TST oprx8,SP

Test for Negative or Zero

(M) – $00
(A) – $00
(X) – $00
(M) – $00
(M) – $00
(M) – $00

0 – – ↕ ↕ –

DIR
INH
INH
IX1
IX
SP1

3D
4D
5D
6D
7D

9E6D

dd

ff

ff

3
1
1
3
2
4

TSX Transfer SP to Index Reg. H:X ← (SP) + $0001 – – – – – – INH 95 2

TXA
Transfer X (Index Reg.
Low) to Accumulator

A ← (X) – – – – – – INH 9F 1

Table 4-10. Instruction Set Summary (Sheet 8 of 9)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

od
e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C
Reference Manual CPU08 — Rev. 3.0

86 Addressing Modes MOTOROLA

Addressing Modes
Opcode Map
4.5 Opcode Map

The opcode map is provided in Table 4-11.

TXS Transfer Index Reg. to SP SP ← (H:X) – $0001 – – – – – – INH 94 2

WAIT
Enable Interrupts; Wait
for Interrupt

I bit ← 0; Halt CPU – – 0 – – – INH 8F 1

A Accumulator n Any bit
C Carry/borrow bit opr Operand (one or two bytes)
CCR Condition code register PC Program counter
dd Direct address of operand PCH Program counter high byte
dd rr Direct address of operand and relative offset of branch instruction PCL Program counter low byte
DD Direct to direct addressing mode REL Relative addressing mode
DIR Direct addressing mode rel Relative program counter offset byte
DIX+ Direct to indexed with post increment addressing mode rr Relative program counter offset byte
ee ff High and low bytes of offset in indexed, 16-bit offset addressing SP1 Stack pointer, 8-bit offset addressing mode
EXT Extended addressing mode SP2 Stack pointer 16-bit offset addressing mode
ff Offset byte in indexed, 8-bit offset addressing SP Stack pointer
H Half-carry bit U Undefined
H Index register high byte V Overflow bit
hh ll High and low bytes of operand address in extended addressing X Index register low byte
I Interrupt mask Z Zero bit
ii Immediate operand byte & Logical AND
IMD Immediate source to direct destination addressing mode | Logical OR
IMM Immediate addressing mode ⊕ Logical EXCLUSIVE OR
INH Inherent addressing mode () Contents of
IX Indexed, no offset addressing mode –() Negation (two’s complement)
IX+ Indexed, no offset, post increment addressing mode # Immediate value
IX+D Indexed with post increment to direct addressing mode « Sign extend
IX1 Indexed, 8-bit offset addressing mode ← Loaded with
IX1+ Indexed, 8-bit offset, post increment addressing mode ? If
IX2 Indexed, 16-bit offset addressing mode : Concatenated with
M Memory location ↕ Set or cleared
N Negative bit — Not affected

Table 4-10. Instruction Set Summary (Sheet 9 of 9)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

od
e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Addressing Modes 87

R
efere

88
A

dd
ressing M

ode
s

M
O

T
O

R
O

LA

A
d

d
ressin

g
 M

o
d

es

Register/Memory
IX2 SP2 IX1 SP1 IX

D 9ED E 9EE F

4
SUB

IX2

5
SUB

4 SP2

3
SUB

2 IX1

4
SUB

3 SP1

2
SUB

1 IX
4

CMP
IX2

5
CMP

4 SP2

3
CMP

2 IX1

4
CMP

3 SP1

2
CMP

1 IX
4

SBC
IX2

5
SBC

4 SP2

3
SBC

2 IX1

4
SBC

3 SP1

2
SBC

1 IX
4

CPX
IX2

5
CPX

4 SP2

3
CPX

2 IX1

4
CPX

3 SP1

2
CPX

1 IX
4

AND
IX2

5
AND

4 SP2

3
AND

2 IX1

4
AND

3 SP1

2
AND

1 IX
4

BIT
IX2

5
BIT

4 SP2

3
BIT

2 IX1

4
BIT

3 SP1

2
BIT

1 IX
4

LDA
IX2

5
LDA

4 SP2

3
LDA

2 IX1

4
LDA

3 SP1

2
LDA

1 IX
4

STA
IX2

5
STA

4 SP2

3
STA

2 IX1

4
STA

3 SP1

2
STA

1 IX
4

EOR
IX2

5
EOR

4 SP2

3
EOR

2 IX1

4
EOR

3 SP1

2
EOR

1 IX
4

ADC
IX2

5
ADC

4 SP2

3
ADC

2 IX1

4
ADC

3 SP1

2
ADC

1 IX
4

ORA
IX2

5
ORA

4 SP2

3
ORA

2 IX1

4
ORA

3 SP1

2
ORA

1 IX
4

ADD
IX2

5
ADD

4 SP2

3
ADD

2 IX1

4
ADD

3 SP1

2
ADD

1 IX
4

JMP
IX2

3
JMP

2 IX1

2
JMP

1 IX
6

JSR
IX2

5
JSR

2 IX1

4
JSR

1 IX
4

LDX
IX2

5
LDX

4 SP2

3
LDX

2 IX1

4
LDX

3 SP1

2
LDX

1 IX

4
STX

IX2

5
STX

4 SP2

3
STX

2 IX1

4
STX

3 SP1

2
STX

1 IX

C08 Cycles
pcode Mnemonic
umber of Bytes / Addressing Mode
nce M
an

ual
C

P
U

08 —
R

ev. 3.0

Table 4-11. Opcode Map
Bit-Manipulation Branch Read-Modify-Write Control
DIR DIR REL DIR INH INH IX1 SP1 IX INH INH IMM DIR EXT

0 1 2 3 4 5 6 9E6 7 8 9 A B C

0
5

BRSET0
3 DIR

4
BSET0

2 DIR

3
BRA

2 REL

4
NEG

2 DIR

1
NEGA

1 INH

1
NEGX

1 INH

4
NEG

2 IX1

5
NEG

3 SP1

3
NEG

1 IX

7
RTI

1 INH

3
BGE

2 REL

2
SUB

2 IMM

3
SUB

2 DIR

4
SUB

3 EXT 3

1
5

BRCLR0
3 DIR

4
BCLR0

2 DIR

3
BRN

2 REL

5
CBEQ

3 DIR

4
CBEQA
3 IMM

4
CBEQX

3 IMM

5
CBEQ

3 IX1+

6
CBEQ

4 SP1

4
CBEQ

2 IX+

4
RTS

1 INH

3
BLT

2 REL

2
CMP

2 IMM

3
CMP

2 DIR

4
CMP

3 EXT 3

2
5

BRSET1
3 DIR

4
BSET1

2 DIR

3
BHI

2 REL

5
MUL

1 INH

7
DIV

1 INH

3
NSA

1 INH

2
DAA

1 INH

3
BGT

2 REL

2
SBC

2 IMM

3
SBC

2 DIR

4
SBC

3 EXT 3

3
5

BRCLR1
3 DIR

4
BCLR1

2 DIR

3
BLS

2 REL

4
COM

2 DIR

1
COMA

1 INH

1
COMX

1 INH

4
COM

2 IX1

5
COM

3 SP1

3
COM

1 IX

9
SWI

1 INH

3
BLE

2 REL

2
CPX

2 IMM

3
CPX

2 DIR

4
CPX

3 EXT 3

4
5

BRSET2
3 DIR

4
BSET2

2 DIR

3
BCC

2 REL

4
LSR

2 DIR

1
LSRA

1 INH

1
LSRX

1 INH

4
LSR

2 IX1

5
LSR

3 SP1

3
LSR

1 IX

2
TAP

1 INH

2
TXS

1 INH

2
AND

2 IMM

3
AND

2 DIR

4
AND

3 EXT 3

5
5

BRCLR2
3 DIR

4
BCLR2

2 DIR

3
BCS

2 REL

4
STHX

2 DIR

3
LDHX

3 IMM

4
LDHX

2 DIR

3
CPHX

3 IMM

4
CPHX

2 DIR

1
TPA

1 INH

2
TSX

1 INH

2
BIT

2 IMM

3
BIT

2 DIR

4
BIT

3 EXT 3

6
5

BRSET3
3 DIR

4
BSET3

2 DIR

3
BNE

2 REL

4
ROR

2 DIR

1
RORA

1 INH

1
RORX

1 INH

4
ROR

2 IX1

5
ROR

3 SP1

3
ROR

1 IX

2
PULA

1 INH

2
LDA

2 IMM

3
LDA

2 DIR

4
LDA

3 EXT 3

7
5

BRCLR3
3 DIR

4
BCLR3

2 DIR

3
BEQ

2 REL

4
ASR

2 DIR

1
ASRA

1 INH

1
ASRX

1 INH

4
ASR

2 IX1

5
ASR

3 SP1

3
ASR

1 IX

2
PSHA

1 INH

1
TAX

1 INH

2
AIS

2 IMM

3
STA

2 DIR

4
STA

3 EXT 3

8
5

BRSET4
3 DIR

4
BSET4

2 DIR

3
BHCC

2 REL

4
LSL

2 DIR

1
LSLA

1 INH

1
LSLX

1 INH

4
LSL

2 IX1

5
LSL

3 SP1

3
LSL

1 IX

2
PULX

1 INH

1
CLC

1 INH

2
EOR

2 IMM

3
EOR

2 DIR

4
EOR

3 EXT 3

9
5

BRCLR4
3 DIR

4
BCLR4

2 DIR

3
BHCS

2 REL

4
ROL

2 DIR

1
ROLA

1 INH

1
ROLX

1 INH

4
ROL

2 IX1

5
ROL

3 SP1

3
ROL

1 IX

2
PSHX

1 INH

1
SEC

1 INH

2
ADC

2 IMM

3
ADC

2 DIR

4
ADC

3 EXT 3

A
5

BRSET5
3 DIR

4
BSET5

2 DIR

3
BPL

2 REL

4
DEC

2 DIR

1
DECA

1 INH

1
DECX

1 INH

4
DEC

2 IX1

5
DEC

3 SP1

3
DEC

1 IX

2
PULH

1 INH

2
CLI

1 INH

2
ORA

2 IMM

3
ORA

2 DIR

4
ORA

3 EXT 3

B
5

BRCLR5
3 DIR

4
BCLR5

2 DIR

3
BMI

2 REL

5
DBNZ

3 DIR

3
DBNZA

2 INH

3
DBNZX

2 INH

5
DBNZ

3 IX1

6
DBNZ

4 SP1

4
DBNZ

2 IX

2
PSHH

1 INH

2
SEI

1 INH

2
ADD

2 IMM

3
ADD

2 DIR

4
ADD

3 EXT 3

C
5

BRSET6
3 DIR

4
BSET6

2 DIR

3
BMC

2 REL

4
INC

2 DIR

1
INCA

1 INH

1
INCX

1 INH

4
INC

2 IX1

5
INC

3 SP1

3
INC

1 IX

1
CLRH

1 INH

1
RSP

1 INH

2
JMP

2 DIR

3
JMP

3 EXT 3

D
5

BRCLR6
3 DIR

4
BCLR6

2 DIR

3
BMS

2 REL

3
TST

2 DIR

1
TSTA

1 INH

1
TSTX

1 INH

3
TST

2 IX1

4
TST

3 SP1

2
TST

1 IX

1
NOP

1 INH

4
BSR

2 REL

4
JSR

2 DIR

5
JSR

3 EXT 3

E
5

BRSET7
3 DIR

4
BSET7

2 DIR

3
BIL

2 REL

5
MOV

3 DD

4
MOV

2 DIX+

4
MOV

3 IMD

4
MOV

2 IX+D

1
STOP

1 INH
*

2
LDX

2 IMM

3
LDX

2 DIR

4
LDX

3 EXT 3

F
5

BRCLR7
3 DIR

4
BCLR7

2 DIR

3
BIH

2 REL

3
CLR

2 DIR

1
CLRA

1 INH

1
CLRX

1 INH

3
CLR

2 IX1

4
CLR

3 SP1

2
CLR

1 IX

1
WAIT

1 INH

1
TXA

1 INH

2
AIX

2 IMM

3
STX

2 DIR

4
STX

3 EXT 3

INH Inherent REL Relative SP1 Stack Pointer, 8-Bit Offset
IMM Immediate IX Indexed, No Offset SP2 Stack Pointer, 16-Bit Offset
DIR Direct IX1 Indexed, 8-Bit Offset IX+ Indexed, No Offset with
EXT Extended IX2 Indexed, 16-Bit Offset Post Increment
DD Direct-Direct IMD Immediate-Direct IX1+ Indexed, 1-Byte Offset with
IX+D Indexed-Direct DIX+ Direct-Indexed Post Increment

*Pre-byte for stack pointer indexed instructions

High Byte of Opcode in Hexadecimal F

Low Byte of Opcode in Hexadecimal 0
2

SUB
1 IX

H
O
N

HIGH

LOW

Reference Manual — CPU08

Section 5. Instruction Set
5.1 Contents

5.2 Introduction .92

5.3 Nomenclature .92

5.4 Convention Definitions .96

5.5 Instruction Set. .96
ADC Add with Carry . 97
ADD Add without Carry . 98
AIS Add Immediate Value (Signed)

to Stack Pointer . 99
AIX Add Immediate Value (Signed)

to Index Register . 100
AND Logical AND . 101
ASL Arithmetic Shift Left . 102
ASR Arithmetic Shift Right . 103
BCC Branch if Carry Bit Clear 104
BCLR n Clear Bit n in Memory . 105
BCS Branch if Carry Bit Set . 106
BEQ Branch if Equal . 107
BGE Branch if Greater Than or Equal To 108
BGT Branch if Greater Than . 109
BHCC Branch if Half Carry Bit Clear 110
BHCS Branch if Half Carry Bit Set 111
BHI Branch if Higher. 112
BHS Branch if Higher or Same 113
BIH Branch if IRQ Pin High . 114
BIL Branch if IRQ Pin Low . 115
BIT Bit Test . 116
BLE Branch if Less Than or Equal To. 117
BLO Branch if Lower . 118
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 89

Instruction Set
BLS Branch if Lower or Same. 119
BLT Branch if Less Than . 120
BMC Branch if Interrupt Mask Clear. 121
BMI Branch if Minus . 122
BMS Branch if Interrupt Mask Set 123
BNE Branch if Not Equal . 124
BPL Branch if Plus . 125
BRA Branch Always. 126
BRA Branch Always. 127
BRCLR n Branch if Bit n in Memory Clear. 128
BRN Branch Never . 129
BRSET n Branch if Bit n in Memory Set 130
BSET n Set Bit n in Memory . 131
BSR Branch to Subroutine. 132
CBEQ Compare and Branch if Equal 133
CLC Clear Carry Bit . 134
CLI Clear Interrupt Mask Bit. 135
CLR Clear . 136
CMP Compare Accumulator with Memory 137
COM Complement (One’s Complement) 138
CPHX Compare Index Register with Memory 139
CPX Compare X (Index Register Low)

with Memory . 140
DAA Decimal Adjust Accumulator 141
DAA Decimal Adjust Accumulator (Continued) 142
DBNZ Decrement and Branch if Not Zero 143
DEC Decrement. 144
DIV Divide . 145
EOR Exclusive-OR Memory with Accumulator 146
INC Increment . 147
JMP Jump . 148
JSR Jump to Subroutine . 149
LDA Load Accumulator from Memory 150
LDHX Load Index Register from Memory 151
LDX Load X (Index Register Low) from Memory. 152
LSL Logical Shift Left . 153
LSR Logical Shift Right . 154
MOV Move . 155
Reference Manual CPU08 — Rev. 3.0

90 Instruction Set MOTOROLA

Instruction Set
Contents
MUL Unsigned Multiply . 156
NEG Negate (Two’s Complement). 157
NOP No Operation . 158
NSA Nibble Swap Accumulator 159
ORA Inclusive-OR Accumulator and Memory 160
PSHA Push Accumulator onto Stack 161
PSHH Push H (Index Register High) onto Stack 162
PSHX Push X (Index Register Low) onto Stack 163
PULA Pull Accumulator from Stack 164
PULH Pull H (Index Register High) from Stack 165
PULX Pull X (Index Register Low) from Stack. 166
ROL Rotate Left through Carry 167
ROR Rotate Right through Carry 168
RSP Reset Stack Pointer. 169
RTI Return from Interrupt . 170
RTS Return from Subroutine . 171
SBC Subtract with Carry . 172
SEC Set Carry Bit . 173
SEI Set Interrupt Mask Bit . 174
STA Store Accumulator in Memory 175
STHX Store Index Register . 176
STOP Enable IRQ Pin, Stop Oscillator 177
STX Store X (Index Register Low) in Memory 178
SUB Subtract . 179
SWI Software Interrupt . 180
TAP Transfer Accumulator to Processor

Status Byte . 181
TAX Transfer Accumulator to X

(Index Register Low) 182
TPA Transfer Processor Status Byte

to Accumulator . 183
TST Test for Negative or Zero 184
TSX Transfer Stack Pointer to Index Register 185
TXA Transfer X (Index Register Low)

 to Accumulator . 186
TXS Transfer Index Register to Stack Pointer 187
WAIT Enable Interrupts; Stop Processor 188
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 91

Instruction Set
5.2 Introduction

This section contains detailed information for all HC08 Family
instructions. The instructions are arranged in alphabetical order with the
instruction mnemonic set in larger type for easy reference.

5.3 Nomenclature

This nomenclature is used in the instruction descriptions throughout this
section.

Operators

() = Contents of register or memory location shown inside
parentheses

← = Is loaded with (read: “gets”)
& = Boolean AND
| = Boolean OR

⊕ = Boolean exclusive-OR
× = Multiply
÷ = Divide
: = Concatenate

+ = Add
– = Negate (two’s complement)
« = Sign extend

CPU registers

A = Accumulator
CCR = Condition code register

H = Index register, higher order (most significant) eight bits
X = Index register, lower order (least significant) eight bits

PC = Program counter
PCH = Program counter, higher order (most significant) eight

bits
PCL = Program counter, lower order (least significant) eight

bits
SP = Stack pointer
Reference Manual CPU08 — Rev. 3.0

92 Instruction Set MOTOROLA

Instruction Set
Nomenclature
Memory and addressing

M = A memory location or absolute data, depending on
addressing mode

M:M + $0001= A 16-bit value in two consecutive memory locations.
The higher-order (most significant) eight bits are
located at the address of M, and the lower-order (least
significant) eight bits are located at the next higher
sequential address.

rel = The relative offset, which is the two’s complement
number stored in the last byte of machine code
corresponding to a branch instruction

Condition code register (CCR) bits

V = Two’s complement overflow indicator, bit 7
H = Half carry, bit 4
I = Interrupt mask, bit 3

N = Negative indicator, bit 2
Z = Zero indicator, bit 1
C = Carry/borrow, bit 0 (carry out of bit 7)

Bit status BEFORE execution of an instruction (n = 7, 6, 5, ... 0)

For 2-byte operations such as LDHX, STHX, and CPHX, n = 15 refers
to bit 15 of the 2-byte word or bit 7 of the most significant (first) byte.

Mn = Bit n of memory location used in operation
An = Bit n of accumulator
Hn = Bit n of index register H
Xn = Bit n of index register X
bn = Bit n of the source operand (M, A, or X)

Bit status AFTER execution of an instruction

For 2-byte operations such as LDHX, STHX, and CPHX, n = 15 refers
to bit 15 of the 2-byte word or bit 7 of the most significant (first) byte.

Rn = Bit n of the result of an operation (n = 7, 6, 5, … 0)
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 93

Instruction Set
CCR activity figure notation

– = Bit not affected
0 = Bit forced to 0
1 = Bit forced to 1
↕ = Bit set or cleared according to results of operation
U = Undefined after the operation

Machine coding notation

dd = Low-order eight bits of a direct address $0000–$00FF
(high byte assumed to be $00)

ee = Upper eight bits of 16-bit offset
ff = Lower eight bits of 16-bit offset or 8-bit offset
ii = One byte of immediate data
jj = High-order byte of a 16-bit immediate data value

kk = Low-order byte of a 16-bit immediate data value
hh = High-order byte of 16-bit extended address

ll = Low-order byte of 16-bit extended address
rr = Relative offset

Source forms

The instruction detail pages provide only essential information about
assembler source forms. Assemblers generally support a number of
assembler directives, allow definition of program labels, and have
special conventions for comments. For complete information about
writing source files for a particular assembler, refer to the documentation
provided by the assembler vendor.

Typically, assemblers are flexible about the use of spaces and tabs.
Often, any number of spaces or tabs can be used where a single space
is shown on the glossary pages. Spaces and tabs are also normally
allowed before and after commas. When program labels are used, there
must also be at least one tab or space before all instruction mnemonics.
This required space is not apparent in the source forms.

Everything in the source forms columns, except expressions in italic
characters, is literal information which must appear in the assembly
source file exactly as shown. The initial 3- to 5-letter mnemonic is always
Reference Manual CPU08 — Rev. 3.0

94 Instruction Set MOTOROLA

Instruction Set
Nomenclature
a literal expression. All commas, pound signs (#), parentheses, and plus
signs (+) are literal characters.

The definition of a legal label or expression varies from assembler to
assembler. Assemblers also vary in the way CPU registers are specified.
Refer to assembler documentation for detailed information.
Recommended register designators are a, A, h, H, x, X, sp, and SP.

n — Any label or expression that evaluates to a single
integer in the range 0–7

opr8i — Any label or expression that evaluates to an 8-bit
immediate value

opr16i — Any label or expression that evaluates to a 16-bit
immediate value

opr8a — Any label or expression that evaluates to an 8-bit
value. The instruction treats this 8-bit value as the low
order eight bits of an address in the direct page of the
64-Kbyte address space ($00xx).

opr16a — Any label or expression that evaluates to a 16-bit
value. The instruction treats this value as an address
in the 64-Kbyte address space.

oprx8 — Any label or expression that evaluates to an unsigned
8-bit value; used for indexed addressing

oprx16 — Any label or expression that evaluates to a 16-bit
value. Since the MC68HC08S has a 16-bit address
bus, this can be either a signed or an unsigned value.

rel — Any label or expression that refers to an address that
is within –128 to +127 locations from the next address
after the last byte of object code for the current
instruction. The assembler will calculate the 8-bit
signed offset and include it in the object code for this
instruction.
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 95

Instruction Set
Address modes

INH = Inherent (no operands)
IMM = 8-bit or 16-bit immediate
DIR = 8-bit direct
EXT = 16-bit extended

IX = 16-bit indexed no offset
IX+ = 16-bit indexed no offset, post increment (CBEQ and

MOV only)
IX1 = 16-bit indexed with 8-bit offset from H:X

IX1+ = 16-bit indexed with 8-bit offset, post increment
(CBEQ only)

IX2 = 16-bit indexed with 16-bit offset from H:X
REL = 8-bit relative offset
SP1 = Stack pointer relative with 8-bit offset
SP2 = Stack pointer relative with 16-bit offset

5.4 Convention Definitions

Set refers specifically to establishing logic level 1 on a bit or bits.

Cleared refers specifically to establishing logic level 0 on a bit or bits.

A specific bit is referred to by mnemonic and bit number. A7 is bit 7 of
accumulator A. A range of bits is referred to by mnemonic and the bit
numbers that define the range. A [7:4] are bits 7 to 4 of the accumulator.

Parentheses indicate the contents of a register or memory location,
rather than the register or memory location itself. (A) is the contents of
the accumulator. In Boolean expressions, parentheses have the
traditional mathematical meaning.

5.5 Instruction Set

The following pages summarize each instruction, including operation
and description, condition codes and Boolean formulae, and a table with
source forms, addressing modes, machine code, and cycles.
Reference Manual CPU08 — Rev. 3.0

96 Instruction Set MOTOROLA

Instruction Set
Instruction Set
ADC Add with Carry ADC
Operation A ← (A) + (M) + (C)

Description Adds the contents of the C bit to the sum of the contents of A and M and
places the result in A. This operation is useful for addition of operands
that are larger than eight bits.

Condition Codes
and Boolean
Formulae

V: A7&M7&R7 | A7&M7&R7
Set if a two’s compement overflow resulted from the operation;
cleared otherwise

H: A3&M3 | M3&R3 | R3&A3
Set if there was a carry from bit 3; cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 | M7&R7 | R7&A7
Set if there was a carry from the most significant bit (MSB) of the
result; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 ↕ — ↕ ↕ ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

ADC #opr8i IMM A9 ii 2

ADC opr8a DIR B9 dd 3

ADC opr16a EXT C9 hh ll 4

ADC oprx16,X IX2 D9 ee ff 4

ADC oprx8,X IX1 E9 ff 3

ADC ,X IX F9 2

ADC oprx16,SP SP2 9ED9 ee ff 5

ADC oprx8,SP SP1 9EE9 ff 4
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 97

Instruction Set
ADD Add without Carry ADD
Operation A ← (A) + (M)

Description Adds the contents of M to the contents of A and places the result in A

Condition Codes
and Boolean
Formulae

:

V: A7&M7&R7 | A7&M7&R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

H: A3&M3 | M3&R3 | R3&A3
Set if there was a carry from bit 3; cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 | M7&R7 | R7&A7
Set if there was a carry from the MSB of the result; cleared
otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 ↕ — ↕ ↕ ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

ADD #opr8i IMM AB ii 2

ADD opr8a DIR BB dd 3

ADD opr16a EXT CB hh ll 4

ADD oprx16,X IX2 DB ee ff 4

ADD oprx8,X IX1 EB ff 3

ADD ,X IX FB 2

ADD oprx16,SP SP2 9EDB ee ff 5

ADD oprx8,SP SP1 9EEB ff 4
Reference Manual CPU08 — Rev. 3.0

98 Instruction Set MOTOROLA

Instruction Set
Instruction Set
AIS Add Immediate Value (Signed) to Stack Pointer AIS
Operation SP ← (SP) + (16 « M)

Description Adds the immediate operand to the stack pointer (SP). The immediate
value is an 8-bit two’s complement signed operand. The 8-bit operand is
sign-extended to 16 bits prior to the addition. The AIS instruction can be
used to create and remove a stack frame buffer that is used to store
temporary variables.

This instruction does not affect any condition code bits so status
information can be passed to or from a subroutine or C function and
allocation or deallocation of space for local variables will not disturb that
status information.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycle, and Access
Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

AIS #opr8i IMM A7 ii 2
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 99

Instruction Set
AIX Add Immediate Value (Signed) to Index Register AIX
Operation H:X ← (H:X) + (16 « M)

Description Adds an immediate operand to the 16-bit index register, formed by the
concatenation of the H and X registers. The immediate operand is an
8-bit two’s complement signed offset. The 8-bit operand is sign-
extended to 16 bits prior to the addition.

This instruction does not affect any condition code bits so index register
pointer calculations do not disturb the surrounding code which may rely
on the state of CCR status bits.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

AIX #opr8i IMM AF ii 2
Reference Manual CPU08 — Rev. 3.0

100 Instruction Set MOTOROLA

Instruction Set
Instruction Set
AND Logical AND AND
Operation A ← (A) & (M)

Description Performs the logical AND between the contents of A and the contents of
M and places the result in A. Each bit of A after the operation will be the
logical AND of the corresponding bits of M and of A before the operation.

Condition Codes
and Boolean
Formulae

:

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

AND #opr8i IMM A4 ii 2

AND opr8a DIR B4 dd 3

AND opr16a EXT C4 hh ll 4

AND oprx16,X IX2 D4 ee ff 4

AND oprx8,X IX1 E4 ff 3

AND ,X IX F4 2

AND oprx16,SP SP2 9ED4 ee ff 5

AND oprx8,SP SP1 9EE4 ff 4
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 101

Instruction Set
ASL Arithmetic Shift Left ASL
(Same as LSL)

Operation

Description Shifts all bits of A, X, or M one place to the left. Bit 0 is loaded with a 0.
The C bit in the CCR is loaded from the most significant bit of A, X, or M.
This is mathematically equivalent to multiplication by two. The V bit
indicates whether the sign of the result has changed.

Condition Codes
and Boolean
Formulae

V: R7⊕ b7
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b7
Set if, before the shift, the MSB of A, X, or M was set; cleared
otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

C b7 — — — — — — b0 0

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Addr
Mode

Machine Code HC08
CyclesOpcode Operand(s)

ASL opr8a DIR 38 dd 4

ASLA INH (A) 48 1

ASLX INH (X) 58 1

ASL oprx8,X IX1 68 ff 4

ASL ,X IX 78 3

ASL oprx8,SP SP1 9E68 ff 5
Reference Manual CPU08 — Rev. 3.0

102 Instruction Set MOTOROLA

Instruction Set
Instruction Set
ASR Arithmetic Shift Right ASR
Operation

Description Shifts all bits of A, X, or M one place to the right. Bit 7 is held constant.
Bit 0 is loaded into the C bit of the CCR. This operation effectively divides
a two’s complement value by 2 without changing its sign. The carry bit
can be used to round the result.

Condition Codes
and Boolean
Formulae

:

V: R7⊕ b0
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b0
Set if, before the shift, the LSB of A, X, or M was set; cleared
otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

b7 — — — — — — — b0 C

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

ASR opr8a DIR 37 dd 4

ASRA INH (A) 47 1

ASRX INH (X) 57 1

ASR oprx8,X IX1 67 ff 4

ASR ,X IX 77 3

ASR oprx8,SP SP1 9E67 ff 5
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 103

Instruction Set
BCC Branch if Carry Bit Clear BCC
(Same as BHS)

Operation If (C) = 0, PC ← (PC) + $0002 + rel

Simple branch

Description Tests state of C bit in CCR and causes a branch if C is clear. BCC can
be used after shift or rotate instructions or to check for overflow after
operations on unsigned numbers. See the BRA instruction for further
details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BCC rel REL 24 rr 3
Reference Manual CPU08 — Rev. 3.0

104 Instruction Set MOTOROLA

Instruction Set
Instruction Set
BCLR n Clear Bit n in Memory BCLR n
Operation Mn ← 0

Description Clear bit n (n = 7, 6, 5, … 0) in location M. All other bits in M are
unaffected. In other words, M can be any random-access memory
(RAM) or input/output (I/O) register address in the $0000 to $00FF area
of memory. (Direct addressing mode is used to specify the address of
the operand.) This instruction reads the specified 8-bit location, modifies
the specified bit, and then writes the modified 8-bit value back to the
memory location.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BCLR 0,opr8a DIR (b0) 11 dd 4

BCLR 1,opr8a DIR (b1) 13 dd 4

BCLR 2,opr8a DIR (b2) 15 dd 4

BCLR 3,opr8a DIR (b3) 17 dd 4

BCLR 4,opr8a DIR (b4) 19 dd 4

BCLR 5,opr8a DIR (b5) 1B dd 4

BCLR 6,opr8a DIR (b6) 1D dd 4

BCLR 7,opr8a DIR (b7) 1F dd 4
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 105

Instruction Set
BCS Branch if Carry Bit Set BCS
(Same as BLO)

Operation If (C) = 1, PC ← (PC) + $0002 + rel

Simple branch

Description Tests the state of the C bit in the CCR and causes a branch if C is set.
BCS can be used after shift or rotate instructions or to check for overflow
after operations on unsigned numbers. See the BRA instruction for
further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BCS rel REL 25 rr 3
Reference Manual CPU08 — Rev. 3.0

106 Instruction Set MOTOROLA

Instruction Set
Instruction Set
BEQ Branch if Equal BEQ
Operation If (Z) = 1, PC ← (PC) + $0002 + rel

Simple branch; may be used with signed or unsigned operations

Description Tests the state of the Z bit in the CCR and causes a branch if Z is set.
Compare instructions perform a subtraction with two operands and
produce an internal result without changing the original operands. If the
two operands were equal, the internal result of the subtraction for the
compare will be zero so the Z bit will be equal to one and the BEQ will
cause a branch.

This instruction can also be used after a load or store without having to
do a separate test or compare on the loaded value. See the BRA
instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BEQ rel REL 27 rr 3
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 107

Instruction Set
BGE Branch if Greater Than or Equal To BGE
Operation If (N ⊕ V) = 0, PC ← (PC) + $0002 + rel

For signed two’s complement values
if (Accumulator) ≥ (Memory), then branch

Description If the BGE instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch occurs if and only if
the two’s complement number in the A, X, or H:X register was greater
than or equal to the two’s complement number in memory.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BGE rel REL 90 rr 3
Reference Manual CPU08 — Rev. 3.0

108 Instruction Set MOTOROLA

Instruction Set
Instruction Set
BGT Branch if Greater Than BGT
Operation If (Z) | (N ⊕ V) = 0, PC ← (PC) + $0002 + rel

For signed two’s complement values
if (Accumulator) > (Memory), then branch

Description If the BGT instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch will occur if and only if
the two’s complement number in the A, X, or H:X register was greater
than the two’s complement number in memory.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BGT rel REL 92 rr 3
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 109

Instruction Set
BHCC Branch if Half Carry Bit Clear BHCC
Operation If (H) = 0, PC ← (PC) + $0002 + rel

Description Tests the state of the H bit in the CCR and causes a branch if H is clear.
This instruction is used in algorithms involving BCD numbers that were
originally written for the M68HC05 or M68HC08 devices. The DAA
instruction in the HC08 simplifies operations on BCD numbers so BHCC
and BHCS should not be needed in new programs. See the BRA
instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BHCC rel REL 28 rr 3
Reference Manual CPU08 — Rev. 3.0

110 Instruction Set MOTOROLA

Instruction Set
Instruction Set
BHCS Branch if Half Carry Bit Set BHCS
Operation If (H) = 1, PC ← (PC) + $0002 + rel

Description Tests the state of the H bit in the CCR and causes a branch if H is set.
This instruction is used in algorithms involving BCD numbers that were
originally written for the M68HC05 or M68HC08 devices. The DAA
instruction in the HC08 simplifies operations on BCD numbers so BHCC
and BHCS should not be needed in new programs. See the BRA
instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BHCS rel REL 29 rr 3
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 111

Instruction Set
BHI Branch if Higher BHI
Operation If (C) | (Z) = 0, PC ← (PC) + $0002 + rel

For unsigned values, if (Accumulator) > (Memory), then branch

Description Causes a branch if both C and Z are cleared. If the BHI instruction is
executed immediately after execution of a CMP, CPHX, CPX, SBC, or
SUB instruction, the branch will occur if the unsigned binary number in
the A, X, or H:X register was greater than unsigned binary number in
memory. Generally not useful after CLR, COM, DEC, INC, LDA, LDHX,
LDX, STA, STHX, STX, or TST because these instructions do not affect
the carry bit in the CCR. See the BRA instruction for details of the
execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BHI rel REL 22 rr 3
Reference Manual CPU08 — Rev. 3.0

112 Instruction Set MOTOROLA

Instruction Set
Instruction Set
BHS Branch if Higher or Same BHS
(Same as BCC)

Operation If (C) = 0, PC ← (PC) + $0002 + rel

For unsigned values, if (Accumulator) ≥ (Memory), then branch

Description If the BHS instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch will occur if the
unsigned binary number in the A, X, or H:X register was greater than or
equal to the unsigned binary number in memory. Generally not useful
after CLR, COM, DEC, INC, LDA, LDHX, LDX, STA, STHX, STX, or TST
because these instructions do not affect the carry bit in the CCR. See the
BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BHS rel REL 24 rr 3
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 113

Instruction Set
BIH Branch if IRQ Pin High BIH
Operation If IRQ pin = 1, PC ← (PC) + $0002 + rel

Description Tests the state of the external interrupt pin and causes a branch if the
pin is high. See the BRA instruction for further details of the execution of
the branch.

Condition Codes
and Boolean
Formulae

 None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BIH rel REL 2F rr 3
Reference Manual CPU08 — Rev. 3.0

114 Instruction Set MOTOROLA

Instruction Set
Instruction Set
BIL Branch if IRQ Pin Low BIL
Operation If IRQ pin = 0, PC ← (PC) + $0002 + rel

Description Tests the state of the external interrupt pin and causes a branch if the
pin is low. See the BRA instruction for further details of the execution of
the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BIL rel REL 2E rr 3
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 115

Instruction Set
BIT Bit Test BIT
Operation (A) & (M)

Description Performs the logical AND comparison of the contents of A and the
contents of M and modifies the condition codes accordingly. Neither the
contents of A nor M are altered. (Each bit of the result of the AND would
be the logical AND of the corresponding bits of A and M.)

This instruction is typically used to see if a particular bit, or any of several
bits, in a byte are 1s. A mask value is prepared with 1s in any bit
positions that are to be checked. This mask may be in accumulator A or
memory and the unknown value to be checked will be in memory or the
accumulator A, respectively. After the BIT instruction, a BNE instruction
will branch if any bits in the tested location that correspond to 1s in the
mask were 1s.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BIT #opr8i IMM A5 ii 2

BIT opr8a DIR B5 dd 3

BIT opr16a EXT C5 hh ll 4

BIT oprx16,X IX2 D5 ee ff 4

BIT oprx8,X IX1 E5 ff 3

BIT ,X IX F5 2

BIT oprx16,SP SP2 9ED5 ee ff 5

BIT oprx8,SP SP1 9EE5 ff 4
Reference Manual CPU08 — Rev. 3.0

116 Instruction Set MOTOROLA

Instruction Set
Instruction Set
BLE Branch if Less Than or Equal To BLE
Operation If (Z) | (N ⊕ V) = 1, PC ← (PC) + $0002 + rel

For signed two’s complement numbers
if (Accumulator) ≤ (Memory), then branch

Description If the BLE instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch will occur if and only if
the two’s complement in the A, X, or H:X register was less than or equal
to the two’s complement number in memory.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BLE rel REL 93 rr 3
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 117

Instruction Set
BLO Branch if Lower BLO
Operation If (C) = 1, PC ← (PC) + $0002 + rel

For unsigned values, if (Accumulator) < (Memory), then branch

Description If the BLO instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch will occur if the
unsigned binary number in the A, X, or H:X register was less than the
unsigned binary number in memory. Generally not useful after CLR,
COM, DEC, INC, LDA, LDHX, LDX, STA, STHX, STX, or TST because
these instructions do not affect the carry bit in the CCR. See the BRA
instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BLO rel REL 25 rr 3
Reference Manual CPU08 — Rev. 3.0

118 Instruction Set MOTOROLA

Instruction Set
Instruction Set
BLS Branch if Lower or Same BLS
Operation If (C) | (Z) = 1, PC ← (PC) + $0002 + rel

For unsigned values, if (Accumulator) ≤ (Memory), then branch

Description Causes a branch if (C is set) or (Z is set). If the BLS instruction is
executed immediately after execution of a CMP, CPHX, CPX, SBC, or
SUB instruction, the branch will occur if and only if the unsigned binary
number in the A, X, or H:X register was less than or equal to the
unsigned binary number in memory. Generally not useful after CLR,
COM, DEC, INC, LDA, LDHX, LDX, STA, STHX, STX, or TST because
these instructions do not affect the carry bit in the CCR. See the BRA
instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycle, and Access
Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BLS rel REL 23 rr 3
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 119

Instruction Set
BLT Branch if Less Than BLT
(Signed Operands)

Operation If (N ⊕ V) = 1, PC ← (PC) + $0002 + rel

For signed two’s complement numbers
if (Accumulator) < (Memory), then branch

Description If the BLT instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch will occur if and only if
the two’s complement number in the A, X, or H:X register was less than
the two’s complement number in memory. See the BRA instruction for
further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BLT rel REL 91 rr 3
Reference Manual CPU08 — Rev. 3.0

120 Instruction Set MOTOROLA

Instruction Set
Instruction Set
BMC Branch if Interrupt Mask Clear BMC
Operation If (I) = 0, PC ← (PC) + $0002 + rel

Description Tests the state of the I bit in the CCR and causes a branch if I is clear (if
interrupts are enabled). See the BRA instruction for further details of the
execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BMC rel REL 2C rr 3
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 121

Instruction Set
BMI Branch if Minus BMI
Operation If (N) = 1, PC ← (PC) + $0002 + rel

Simple branch; may be used with signed or unsigned operations

Description Tests the state of the N bit in the CCR and causes a branch if N is set.

Simply loading or storing A, X, or H:X will cause the N condition code bit
to be set or cleared to match the most significant bit of the value loaded
or stored. The BMI instruction can be used after such a load or store
without having to do a separate test or compare instruction before the
conditional branch. See the BRA instruction for further details of the
execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BMI rel REL 2B rr 3
Reference Manual CPU08 — Rev. 3.0

122 Instruction Set MOTOROLA

Instruction Set
Instruction Set
BMS Branch if Interrupt Mask Set BMS
Operation If (I) = 1, PC ← (PC) + $0002 + rel

Description Tests the state of the I bit in the CCR and causes a branch if I is set (if
interrupts are disabled). See BRA instruction for further details of the
execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BMS rel REL 2D rr 3
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 123

Instruction Set
BNE Branch if Not Equal BNE
Operation If (Z) = 0, PC ← (PC) + $0002 + rel

Simple branch, may be used with signed or unsigned operations

Description Tests the state of the Z bit in the CCR and causes a branch if Z is clear

Following a compare or subtract instruction, the branch will occur if the
arguments were not equal. This instruction can also be used after a load
or store without having to do a separate test or compare on the loaded
value. See the BRA instruction for further details of the execution of the
branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BNE rel REL 26 rr 3
Reference Manual CPU08 — Rev. 3.0

124 Instruction Set MOTOROLA

Instruction Set
Instruction Set
BPL Branch if Plus BPL
Operation If (N) = 0, PC ← (PC) + $0002 + rel

Simple branch

Description Tests the state of the N bit in the CCR and causes a branch if N is clear

Simply loading or storing A, X, or H:X will cause the N condition code bit
to be set or cleared to match the most significant bit of the value loaded
or stored. The BPL instruction can be used after such a load or store
without having to do a separate test or compare instruction before the
conditional branch. See the BRA instruction for further details of the
execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BPL rel REL 2A rr 3
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 125

Instruction Set
BRA Branch Always BRA
Operation PC ← (PC) + $0002 + rel

Description Performs an unconditional branch to the address given in the foregoing
formula. In this formula, rel is the two’s-complement relative offset in the
last byte of machine code for the instruction and (PC) is the address of
the opcode for the branch instruction.

A source program specifies the destination of a branch instruction by its
absolute address, either as a numerical value or as a symbol or
expression which can be numerically evaluated by the assembler. The
assembler calculates the 8-bit relative offset rel from this absolute
address and the current value of the location counter.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail The table on the facing page is a summary of all branch instructions.

The BRA description continues next page.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BRA rel REL 20 rr 3
Reference Manual CPU08 — Rev. 3.0

126 Instruction Set MOTOROLA

Instruction Set
Instruction Set
BRA Branch Always BRA
(Continued)

Branch Instruction
Summary

Table 5-1 is a summary of all branch instructions.

During program execution, if the tested condition is true, the two’s
complement offset is sign-extended to a 16-bit value which is added to
the current program counter. This causes program execution to continue
at the address specified as the branch destination. If the tested condition
is not true, the program simply continues to the next instruction after the
branch.

Table 5-1. Branch Instruction Summary

Branch Complementary Branch
Type

Test Boolean Mnemonic Opcode Test Mnemonic Opcode

r>m (Z) | (N⊕ V)=0 BGT 92 r≤m BLE 93 Signed

r≥m (N⊕ V)=0 BGE 90 r<m BLT 91 Signed

r=m (Z)=1 BEQ 27 r≠m BNE 26 Signed

r≤m (Z) | (N⊕ V)=1 BLE 93 r>m BGT 92 Signed

r<m (N⊕ V)=1 BLT 91 r≥m BGE 90 Signed

r>m (C) | (Z)=0 BHI 22 r≤m BLS 23 Unsigned

r≥m (C)=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r=m (Z)=1 BEQ 27 r≠m BNE 26 Unsigned

r≤m (C) | (Z)=1 BLS 23 r>m BHI 22 Unsigned

r<m (C)=1 BLO/BCS 25 r≥m BHS/BCC 24 Unsigned

Carry (C)=1 BCS 25 No carry BCC 24 Simple

result=0 (Z)=1 BEQ 27 result≠0 BNE 26 Simple

Negative (N)=1 BMI 2B Plus BPL 2A Simple

I mask (I)=1 BMS 2D I mask=0 BMC 2C Simple

H-Bit (H)=1 BHCS 29 H=0 BHCC 28 Simple

IRQ high — BIH 2F — BIL 2E Simple

Always — BRA 20 Never BRN 21 Uncond.

r = register: A, X, or H:X (for CPHX instruction) m = memory operand
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 127

Instruction Set
BRCLR n Branch if Bit n in Memory Clear BRCLR n
Operation If bit n of M = 0, PC ← (PC) + $0003 + rel

Description Tests bit n (n = 7, 6, 5, … 0) of location M and branches if the bit is clear.
M can be any RAM or I/O register address in the $0000 to $00FF area
of memory because direct addressing mode is used to specify the
address of the operand.

The C bit is set to the state of the tested bit. When used with an
appropriate rotate instruction, BRCLR n provides an easy method for
performing serial-to-parallel conversions.

Condition Codes
and Boolean
Formulae

C: Set if Mn = 1; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

— 1 1 — — — — ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BRCLR 0,opr8a,rel DIR (b0) 01 dd rr 5

BRCLR 1,opr8a,rel DIR (b1) 03 dd rr 5

BRCLR 2,opr8a,rel DIR (b2) 05 dd rr 5

BRCLR 3,opr8a,rel DIR (b3) 07 dd rr 5

BRCLR 4,opr8a,rel DIR (b4) 09 dd rr 5

BRCLR 5,opr8a,rel DIR (b5) 0B dd rr 5

BRCLR 6,opr8a,rel DIR (b6) 0D dd rr 5

BRCLR 7,opr8a,rel DIR (b7) 0F dd rr 5
Reference Manual CPU08 — Rev. 3.0

128 Instruction Set MOTOROLA

Instruction Set
Instruction Set
BRN Branch Never BRN
Operation PC ← (PC) + $0002

Description Never branches. In effect, this instruction can be considered a 2-byte no
operation (NOP) requiring three cycles for execution. Its inclusion in the
instruction set provides a complement for the BRA instruction. The BRN
instruction is useful during program debugging to negate the effect of
another branch instruction without disturbing the offset byte.

This instruction can be useful in instruction-based timing delays.
Instruction-based timing delays are usually discouraged because such
code is not portable to systems with different clock speeds.

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BRN rel REL 21 rr 3
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 129

Instruction Set
BRSET n Branch if Bit n in Memory Set BRSET n
Operation If bit n of M = 1, PC ← (PC) + $0003 + rel

Description Tests bit n (n = 7, 6, 5, … 0) of location M and branches if the bit is set.
M can be any RAM or I/O register address in the $0000 to $00FF area
of memory because direct addressing mode is used to specify the
address of the operand.

The C bit is set to the state of the tested bit. When used with an
appropriate rotate instruction, BRSET n provides an easy method for
performing serial-to-parallel conversions.

Condition Codes
and Boolean
Formulae

C: Set if Mn = 1; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

— 1 1 — — — — ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BRSET 0,opr8a,rel DIR (b0) 00 dd rr 5

BRSET 1,opr8a,rel DIR (b1) 02 dd rr 5

BRSET 2,opr8a,rel DIR (b2) 04 dd rr 5

BRSET 3,opr8a,rel DIR (b3) 06 dd rr 5

BRSET 4,opr8a,rel DIR (b4) 08 dd rr 5

BRSET 5,opr8a,rel DIR (b5) 0A dd rr 5

BRSET 6,opr8a,rel DIR (b6) 0C dd rr 5

BRSET 7,opr8a,rel DIR (b7) 0E dd rr 5
Reference Manual CPU08 — Rev. 3.0

130 Instruction Set MOTOROLA

Instruction Set
Instruction Set
BSET n Set Bit n in Memory BSET n
Operation Mn ← 1

Description Set bit n (n = 7, 6, 5, … 0) in location M. All other bits in M are unaffected.
M can be any RAM or I/O register address in the $0000 to $00FF area
of memory because direct addressing mode is used to specify the
address of the operand. This instruction reads the specified 8-bit
location, modifies the specified bit, and then writes the modified 8-bit
value back to the memory location.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BSET 0,opr8a DIR (b0) 10 dd 4

BSET 1,opr8a DIR (b1) 12 dd 4

BSET 2,opr8a DIR (b2) 14 dd 4

BSET 3,opr8a DIR (b3) 16 dd 4

BSET 4,opr8a DIR (b4) 18 dd 4

BSET 5,opr8a DIR (b5) 1A dd 4

BSET 6,opr8a DIR (b6) 1C dd 4

BSET 7,opr8a DIR (b7) 1E dd 4
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 131

Instruction Set
BSR Branch to Subroutine BSR
Operation PC ← (PC) + $0002 Advance PC to return address

Push (PCL); SP ← (SP) – $0001 Push low half of return address
Push (PCH); SP ← (SP) – $0001 Push high half of return address
PC ← (PC) + rel Load PC with start address of

requested subroutine

Description The program counter is incremented by 2 from the opcode address (so
it points to the opcode of the next instruction which will be the return
address). The least significant byte of the contents of the program
counter (low-order return address) is pushed onto the stack. The stack
pointer is then decremented by 1. The most significant byte of the
contents of the program counter (high-order return address) is pushed
onto the stack. The stack pointer is then decremented by 1. A branch
then occurs to the location specified by the branch offset. See the BRA
instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

BSR rel REL AD rr 4
Reference Manual CPU08 — Rev. 3.0

132 Instruction Set MOTOROLA

Instruction Set
Instruction Set
CBEQ Compare and Branch if Equal CBEQ
Operation For DIR or IMM modes: if (A) = (M), PC ← (PC) + $0003 + rel

Or for IX+ mode: if (A) = (M); PC ← (PC) + $0002 + rel
Or for SP1 mode: if (A) = (M); PC ← (PC) + $0004 + rel
Or for CBEQX: if (X) = (M); PC ← (PC) + $0003 + rel

Description CBEQ compares the operand with the accumulator (or index register for
CBEQX instruction) against the contents of a memory location and
causes a branch if the register (A or X) is equal to the memory contents.
The CBEQ instruction combines CMP and BEQ for faster table lookup
routines and condition codes are not changed.

The IX+ variation of the CBEQ instruction compares the operand
addressed by H:X to A and causes a branch if the operands are equal.
H:X is then incremented regardless of whether a branch is taken. The
IX1+ variation of CBEQ operates the same way except that an 8-bit
offset is added to H:X to form the effective address of the operand.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

CBEQ opr8a,rel DIR 31 dd rr 5

CBEQA #opr8i,rel IMM 41 ii rr 4

CBEQX #opr8i,rel IMM 51 ii rr 4

CBEQ oprx8,X+,rel IX1+ 61 ff rr 5

CBEQ ,X+,rel IX+ 71 rr 4

CBEQ oprx8,SP,rel SP1 9E61 ff rr 6
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 133

Instruction Set
CLC Clear Carry Bit CLC
Operation C bit ← 0

Description Clears the C bit in the CCR. CLC may be used to set up the C bit prior
to a shift or rotate instruction that involves the C bit. The C bit can also
be used to pass status information between a subroutine and the calling
program.

Condition Codes
and Boolean
Formulae

C: 0
Cleared

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — 0

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

CLC INH 98 1
Reference Manual CPU08 — Rev. 3.0

134 Instruction Set MOTOROLA

Instruction Set
Instruction Set
CLI Clear Interrupt Mask Bit CLI
Operation I bit ← 0

Description Clears the interrupt mask bit in the CCR. When the I bit is clear,
interrupts are enabled. The I bit actually changes to zero at the end of
the cycle where the CLI instruction executes. This is too late to recognize
an interrupt that arrived before or during the CLI instruction so if
interrupts were previously disabled, the next instruction after a CLI will
always be executed even if there was an interrupt pending prior to
execution of the CLI instruction.

Condition Codes
and Boolean
Formulae

I: 0
 Cleared

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — 0 — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

CLI INH 9A 2
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 135

Instruction Set
CLR Clear CLR
Operation A ← $00

Or M ← $00
Or X ← $00
Or H ← $00

Description The contents of memory (M), A, X, or H are replaced with zeros.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: 0
Cleared

Z: 1
Set

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — 0 1 —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

CLR opr8a DIR 3F dd 3

CLRA INH (A) 4F 1

CLRX INH (X) 5F 1

CLRH INH (H) 8C 1

CLR oprx8,X IX1 6F ff 3

CLR ,X IX 7F 2

CLR oprx8,SP SP1 9E6F ff 4
Reference Manual CPU08 — Rev. 3.0

136 Instruction Set MOTOROLA

Instruction Set
Instruction Set
CMP Compare Accumulator with Memory CMP
Operation (A) – (M)

Description Compares the contents of A to the contents of M and sets the condition
codes, which may then be used for arithmetic (signed or unsigned) and
logical conditional branching. The contents of both A and M are
unchanged.

Condition Codes
and Boolean
Formulae

V: A7&M7&R7 | A7&M7&R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise. Literally read, an overflow condition occurs if
a positive number is subtracted from a negative number with a
positive result, or, if a negative number is subtracted from a
positive number with a negative result.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 | M7&R7 | R7&A7
Set if the unsigned value of the contents of memory is larger than
the unsigned value of the accumulator; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

CMP #opr8i IMM A1 ii 2

CMP opr8a DIR B1 dd 3

CMP opr16a EXT C1 hh ll 4

CMP oprx16,X IX2 D1 ee ff 4

CMP oprx8,X IX1 E1 ff 3

CMP ,X IX F1 2

CMP oprx16,SP SP2 9ED1 ee ff 5

CMP oprx8,SP SP1 9EE1 ff 4
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 137

Instruction Set
COM Complement (One’s Complement) COM
Operation A ← A = $FF – (A)

Or X ← X = $FF – (X)
Or M ← M = $FF – (M)

Description Replaces the contents of A, X, or M with the one’s complement. Each bit
of A, X, or M is replaced with the complement of that bit.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: 1
Set

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ 1

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

COM opr8a DIR 33 dd 4

COMA INH (A) 43 1

COMX INH (X) 53 1

COM oprx8,X IX1 63 ff 4

COM ,X IX 73 3

COM oprx8,SP SP1 9E63 ff 5
Reference Manual CPU08 — Rev. 3.0

138 Instruction Set MOTOROLA

Instruction Set
Instruction Set
CPHX Compare Index Register with Memory CPHX
Operation (H:X) – (M:M + $0001)

Description CPHX compares index register (H:X) with the 16-bit value in memory
and sets the condition codes, which may then be used for arithmetic
(signed or unsigned) and logical conditional branching. The contents of
both H:X and M:M + $0001 are unchanged.

Condition Codes
and Boolean
Formulae

V: H7&M15&R15 | H7&M15&R15
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

N: R15
Set if MSB of result is 1; cleared otherwise

Z: R15&R14&R13&R12&R11&R10&R9&R8
&R7&R6&R5&R4&R3&R2&R1&R0
Set if the result is $0000; cleared otherwise

C: H7&M15 | M15&R15 | R15&H7
Set if the absolute value of the contents of memory is larger than the
absolute value of the index register; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

CPHX #opr IMM 65 jj kk+1 3

CPHX opr DIR 75 dd 4
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 139

Instruction Set
CPX Compare X (Index Register Low) with Memory CPX
Operation (X) – (M)

Description Compares the contents of X to the contents of M and sets the condition
codes, which may then be used for arithmetic (signed or unsigned) and
logical conditional branching. The contents of both X and M are
unchanged.

Condition Codes
and Boolean
Formulae

V: X7&M7&R7 | X7&M7&R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

N: R7
Set if MSB of result of the subtraction is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: X7&M7 | M7&R7 | R7&X7
Set if the unsigned value of the contents of memory is
larger than the unsigned value in the index register;
cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

CPX #opr8i IMM A3 ii 2

CPX opr8a DIR B3 dd 3

CPX opr16a EXT C3 hh ll 4

CPX oprx16,X IX2 D3 ee ff 4

CPX oprx8,X IX1 E3 ff 3

CPX ,X IX F3 2

CPX oprx16,SP SP2 9ED3 ee ff 5

CPX oprx8,SP SP1 9EE3 ff 4
Reference Manual CPU08 — Rev. 3.0

140 Instruction Set MOTOROLA

Instruction Set
Instruction Set
DAA Decimal Adjust Accumulator DAA
Operation (A)10

Description Adjusts the contents of the accumulator and the state of the CCR carry
bit after an ADD or ADC operation involving binary-coded decimal (BCD)
values, so that there is a correct BCD sum and an accurate carry
indication. The state of the CCR half carry bit affects operation. Refer to
Table 5-2 for details of operation.

Condition Codes
and Boolean
Formulae

V: U

Undefined

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: Set if the decimal adjusted result is greater than 99 (decimal);
refer to Table 5-2

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

The DAA description continues next page.

V H I N Z C

U 1 1 — — ↕ ↕ ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

DAA INH 72 2
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 141

Instruction Set
DAA Decimal Adjust Accumulator (Continued) DAA
Table 5-2 shows DAA operation for all legal combinations of input
operands. Columns 1–4 represent the results of ADC or ADD operations
on BCD operands. The correction factor in column 5 is added to the
accumulator to restore the result of an operation on two BCD operands
to a valid BCD value and to set or clear the C bit. All values in this table
are hexadecimal.

Table 5-2. DAA Function Summary

1 2 3 4 5 6

Initial
C-Bit Value

Value
of A[7:4]

Initial
H-Bit Value

Value
of A[3:0]

Correction
Factor

Corrected
C-Bit Value

0 0–9 0 0–9 00 0

0 0–8 0 A–F 06 0

0 0–9 1 0–3 06 0

0 A–F 0 0–9 60 1

0 9–F 0 A–F 66 1

0 A–F 1 0–3 66 1

1 0–2 0 0–9 60 1

1 0–2 0 A–F 66 1

1 0–3 1 0–3 66 1
Reference Manual CPU08 — Rev. 3.0

142 Instruction Set MOTOROLA

Instruction Set
Instruction Set
DBNZ Decrement and Branch if Not Zero DBNZ
Operation A ← (A) – $01

Or M ← (M) – $01
Or X ← (X) – $01

For DIR or IX1 modes: PC ← (PC) + $0003 + rel if (result) ≠ 0
Or for INH or IX modes: PC ← (PC) + $0002 + rel if (result) ≠ 0
Or for SP1 mode: PC ← (PC) + $0004 + rel if (result) ≠ 0

Description Subtract 1 from the contents of A, M, or X; then branch using the relative
offset if the result of the subtraction is not $00. DBNZX only affects the
low order eight bits of the H:X index register pair; the high-order byte (H)
is not affected.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

DBNZ opr8a,rel DIR 3B dd rr 5

DBNZA rel INH 4B rr 3

DBNZX rel INH 5B rr 3

DBNZ oprx8,X,rel IX1 6B ff rr 5

DBNZ ,X, rel IX 7B rr 4

DBNZ oprx8,SP,rel SP1 9E6B ff rr 6
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 143

Instruction Set
DEC Decrement DEC
Operation A ← (A) – $01

Or X ← (X) – $01
Or M ← (M) – $01

Description Subtract 1 from the contents of A, X, or M. The V, N, and Z bits in the
CCR are set or cleared according to the results of this operation. The C
bit in the CCR is not affected; therefore, the BLS, BLO, BHS, and BHI
branch instructions are not useful following a DEC instruction.

DECX only affects the low-order byte of index register pair (H:X). To
decrement the full 16-bit index register pair (H:X), use AIX # –1.

Condition Codes
and Boolean
Formulae

V: R7 & A7
Set if there was a two’s complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs
if and only if (A), (X), or (M) was $80 before the operation.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 — — ↕ ↕ —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

DEC opr8a DIR 3A dd 4

DECA INH (A) 4A 1

DECX INH (X) 5A 1

DEC oprx8,X IX1 6A ff 4

DEC ,X IX 7A 3

DEC oprx8,SP SP1 9E6A ff 5

DEX is recognized by assemblers as being equivalent to DECX.
Reference Manual CPU08 — Rev. 3.0

144 Instruction Set MOTOROLA

Instruction Set
Instruction Set
DIV Divide DIV
Operation A ← (H:A) ÷ (X); H ← Remainder

Description Divides a 16-bit unsigned dividend contained in the concatenated
registers H and A by an 8-bit divisor contained in X. The quotient is
placed in A, and the remainder is placed in H. The divisor is left
unchanged.

An overflow (quotient > $FF) or divide-by-0 sets the C bit, and the
quotient and remainder are indeterminate.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result (quotient) is $00; cleared otherwise

C: Set if a divide-by-0 was attempted or if an overflow occurred;
cleared otherwise

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — ↕ ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

DIV INH 52 7
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 145

Instruction Set
EOR Exclusive-OR Memory with Accumulator EOR
Operation A ← (A ⊕ M)

Description Performs the logical exclusive-OR between the contents of A and the
contents of M and places the result in A. Each bit of A after the operation
will be the logical exclusive-OR of the corresponding bits of M and A
before the operation.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

EOR #opr8i IMM A8 ii 2

EOR opr8a DIR B8 dd 3

EOR opr16a EXT C8 hh ll 4

EOR oprx16,X IX2 D8 ee ff 4

EOR oprx8,X IX1 E8 ff 3

EOR ,X IX F8 2

EOR oprx16,SP SP2 9ED8 ee ff 5

EOR oprx8,SP SP1 9EE8 ff 4
Reference Manual CPU08 — Rev. 3.0

146 Instruction Set MOTOROLA

Instruction Set
Instruction Set
INC Increment INC
Operation A ← (A) + $01

Or X ← (X) + $01
Or M ← (M) + $01

Description Add 1 to the contents of A, X, or M. The V, N, and Z bits in the CCR are
set or cleared according to the results of this operation. The C bit in the
CCR is not affected; therefore, the BLS, BLO, BHS, and BHI branch
instructions are not useful following an INC instruction.

INCX only affects the low-order byte of index register pair (H:X). To
increment the full 16-bit index register pair (H:X), use AIX #1.

Condition Codes
and Boolean
Formulae

V: A7&R7
Set if there was a two’s complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs
if and only if (A), (X), or (M) was $7F before the operation.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 — — ↕ ↕ —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

INC opr8a DIR 3C dd 4

INCA INH (A) 4C 1

INCX INH (X) 5C 1

INC oprx8,X IX1 6C ff 4

INC ,X IX 7C 3

INC oprx8,SP SP1 9E6C ff 5

INX is recognized by assemblers as being equivalent to INCX.
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 147

Instruction Set
JMP Jump JMP
Operation PC ← effective address

Description A jump occurs to the instruction stored at the effective address. The
effective address is obtained according to the rules for extended, direct,
or indexed addressing.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

JMP opr8a DIR BC dd 2

JMP opr16a EXT CC hh ll 3

JMP oprx16,X IX2 DC ee ff 4

JMP oprx8,X IX1 EC ff 3

JMP ,X IX FC 3
Reference Manual CPU08 — Rev. 3.0

148 Instruction Set MOTOROLA

Instruction Set
Instruction Set
JSR Jump to Subroutine JSR
Operation PC ← (PC) + n;

n = 1, 2, or 3 depending on address mode
Push (PCL); SP ← (SP) – $0001 Push low half of return address
Push (PCH); SP ← (SP) – $0001 Push high half of return address
PC ← effective address Load PC with start address of

requested subroutine

Description The program counter is incremented by n so that it points to the opcode
of the next instruction that follows the JSR instruction (n = 1, 2, or 3
depending on the addressing mode). The PC is then pushed onto the
stack, eight bits at a time, least significant byte first. The stack pointer
points to the next empty location on the stack. A jump occurs to the
instruction stored at the effective address. The effective address is
obtained according to the rules for extended, direct, or indexed
addressing.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

JSR opr8a DIR BD dd 4

JSR opr16a EXT CD hh ll 5

JSR oprx16,X IX2 DD ee ff 6

JSR oprx8,X IX1 ED ff 5

JSR ,X IX FD 4
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 149

Instruction Set
LDA Load Accumulator from Memory LDA
Operation A ← (M)

Description Loads the contents of the specified memory location into A. The N and
Z condition codes are set or cleared according to the loaded data; V is
cleared. This allows conditional branching after the load without having
to perform a separate test or compare.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

LDA #opr8i IMM A6 ii 2

LDA opr8a DIR B6 dd 3

LDA opr16a EXT C6 hh ll 4

LDA oprx16,X IX2 D6 ee ff 4

LDA oprx8,X IX1 E6 ff 3

LDA ,X IX F6 2

LDA oprx16,SP SP2 9ED6 ee ff 5

LDA oprx8,SP SP1 9EE6 ff 4
Reference Manual CPU08 — Rev. 3.0

150 Instruction Set MOTOROLA

Instruction Set
Instruction Set
LDHX Load Index Register from Memory LDHX
Operation H:X ← (M:M + $0001)

Description Loads the contents of the specified memory location into the index
register (H:X). The N and Z condition codes are set according to the
data; V is cleared. This allows conditional branching after the load
without having to perform a separate test or compare.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R15
Set if MSB of result is 1; cleared otherwise

Z: R15&R14&R13&R12&R11&R10&R9&R8
&R7&R6&R5&R4&R3&R2&R1&R0
Set if the result is $0000; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

LDHX #opr IMM 45 jj kk 3

LDHX opr DIR 55 dd 4
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 151

Instruction Set
LDX Load X (Index Register Low) from Memory LDX
Operation X ← (M)

Description Loads the contents of the specified memory location into X. The N and
Z condition codes are set or cleared according to the loaded data; V is
cleared. This allows conditional branching after the load without having
to perform a separate test or compare.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

LDX #opr8i IMM AE ii 2

LDX opr8a DIR BE dd 3

LDX opr16a EXT CE hh ll 4

LDX oprx16,X IX2 DE ee ff 4

LDX oprx8,X IX1 EE ff 3

LDX ,X IX FE 2

LDX oprx16,SP SP2 9EDE ee ff 5

LDX oprx8,SP SP1 9EEE ff 4
Reference Manual CPU08 — Rev. 3.0

152 Instruction Set MOTOROLA

Instruction Set
Instruction Set
LSL Logical Shift Left LSL
(Same as ASL)

Operation

Description Shifts all bits of the A, X, or M one place to the left. Bit 0 is loaded with
a 0. The C bit in the CCR is loaded from the most significant bit of A, X,
or M.

Condition Codes
and Boolean
Formulae

V: R7⊕ b7
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b7
Set if, before the shift, the MSB of A, X, or M was set; cleared
otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

C b7 — — — — — — b0 0

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

LSL opr8a DIR 38 dd 4

LSLA INH (A) 48 1

LSLX INH (X) 58 1

LSL oprx8,X IX1 68 ff 4

LSL ,X IX 78 3

LSL oprx8,SP SP1 9E68 ff 5
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 153

Instruction Set
LSR Logical Shift Right LSR
Operation

Description Shifts all bits of A, X, or M one place to the right. Bit 7 is loaded with
a 0. Bit 0 is shifted into the C bit.

Condition Codes
and Boolean
Formulae

V: 0⊕ b0 = b0
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise. Since N = 0, this simplifies to the value of bit 0
before the shift.

N: 0
Cleared

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b0
Set if, before the shift, the LSB of A, X, or M, was set; cleared
otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

0 b7 — — — — — — b0 C

V H I N Z C

↕ 1 1 — — 0 ↕ ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

LSR opr8a DIR 34 dd 4

LSRA INH (A) 44 1

LSRX INH (X) 54 1

LSR oprx8,X IX1 64 ff 4

LSR ,X IX 74 3

LSR oprx8,SP SP1 9E64 ff 5
Reference Manual CPU08 — Rev. 3.0

154 Instruction Set MOTOROLA

Instruction Set
Instruction Set
MOV Move MOV
Operation (M)Destination ← (M)Source

Description Moves a byte of data from a source address to a destination address.
Data is examined as it is moved, and condition codes are set. Source
data is not changed. The accumulator is not affected.

The four addressing modes for the MOV instruction are:

1. IMM/DIR moves an immediate byte to a direct memory location.

2. DIR/DIR moves a direct location byte to another direct location.

3. IX+/DIR moves a byte from a location addressed by H:X to a direct
location. H:X is incremented after the move.

4. DIR/IX+ moves a byte from a direct location to one addressed by
H:X. H:X is incremented after the move.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R7
Set if MSB of result is set; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

MOV opr8a,opr8a DIR/DIR 4E dd dd 5

MOV opr8a,X+ DIR/IX+ 5E dd 4

MOV #opr8i,opr8a IMM/DIR 6E ii dd 4

MOV ,X+,opr8a IX+/DIR 7E dd 4
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 155

Instruction Set
MUL Unsigned Multiply MUL
Operation X:A ← (X) × (A)

Description Multiplies the 8-bit value in X (index register low) by the 8-bit value in the
accumulator to obtain a 16-bit unsigned result in the concatenated index
register and accumulator. After the operation, X contains the upper eight
bits of the 16-bit result and A contains the lower eight bits of the result.

Condition Codes
and Boolean
Formulae

H: 0
Cleared

C: 0
Cleared

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 0 — — — 0

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

MUL INH 42 5
Reference Manual CPU08 — Rev. 3.0

156 Instruction Set MOTOROLA

Instruction Set
Instruction Set
NEG Negate (Two’s Complement) NEG
Operation A ← – (A)

Or X ← – (X)
Or M ← – (M);

this is equivalent to subtracting A, X, or M from $00

Description Replaces the contents of A, X, or M with its two’s complement. Note that
the value $80 is left unchanged.

Condition Codes
and Boolean
Formulae

V: M7&R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise. Overflow will occur only if the operand is $80
before the operation.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: R7|R6|R5|R4|R3|R2|R1|R0
Set if there is a borrow in the implied subtraction from 0; cleared
otherwise. The C bit will be set in all cases except when the
contents of A, X, or M was $00 prior to the NEG operation.

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

NEG opr8a DIR 30 dd 4

NEGA INH (A) 40 1

NEGX INH (X) 50 1

NEG oprx8,X IX1 60 ff 4

NEG ,X IX 70 3

NEG oprx8,SP SP1 9E60 ff 5
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 157

Instruction Set
NOP No Operation NOP
Operation Uses one bus cycle

Description This is a single-byte instruction that does nothing except to consume one
CPU clock cycle while the program counter is advanced to the next
instruction. No register or memory contents are affected by this
instruction.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

NOP INH 9D 1
Reference Manual CPU08 — Rev. 3.0

158 Instruction Set MOTOROLA

Instruction Set
Instruction Set
NSA Nibble Swap Accumulator NSA
Operation A ← (A[3:0]:A[7:4])

Description Swaps upper and lower nibbles (4 bits) of the accumulator. The NSA
instruction is used for more efficient storage and use of binary-coded
decimal operands.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

NSA INH 62 3
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 159

Instruction Set
ORA Inclusive-OR Accumulator and Memory ORA
Operation A ← (A) | (M)

Description Performs the logical inclusive-OR between the contents of A and the
contents of M and places the result in A. Each bit of A after the operation
will be the logical inclusive-OR of the corresponding bits of M and A
before the operation.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

ORA #opr8i IMM AA ii 2

ORA opr8a DIR BA dd 3

ORA opr16a EXT CA hh ll 4

ORA oprx16,X IX2 DA ee ff 4

ORA oprx8,X IX1 EA ff 3

ORA ,X IX FA 2

ORA oprx16,SP SP2 9EDA ee ff 5

ORA oprx8,SP SP1 9EEA ff 4
Reference Manual CPU08 — Rev. 3.0

160 Instruction Set MOTOROLA

Instruction Set
Instruction Set
PSHA Push Accumulator onto Stack PSHA
Operation Push (A); SP ← (SP) – $0001

Description The contents of A are pushed onto the stack at the address contained in
the stack pointer. The stack pointer is then decremented to point to the
next available location in the stack. The contents of A remain
unchanged.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

PSHA INH 87 2
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 161

Instruction Set
PSHH Push H (Index Register High) onto Stack PSHH
Operation Push (H); SP ← (SP) – $0001

Description The contents of H are pushed onto the stack at the address contained in
the stack pointer. The stack pointer is then decremented to point to the
next available location in the stack. The contents of H remain
unchanged.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

PSHH INH 8B 2
Reference Manual CPU08 — Rev. 3.0

162 Instruction Set MOTOROLA

Instruction Set
Instruction Set
PSHX Push X (Index Register Low) onto Stack PSHX
Operation Push (X); SP ← (SP) – $0001

Description The contents of X are pushed onto the stack at the address contained in
the stack pointer (SP). SP is then decremented to point to the next
available location in the stack. The contents of X remain unchanged.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

PSHX INH 89 2
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 163

Instruction Set
PULA Pull Accumulator from Stack PULA
Operation SP ← (SP + $0001); pull (A)

Description The stack pointer (SP) is incremented to address the last operand on the
stack. The accumulator is then loaded with the contents of the address
pointed to by SP.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

PULA INH 86 2
Reference Manual CPU08 — Rev. 3.0

164 Instruction Set MOTOROLA

Instruction Set
Instruction Set
PULH Pull H (Index Register High) from Stack PULH
Operation SP ← (SP + $0001); pull (H)

Description The stack pointer (SP) is incremented to address the last operand on the
stack. H is then loaded with the contents of the address pointed to by SP.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

PULH INH 8A 2
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 165

Instruction Set
PULX Pull X (Index Register Low) from Stack PULX
Operation SP ← (SP + $0001); pull (X)

Description The stack pointer (SP) is incremented to address the last operand on the
stack. X is then loaded with the contents of the address pointed to by SP.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

PULX INH 88 2
Reference Manual CPU08 — Rev. 3.0

166 Instruction Set MOTOROLA

Instruction Set
Instruction Set
ROL Rotate Left through Carry ROL
Operation

Description Shifts all bits of A, X, or M one place to the left. Bit 0 is loaded from the
C bit. The C bit is loaded from the most significant bit of A, X, or M. The
rotate instructions include the carry bit to allow extension of the shift and
rotate instructions to multiple bytes. For example, to shift a 24-bit value
left one bit, the sequence (ASL LOW, ROL MID, ROL HIGH) could be
used, where LOW, MID, and HIGH refer to the low-order, middle, and
high-order bytes of the 24-bit value, respectively.

Condition Codes
and Boolean
Formulae

V: R7 ⊕ b7
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b7
Set if, before the rotate, the MSB of A, X, or M was set; cleared
otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

C b7 — — — — — — — b0

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

ROL opr8a DIR 39 dd 4

ROLA INH (A) 49 1

ROLX INH (X) 59 1

ROL oprx8,X IX1 69 ff 4

ROL ,X IX 79 3

ROL oprx8,SP SP1 9E69 ff 5
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 167

Instruction Set
ROR Rotate Right through Carry ROR
Operation

Description Shifts all bits of A, X, or M one place to the right. Bit 7 is loaded from the
C bit. Bit 0 is shifted into the C bit. The rotate instructions include the
carry bit to allow extension of the shift and rotate instructions to multiple
bytes. For example, to shift a 24-bit value right one bit, the sequence
(LSR HIGH, ROR MID, ROR LOW) could be used, where LOW, MID,
and HIGH refer to the low-order, middle, and high-order bytes of the
24-bit value, respectively.

Condition Codes
and Boolean
Formulae

V: R7 ⊕ b0
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b0
Set if, before the shift, the LSB of A, X, or M was set; cleared
otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

b7 — — — — — — — b0 C

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

ROR opr8a DIR 36 dd 4

RORA INH (A) 46 1

RORX INH (X) 56 1

ROR oprx8,X IX1 66 ff 4

ROR ,X IX 76 3

ROR oprx8,SP SP1 9E66 ff 5
Reference Manual CPU08 — Rev. 3.0

168 Instruction Set MOTOROLA

Instruction Set
Instruction Set
RSP Reset Stack Pointer RSP
Operation SP ← $FF

Description In most M68HC05 MCUs, RAM only goes to $00FF. In most HC08s,
however, RAM extends beyond $00FF. Therefore, do not locate the
stack in direct address space which is more valuable for commonly
accessed variables. In new HC08 programs, it is more appropriate to
initialize the stack pointer to the address of the last location (highest
address) in the on-chip RAM, shortly after reset. This code segment
demonstrates a typical method for initializing SP.

LDHX #ram_end+1 ; Point at next addr past RAM
TXS ; SP <-(H:X)-1

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

RSP INH 9C 1
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 169

Instruction Set
RTI Return from Interrupt RTI
Operation SP ← SP + $0001; pull (CCR) Restore CCR from stack

SP ← SP + $0001; pull (A) Restore A from stack
SP ← SP + $0001; pull (X) Restore X from stack
SP ← SP + $0001; pull (PCH) Restore PCH from stack
SP ← SP + $0001; pull (PCL) Restore PCL from stack

Description The condition codes, the accumulator, X (index register low), and the
program counter are restored to the state previously saved on the stack.
The I bit will be cleared if the corresponding bit stored on the stack is 0,
the normal case.

Condition Codes
and Boolean
Formulae

Set or cleared according to the byte pulled from the stack into CCR.

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

↕ 1 1 ↕ ↕ ↕ ↕ ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

RTI INH 80 7
Reference Manual CPU08 — Rev. 3.0

170 Instruction Set MOTOROLA

Instruction Set
Instruction Set
RTS Return from Subroutine RTS
Operation SP ← SP + $0001; pull (PCH) Restore PCH from stack

SP ← SP + $0001; pull (PCL) Restore PCL from stack

Description The stack pointer is incremented by 1. The contents of the byte of
memory that is pointed to by the stack pointer are loaded into the
high-order byte of the program counter. The stack pointer is again
incremented by 1. The contents of the byte of memory that are pointed
to by the stack pointer are loaded into the low-order eight bits of the
program counter. Program execution resumes at the address that was
just restored from the stack.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

RTS INH 81 4
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 171

Instruction Set
SBC Subtract with Carry SBC
Operation A ← (A) – (M) – (C)

Description Subtracts the contents of M and the contents of the C bit of the CCR from
the contents of A and places the result in A. This is useful for
multi-precision subtract algorithms involving operands with more than
eight bits.

Condition Codes
and Boolean
Formulae

V: A7&M7&R7 | A7&M7&R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise. Literally read, an overflow condition occurs if
a positive number is subtracted from a negative number with a
positive result, or, if a negative number is subtracted from a
positive number with a negative result.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 | M7&R7 | R7&A7
Set if the unsigned value of the contents of memory plus the
previous carry are larger than the unsigned value of the
accumulator; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

SBC #opr8i IMM A2 ii 2

SBC opr8a DIR B2 dd 3

SBC opr16a EXT C2 hh ll 4

SBC oprx16,X IX2 D2 ee ff 4

SBC oprx8,X IX1 E2 ff 3

SBC ,X IX F2 2

SBC oprx16,SP SP2 9ED2 ee ff 5

SBC oprx8,SP SP1 9EE2 ff 4
Reference Manual CPU08 — Rev. 3.0

172 Instruction Set MOTOROLA

Instruction Set
Instruction Set
SEC Set Carry Bit SEC
Operation C bit ← 1

Description Sets the C bit in the condition code register (CCR). SEC may be used to
set up the C bit prior to a shift or rotate instruction that involves the C bit.

Condition Codes
and Boolean
Formulae

C: 1
Set

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — 1

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

SEC INH 99 1
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 173

Instruction Set
SEI Set Interrupt Mask Bit SEI
Operation I bit ← 1

Description Sets the interrupt mask bit in the condition code register (CCR). The
microprocessor is inhibited from responding to interrupts while the I bit is
set. The I bit actually changes at the end of the cycle where SEI
executed. This is too late to stop an interrupt that arrived during
execution of the SEI instruction so it is possible that an interrupt request
could be serviced after the SEI instruction before the next instruction
after SEI is executed. The global I-bit interrupt mask takes effect before
the next instruction can be completed.

Condition Codes
and Boolean
Formulae

I: 1
Set

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — 1 — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

SEI INH 9B 2
Reference Manual CPU08 — Rev. 3.0

174 Instruction Set MOTOROLA

Instruction Set
Instruction Set
STA Store Accumulator in Memory STA
Operation M ← (A)

Description Stores the contents of A in memory. The contents of A remain
unchanged. The N condition code is set if the most significant bit of A is
set, the Z bit is set if A was $00, and V is cleared. This allows conditional
branching after the store without having to do a separate test or
compare.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: A7
Set if MSB of result is 1; cleared otherwise

Z: A7&A6&A5&A4&A3&A2&A1&A0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

STA opr8a DIR B7 dd 3

STA opr16a EXT C7 hh ll 4

STA oprx16,X IX2 D7 ee ff 4

STA oprx8,X IX1 E7 ff 3

STA ,X IX F7 2

STA oprx16,SP SP2 9ED7 ee ff 5

STA oprx8,SP SP1 9EE7 ff 4
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 175

Instruction Set
STHX Store Index Register STHX
Operation (M:M + $0001) ← (H:X)

Description Stores the contents of H in memory location M and then the contents of
X into the next memory location (M + $0001). The N condition code bit
is set if the most significant bit of H was set, the Z bit is set if the value of
H:X was $0000, and V is cleared. This allows conditional branching after
the store without having to do a separate test or compare.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R15
Set if MSB of result is 1; cleared otherwise

Z: R15&R14&R13&R12&R11&R10&R9&R8
&R7&R6&R5&R4&R3&R2&R1&R0
Set if the result is $0000; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

STHX opr DIR 35 dd 4
Reference Manual CPU08 — Rev. 3.0

176 Instruction Set MOTOROLA

Instruction Set
Instruction Set
STOP Enable IRQ Pin, Stop Oscillator STOP
Operation I bit ← 0; stop oscillator

Description Reduces power consumption by eliminating all dynamic power
dissipation. (See module documentation for module reactions to STOP
instruction.) The external interrupt pin is enabled and the I bit in the
condition code register (CCR) is cleared to enable the external interrupt.
Finally, the oscillator is inhibited to put the MCU into the STOP condition.

When either the RESET pin or IRQ pin goes low, the oscillator is
enabled. A delay of 4095 processor clock cycles is imposed allowing the
oscillator to stabilize. The reset vector or interrupt request vector is
fetched and the associated service routine is executed.

External interrupts are enabled after a STOP command.

Condition Codes
and Boolean
Formulae

I: 0
Cleared

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — 0 — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

STOP INH 8E 1
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 177

Instruction Set
STX Store X (Index Register Low) in Memory STX
Operation M ← (X)

Description Stores the contents of X in memory. The contents of X remain
unchanged. The N condition code is set if the most significant bit of X
was set, the Z bit is set if X was $00, and V is cleared. This allows
conditional branching after the store without having to do a separate test
or compare.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: X7
Set if MSB of result is 1; cleared otherwise

Z: X7&X6&X5&X4&X3&X2&X1&X0
Set if X is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

STX opr8a DIR BF dd 3

STX opr16a EXT CF hh ll 4

STX oprx16,X IX2 DF ee ff 4

STX oprx8,X IX1 EF ff 3

STX ,X IX FF 2

STX oprx16,SP SP2 9EDF ee ff 5

STX oprx8,SP SP1 9EEF ff 4
Reference Manual CPU08 — Rev. 3.0

178 Instruction Set MOTOROLA

Instruction Set
Instruction Set
SUB Subtract SUB
Operation A ← (A) – (M)

Description Subtracts the contents of M from A and places the result in A

Condition Codes
and Boolean
Formulae

V: A7&M7&R7 | A7&M7&R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise. Literally read, an overflow condition occurs if
a positive number is subtracted from a negative number with a
positive result, or, if a negative number is subtracted from a
positive number with a negative result.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 | M7&R7 | R7&A7
Set if the unsigned value of the contents of memory is larger than
the unsigned value of the accumulator; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

SUB #opr8i IMM A0 ii 2

SUB opr8a DIR B0 dd 3

SUB opr16a EXT C0 hh ll 4

SUB oprx16,X IX2 D0 ee ff 4

SUB oprx8,X IX1 E0 ff 3

SUB X IX F0 2

SUB oprx16,SP SP2 9ED0 ee ff 5

SUB oprx8,SP SP1 9EE0 ff 4
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 179

Instruction Set
SWI Software Interrupt SWI
Operation PC ← (PC) + $0001 Increment PC to return address

Push (PCL); SP ← (SP) – $0001 Push low half of return address
Push (PCH); SP ← (SP) – $0001 Push high half of return address
Push (X); SP ← (SP) – $0001 Push index register on stack
Push (A); SP ← (SP) – $0001 Push A on stack
Push (CCR); SP ← (SP) – $0001 Push CCR on stack
I bit ← 1 Mask further interrupts
PCH ← ($FFFC) Vector fetch (high byte)
PCL ← ($FFFD) Vector fetch (low byte)

Description The program counter (PC) is incremented by 1 to point at the instruction
after the SWI. The PC, index register, and accumulator are pushed onto
the stack. The condition code register (CCR) bits are then pushed onto
the stack, with bits V, H, I, N, Z, and C going into bit positions 7 and 4–0.
Bit positions 6 and 5 contain 1s. The stack pointer is decremented by 1
after each byte of data is stored on the stack. The interrupt mask bit is
then set. The program counter is then loaded with the address stored in
the SWI vector located at memory locations $FFFC and $FFFD. This
instruction is not maskable by the I bit.

Condition Codes
and Boolean
Formulae

I: 1
Set

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — 1 — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

SWI INH 83 9
Reference Manual CPU08 — Rev. 3.0

180 Instruction Set MOTOROLA

Instruction Set
Instruction Set
TAP Transfer Accumulator to Processor Status Byte TAP
Operation CCR ← (A)

Description Transfers the contents of A to the condition code register (CCR). The
contents of A are unchanged. If this instruction causes the I bit to change
from 0 to 1, a one bus cycle delay is imposed before interrupts become
masked. This assures that the next instruction after a TAP instruction will
always be executed even if an interrupt became pending during the TAP
instruction.

Condition Codes
and Boolean
Formulae

Set or cleared according to the value that was in the accumulator.

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

bit 7 6 5 4 3 2 1 bit 0

A

V 1 1 H I N Z C CCR

Carry/Borrow

Zero

Negative

I Interrupt
Mask

Half Carry

Overflow
(Two’s
Complement)

V H I N Z C

↕ 1 1 ↕ ↕ ↕ ↕ ↕

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

TAP INH 84 2
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 181

Instruction Set
TAX Transfer Accumulator to X (Index Register Low) TAX
Operation X ← (A)

Description Loads X with the contents of the accumulator (A). The contents of A are
unchanged.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

TAX INH 97 1
Reference Manual CPU08 — Rev. 3.0

182 Instruction Set MOTOROLA

Instruction Set
Instruction Set
TPA Transfer Processor Status Byte to Accumulator TPA
Operation A ← (CCR)

Description Transfers the contents of the condition code register (CCR) into the
accumulator (A)

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

bit 7 6 5 4 3 2 1 bit 0

A

V 1 1 H I N Z C CCR

Carry/Borrow

Zero

Negative

I Interrupt
Mask

Half Carry

Overflow
(Two’s
Complement)

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

TPA INH 85 1
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 183

Instruction Set
TST Test for Negative or Zero TST
Operation (A) – $00

Or (X) – $00
Or (M) – $00

Description Sets the N and Z condition codes according to the contents of A, X, or
M. The contents of A, X, and M are not altered.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: M7
Set if MSB of the tested value is 1; cleared otherwise

Z: M7&M6&M5&M4&M3&M2&M1&M0
Set if A, X, or M contains $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

TST opr8a DIR 3D dd 3

TSTA INH (A) 4D 1

TSTX INH (X) 5D 1

TST oprx8,X IX1 6D ff 3

TST ,X IX 7D 2

TST oprx8,SP SP1 9E6D ff 4
Reference Manual CPU08 — Rev. 3.0

184 Instruction Set MOTOROLA

Instruction Set
Instruction Set
TSX Transfer Stack Pointer to Index Register TSX
Operation H:X ← (SP) + $0001

Description Loads index register (H:X) with 1 plus the contents of the stack pointer
(SP). The contents of SP remain unchanged. After a TSX instruction,
H:X points to the last value that was stored on the stack.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

TSX INH 95 2
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 185

Instruction Set
TXA Transfer X (Index Register Low) to Accumulator TXA
Operation A ← (X)

Description Loads the accumulator (A) with the contents of X. The contents of X are
not altered.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

TXA INH 9F 1
Reference Manual CPU08 — Rev. 3.0

186 Instruction Set MOTOROLA

Instruction Set
Instruction Set
TXS Transfer Index Register to Stack Pointer TXS
Operation SP ← (H:X) – $0001

Description Loads the stack pointer (SP) with the contents of the index register (H:X)
minus 1. The contents of H:X are not altered.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

TXS INH 94 2
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set 187

Instruction Set
WAIT Enable Interrupts; Stop Processor WAIT
Operation I bit ← 0; inhibit CPU clocking until interrupted

Description Reduces power consumption by eliminating dynamic power dissipation
in some portions of the MCU. The timer, the timer prescaler, and the
on-chip peripherals continue to operate (if enabled) because they are
potential sources of an interrupt. Wait causes enabling of interrupts by
clearing the I bit in the CCR and stops clocking of processor circuits.

Interrupts from on-chip peripherals may be enabled or disabled by local
control bits prior to execution of the WAIT instruction.

When either the RESET or IRQ pin goes low or when any on-chip
system requests interrupt service, the processor clocks are enabled, and
the reset, IRQ, or other interrupt service request is processed.

Condition Codes
and Boolean
Formulae

I: 0
Cleared

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — 0 — — —

Source
Form

Address
Mode

Machine Code HC08
CyclesOpcode Operand(s)

WAIT INH 8F 1
Reference Manual CPU08 — Rev. 3.0

188 Instruction Set MOTOROLA

Reference Manual — CPU08

Section 6. Instruction Set Examples
6.1 Contents

6.2 Introduction .190

6.3 M68HC08 Unique Instructions .190

6.4 Code Examples .191
AIS Add Immediate Value (Signed)

to Stack Pointer . 192
AIX Add Immediate Value (Signed)

to Index Register . 194
BGE Branch if Greater Than or Equal To 195
BGT Branch if Greater Than . 196
BLE Branch if Less Than or Equal To. 197
BLT Branch if Less Than . 198
CBEQ Compare and Branch if Equal 199
CBEQA Compare A with Immediate 200
CBEQX Compare X with Immediate 201
CLRH Clear H (Index Register High) 202
CPHX Compare Index Register with Memory 203
DAA Decimal Adjust Accumulator 204
DBNZ Decrement and Branch if Not Zero 205
DIV Divide . 206
LDHX Load Index Register with Memory 209
MOV Move . 210
NSA Nibble Swap Accumulator 211
PSHA Push Accumulator onto Stack 212
PSHH Push H (Index Register High) onto Stack 213
PSHX Push X (Index Register Low) onto Stack. 214
PULA Pull Accumulator from Stack 215
PULH Pull H (Index Register High) from Stack 216
PULX Pull X (Index Register Low) from Stack. 217
STHX Store Index Register . 218
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set Examples 189

Instruction Set Examples
TAP Transfer Accumulator to Condition
Code Register . 219

TPA Transfer Condition Code Register
to Accumulator . 220

TSX Transfer Stack Pointer to Index Register 221
TXS Transfer Index Register to Stack Pointer 222

6.2 Introduction

The M68HC08 Family instruction set is an extension of the M68HC05
Family instruction set. This section contains code examples for the
instructions unique to the M68HC08 Family.

6.3 M68HC08 Unique Instructions

This is a list of the instructions unique to the M68HC08 Family.

• Add Immediate Value (Signed) to Stack Pointer (AIS)

• Add Immediate Value (Signed) to Index Register (AIX)

• Branch if Greater Than or Equal To (BGE)

• Branch if Greater Than (BGT)

• Branch if Less Than or Equal To (BLE)

• Branch if Less Than (BLT)

• Compare and Branch if Equal (CBEQ)

• Compare Accumulator with Immediate, Branch if Equal (CBEQA)

• Compare Index Register Low with Immediate, Branch if Equal
(CBEQX)

• Clear Index Register High (CLRH)

• Compare Index Register with Immediate Value (CPHX)

• Decimal Adjust Accumulator (DAA)

• Decrement and Branch if Not Zero (DBNZ)

• Divide (DIV)
Reference Manual CPU08 — Rev. 3.0

190 Instruction Set Examples MOTOROLA

Instruction Set Examples
Code Examples
• Load Index Register with Immediate Value (LDHX)

• Move (MOV)

• Nibble Swap Accumulator (NSA)

• Push Accumulator onto Stack (PSHA)

• Push Index Register High onto Stack (PSHH)

• Push Index Register Low onto Stack (PSHX)

• Pull Accumulator from Stack (PULA)

• Pull Index Register High from Stack (PULH)

• Pull Index Register Low from Stack (PULX)

• Store Index Register (STHX)

• Transfer Accumulator to Condition Code Register (TAP)

• Transfer Condition Code Register to Accumulator (TPA)

• Transfer Stack Pointer to Index Register (TSX)

• Transfer Index Register to Stack Pointer (TXS)

6.4 Code Examples

The following pages contain code examples for the instructions unique
to the M68HC08 Family.
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set Examples 191

Instruction Set Examples
AIS Add Immediate Value (Signed) to Stack Pointer AIS
*
* AIS:
* 1) Creating local variable space on the stack
*
* SP --> | |
* --------------- ^
* | | |
* | Local | |
* | Variable | |
* | Space |
* | | Decreasing
* --------------- Address
* | PC (MS byte) |
* ---------------
* | PC (LS byte) |
* ---------------
* | |
*
* NOTE: SP must always point to next unused byte,
* therefore do not use this byte (0,SP) for storage
*
Label Operation Operand Comments
SUB1 AIS #-16 ;Create 16 bytes of local space
* .
* .
* .
* .

AIS #16 ;Clean up stack (Note: AIS
;does not modify CCR)

RTS ;Return
*

*
* 2) Passing parameters through the stack
*
Label Operation Operand Comments
PARAM1 RMB 1
PARAM2 RMB 1
*
*

LDA PARAM1
PSHA ;Push dividend onto stack
LDA PARAM2
PSHA ;Push divisor onto stack
JSR DIVIDE ;8/8 divide
PULA ;Get result
AIS #1 ;Clean up stack

;(CCR not modified)
BCS ERROR ;Check result

* .
ERROR EQU *
* .
*

Reference Manual CPU08 — Rev. 3.0

192 Instruction Set Examples MOTOROLA

Instruction Set Examples
Code Examples
AIS Add Immediate Value (Signed) to Stack Pointer AIS
(Continued)

* DIVIDE: 8/8 divide
*
* SP ---> | |
* ---------------
* | A |
* ---------------
* | X | ^
* --------------- |
* | H | |
* --------------- |
* | PC (MS byte) | |
* --------------- |
* | PC (LS byte) | |
* --------------- |
* | Divisor |
* --------------- Decreasing
* | Dividend | Address
* ---------------
* | |
*
* Entry: Dividend and divisor on stack at
* SP,7 and SP,6 respectively
* Exit: 8-bit result placed on stack at SP,6
* A, H:X preserved
*
Label Operation Operand Comments

DIVIDE PSHH ;preserve H:X, A
PSHX
PSHA
LDX 6,SP ;Divisor -> X
CLRH ;0 -> MS dividend
LDA 7,SP ;Dividend -> A
DIV

OK STA 6,SP ;Save result
PULA ;restore H:X, A
PULX
PULH
RTS

*

CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set Examples 193

Instruction Set Examples
AIX Add Immediate Value (Signed) to Index Register AIX
* AIX:
* 1) Find the 8-bit checksum for a 512 byte table
*
Label Operation Operand Comments

ORG $7000
TABLE FDB 512

ORG $6E00 ;ROM/EPROM address space
LDHX #511 ;Initialize byte count (0..511)
CLRA ;Clear result

ADDLOOP ADD TABLE,X
AIX #-1 ;Decrement byte counter

*
* NOTE: DECX will not carry from X through H. AIX will.
*

CPHX #0 ;Done?
*
* NOTE: DECX does affect the CCR. AIX does not (CPHX required).
*

BPL ADDLOOP ;Loop if not complete.
*
**
*
* 2) Round a 16-bit signed fractional number
* Radix point is assumed fixed between bits 7 and 8
*
* Entry: 16-bit fractional in fract
* Exit: Integer result after round operation in A
*
Label Operation Operand Comments

ORG $50 ;RAM address space
FRACT RMB 2
*

ORG $6E00 ;ROM/EPROM address space
LDHX FRACT
AIX #1
AIX #$7F ;Round up if X >= $80 (fraction >= 0.5)

*
* NOTE: AIX operand is a signed 8-bit number. AIX #$80 would
* therefore be equivalent to AIX #-128 (signed extended
* to 16-bits). Splitting the addition into two positive
* operations is required to perform the round correctly.
*

PSHH
PULA

*

Reference Manual CPU08 — Rev. 3.0

194 Instruction Set Examples MOTOROLA

Instruction Set Examples
Code Examples
BGE Branch if Greater Than or Equal To BGE
(Signed Operands)

* 8 x 8 signed multiply
*
* Entry: Multiplier and multiplicand in VAR1 and VAR2
* Exit : Signed result in X:A
*

Label Operation Operand Comments

ORG $50 ;RAM address space
NEG_FLG RMB 1 ;Sign flag byte
VAR1 RMB 1 ;Multiplier
VAR2 RMB 1 ;Multiplicand
*
*

ORG $6E00 ;ROM/EPROM address space
S_MULT CLR NEG_FLG ;Clear negative flag

TST VAR1 ;Check VAR1
BGE POS ;Continue is =>0
INC NEG_FLG ;Else set negative flag
NEG VAR1 ;Make into positive number

*
POS TST VAR2 ;Check VAR2

BGE POS2 ;Continue is =>0
INC NEG_FLG ;Else toggle negative flag
NEG VAR2 ;Make into positive number

*
POS2 LDA VAR2 ;Load VAR1

LDX VAR1 ;Load VAR2
MUL ;Unsigned VAR1 x VAR2 -> X:A
BRCLR 0,NEG_FLG,EXIT ;Quit if operands both

;positive or both neg.
COMA ;Else one’s complement A and X
COMX
ADD #1 ;Add 1 for 2’s complement

;(LS byte)
PSHA ;Save LS byte of result
TXA ;Transfer unsigned MS byte of

;result
ADC #0 ;Add carry result to complete

;2’s complement
TAX ;Return to X
PULA ;Restore LS byte of result

EXIT RTS ;Return
*

CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set Examples 195

Instruction Set Examples
BGT Branch if Greater Than BGT
(Signed Operands)

* BGT:
* Read an 8-bit A/D register, sign it and test for valid range
*
* Entry: New reading in AD_RES
* Exit : Signed result in A. ERR_FLG set if out of range.
*
*
Label Operation Operand Comments

ORG $50 ;RAM address space
ERR_FLG RMB 1 ;Out of range flag
AD_RES RMB 1 ;A/D result register
*
*

ORG $6E00 ;ROM/EPROM address space
BCLR 0,ERR_FLG
LDA AD_RES ;Get latest reading (0 thru 256)
EOR #$80 ;Sign it (-128 thru 128)
CMP #$73 ;If greater than upper limit,
BGT OUT ; branch to error flag set
CMP #$8D ;If greater than lower limit

;($8D = -$73)
BGT IN ; branch to exit

OUT BSET 0,ERR_FLG ;Set error flag
IN RTS ;Return
*

Reference Manual CPU08 — Rev. 3.0

196 Instruction Set Examples MOTOROLA

Instruction Set Examples
Code Examples
BLE Branch if Less Than or Equal To BLE
(Signed Operands)

* Find the most negative of two 16-bit signed integers
*
* Entry: Signed 16-bit integers in VAL1 and VAL2
* Exit : Most negative integer in H:X
*
Label Operation Operand Comments

ORG $50 ;RAM address space
VAL1 RMB 2 ;16-bit signed integer
VAL2 RMB 2 ;16-bit signed integer
*
*

ORG $6E00 ;ROM/EPROM address space
LDHX VAL1
CPHX VAL2
BLE EXIT1 ;If VAL1 =< VAL2, exit
LDHX VAL2 ; else load VAL2 into H:X

EXIT1 EQU *
*

CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set Examples 197

Instruction Set Examples
BLT Branch if Less Than BLT
(Signed Operands)

* Compare 8-bit signed integers in A and X and place the
* most negative in A.
*
* Entry: Signed 8-bit integers in A and X
* Exit : Most negative integer in A. X preserved.
*
*
Label Operation Operand Comments

ORG $6E00 ;ROM/EPROM address space
PSHX ;Move X onto stack
CMP 1,SP ;Compare it with A
BLT EXIT2 ;If A =< stacked X, quit
TXA ;else move X to A

EXIT2 PULX ;Clean up stack
*

Reference Manual CPU08 — Rev. 3.0

198 Instruction Set Examples MOTOROLA

Instruction Set Examples
Code Examples
CBEQ Compare and Branch if Equal CBEQ
* Skip spaces in a string of ASCII characters. String must
* contain at least one non-space character.
*
* Entry: H:X points to start of string
* Exit : H:X points to first non-space character in
* string
*
Label Operation Operand Comments

LDA #$20 ;Load space character
SKIP CBEQ X+,SKIP ;Increment through string until

;non-space character found.
*
* NOTE: X post increment will occur irrespective of whether
* branch is taken. In this example, H:X will point to the
* non-space character+1 immediately following the CBEQ
* instruction.
*
Label Operation Operand Comments

AIX #-1 ;Adjust pointer to point to 1st
;non-space char.

RTS ;Return
*

CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set Examples 199

Instruction Set Examples
CBEQA Compare A with Immediate CBEQA
(Branch if Equal)

* Look for an End-of-Transmission (EOT) character from a
* serial peripheral. Exit if true, otherwise process data
* received.
*
Label Operation Operand Comments
EOT EQU $04
*
DATA_RX EQU 1
*

LDA DATA_RX ;get receive data
CBEQA #EOT,EXIT3 ;check for EOT

*
* NOTE: CBEQ, CBEQA, CBEQX instructions do NOT modify the
* CCR. In this example, Z flag will remain in the state the
* LDA instruction left it in.
*
* |
* | Process
* | data
* |
EXIT3 RTS
*

Reference Manual CPU08 — Rev. 3.0

200 Instruction Set Examples MOTOROLA

Instruction Set Examples
Code Examples
CBEQX Compare X with Immediate CBEQX
(Branch if Equal)

* Keyboard wake-up interrupt service routine. Return to sleep
* (WAIT mode) unless "ON" key has been depressed.
*

Label Operation Operand Comments

ON_KEY EQU $02
*
SLEEP WAIT

BSR DELAY ;Debounce delay routine
LDX PORTA ;Read keys
CBEQX #ON_KEY,WAKEUP ;Wake up if "ON" pressed,
BRA SLEEP ;otherwise return to sleep

*
WAKEUP EQU * ;Start of main code
*

CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set Examples 201

Instruction Set Examples
CLRH Clear H (Index Register High) CLRH
* Clear H:X register
*
Label Operation Operand Comments

CLRX
CLRH

*
* NOTE: This sequence takes 2 cycles and uses 2 bytes
* LDHX #0 takes 3 cycles and uses 3 bytes.
*

Reference Manual CPU08 — Rev. 3.0

202 Instruction Set Examples MOTOROLA

Instruction Set Examples
Code Examples
CPHX Compare Index Register with Memory CPHX
* Stack pointer overflow test. Branch to a fatal error
* handler if overflow detected.
*
Label Operation Operand Comments

STACK EQU $1000 ;Stack start address (empty)
SIZE EQU $100 ;Maximum stack size
*

PSHH ;Save H:X (assuming stack is OK!)
PSHX
TSX ;Move SP+1 to H:X
CPHX #STACK-SIZE;Compare against stack lowest

;address
BLO FATAL ;Branch out if lower

* ; otherwise continue executing
;main code

PULX ;Restore H:X
PULH

*
* |
* |
* |
*
FATAL EQU * ;FATAL ERROR HANDLER
*

CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set Examples 203

Instruction Set Examples
DAA Decimal Adjust Accumulator DAA
* Add 2 BCD 8-bit numbers (e.g. 78 + 49 = 127)
*
Label Operation Operand Comments

VALUE1 FCB $78
VALUE2 FCB $49
*

LDA VALUE1 ;A = $78
ADD VALUE2 ;A = $78+$49 = $C1; C=0, H=1
DAA ;Add $66; A = $27; C=1 {=127 BCD}

*

Reference Manual CPU08 — Rev. 3.0

204 Instruction Set Examples MOTOROLA

Instruction Set Examples
Code Examples
DBNZ Decrement and Branch if Not Zero DBNZ
* Delay routine:
* Delay = N x (153.6+0.36)uS for 60nS CPU clock
* For example, delay=10mS for N=$41 and 60nS CPU clock
*
* Entry: COUNT = 0
* Exit: COUNT = 0; A = N
*
Label Operation Operand Comments

N EQU $41 ;Loop constant for 10mS delay
*

ORG $50 ;RAM address space
COUNT RMB 1 ;Loop counter
*

ORG $6E00 ;ROM/EPROM address space
DELAY LDA #N ;Set delay constant
LOOPY DBNZ COUNT,LOOPY ;Inner loop (5x256 cycles)

DBNZA LOOPY ;Outer loop (3 cycles)
*

CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set Examples 205

Instruction Set Examples
DIV Divide DIV
* 1) 8/8 integer divide > 8-bit integer quotient
* Performs an unsigned integer divide of an 8-bit dividend
* in A by an 8-bit divisor in X. H must be cleared. The
* quotient is placed into A and the remainder in H.
*

Label Operation Operand Comments

ORG $50 ;RAM address space
DIVID1 RMB 1 ;storage for dividend
DIVISOR1 RMB 1 ;storage for divisor
QUOTIENT1 RMB 1 ;storage for quotient
*

ORG $6E00 ;ROM/EPROM address spcae
LDA DIVID1 ;Load dividend
CLRH ;Clear MS byte of dividend
LDX DIVISOR1 ;Load divisor
DIV ;8/8 divide
STA QUOTIENT1 ;Store result; remainder in H

*
*
* 2) 8/8 integer divide > 8-bit integer and 8-bit fractional
* quotient. Performs an unsigned integer divide of an 8-bit
* dividend in A by an 8-bit divisor in X. H must be
* cleared. The quotient is placed into A and the remainder
* in H. The remainder may be further resolved by executing
* additional DIV instructions as shown below. The radix point
* of the quotient will be between bits 7 and 8.
*

Label Operation Operand Comments

ORG $50 ;RAM address space
DIVID2 RMB 1 ;storage for dividend
DIVISOR2 RMB 1 ;storage for divisor
QUOTIENT2 RMB 2 ;storage for quotient
*

ORG $6E00 ;ROM/EPROM address space
LDA DIVID2 ;Load dividend
CLRH ;Clear MS byte of dividend
LDX DIVISOR2 ;Load divisor
DIV ;8/8 divide
STA QUOTIENT2 ;Store result; remainder in H
CLRA
DIV ;Resolve remainder
STA QUOTIENT2+1

*
*

Reference Manual CPU08 — Rev. 3.0

206 Instruction Set Examples MOTOROLA

Instruction Set Examples
Code Examples
DIV Divide DIV
(Continued)

* 3) 8/8 fractional divide > 16-bit fractional quotient
* Performs an unsigned fractional divide of an 8-bit dividend
* in H by the 8-bit divisor in X. A must be cleared. The
* quotient is placed into A and the remainder in H. The
* remainder may be further resolved by executing additional
* DIV instructions as shown below.
* The radix point is assumed to be in the same place for both
* the dividend and the divisor. The radix point is to the
* left of the MS bit of the quotient. An overflow will occur
* when the dividend is greater than or equal to the divisor.
* The quotient is an unsigned binary weighted fraction with
* a range of $00 to $FF (0.9961).
*
Label Operation Operand Comments

ORG $50 ;RAM address space
DIVID3 RMB 1 ;storage for dividend
DIVISOR3 RMB 1 ;storage for divisor
QUOTIENT3 RMB 2 ;storage for quotient
*

ORG $6E00 ;ROM/EPROM address space
LDHX DIVID3 ;Load dividend into H (and

;divisor into X)
CLRA ;Clear LS byte of dividend
DIV ;8/8 divide
STA QUOTIENT3 ;Store result; remainder in H
CLRA
DIV ;Resolve remainder
STA QUOTIENT3+1

*
*
* 4) Unbounded 16/8 integer divide
* This algorithm performs the equivalent of long division.
* The initial divide is an 8/8 (no overflow possible).
* Subsequent divide are 16/8 using the remainder from the
* previous divide operation (no overflow possible).
* The DIV instruction does not corrupt the divisor and leaves
* the remainder in H, the optimal position for sucessive
* divide operations. The algorithm may be extended to any
* precision of dividend by performing additional divides.
* This, of course, includes resolving the remainder of a
* divide operation into a fractional result as shown below.
*

CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set Examples 207

Instruction Set Examples
DIV Divide DIV
(Concluded)

Label Operation Operand Comments
ORG $50 ;RAM address space

DIVIDEND4 RMB 2 ;storage for dividend
DIVISOR4 RMB 1 ;storage for divisor
QUOTIENT4 RMB 3 ;storage for quotient
*
*

ORG $6E00 ;ROM/EPROM address space
LDA DIVIDEND4 ;Load MS byte of dividend into

;LS dividend reg.
CLRH ;Clear H (MS dividend register)
LDX DIVISOR4 ;Load divisor
DIV ;8/8 integer divide [A/X -> A; r->H]
STA QUOTIENT4 ;Store result (MS result of

;complete operation)
* ;Remainder in H (MS dividend

;register)
LDA DIVIDEND4+1;Load LS byte of dividend into

;LS dividend reg.
DIV ;16/8 integer divide

;[H:A/X -> A; r->H]
STA QUOTIENT4+1;Store result (LS result of

;complete operation)
CLRA ;Clear LS dividend (prepare for

;fract. divide)
DIV ;Resolve remainder
STA QUOTIENT4+2;Store fractional result.

*
*
* 5) Bounded 16/8 integer divide
* Although the DIV instruction will perform a 16/8 integer
* divide, it can only generate an 8-bit quotient. Quotient
* overflows are therefore possible unless the user knows the
* bounds of the dividend and divisor in advance.
*
Label Operation Operand Comments

ORG $50 ;RAM address space
DIVID5 RMB 2 ;storage for dividend
DIVISOR5 RMB 1 ;storage for divisor
QUOTIENT5 RMB 1 ;storage for quotient
*

ORG $6E00 ;ROM/EPROM address space
LDHX DIVID5 ;Load dividend into H:X
TXA ;Move X to A
LDX DIVISOR5 ;Load divisor into X
DIV ;16/8 integer divide
BCS ERROR5 ;Overflow?
STA QUOTIENT5 ;Store result

ERROR5 EQU *
Reference Manual CPU08 — Rev. 3.0

208 Instruction Set Examples MOTOROLA

Instruction Set Examples
Code Examples
LDHX Load Index Register with Memory LDHX
* Clear RAM block of memory
*
Label Operation Operand Comments

RAM EQU $0050 ;Start of RAM
SIZE1 EQU $400 ;Length of RAM array
*

LDHX #RAM ;Load RAM pointer
LOOP CLR ,X ;Clear byte

AIX #1 ;Bump pointer
CPHX #RAM+SIZE1 ;Done?
BLO loop ;Loop if not
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set Examples 209

Instruction Set Examples
MOV Move MOV
* 1) Initialize Port A and Port B data registers in page 0.
*
Label Operation Operand Comments

PORTA EQU $0000 ;port a data register
PORTB EQU $0001 ;port b data register
*

MOV #$AA,PORTA ;store $AA to port a
MOV #$55,PORTB ;store $55 to port b

*
*
*
* 2) Move REG1 to REG2 if REG1 positive; clear REG2*
Label Operation Operand Comments

REG1 EQU $0010
REG2 EQU $0011
*

MOV REG1,REG2
BMI NEG
CLR REG2

*
NEG EQU *
*
*
* 3) Move data to a page 0 location from a table anywhere in memory
*
Label Operation Operand Comments

SPIOUT EQU $0012
*

ORG $50 ;RAM address space
TABLE_PTR RMB 2 ;storage for table pointer
*

ORG $6E00 ;ROM/EPROM address space
LDHX TABLE_PTR ;Restore table pointer
MOV X+,SPIOUT ;Move data

*
* NOTE: X+ is a 16-bit increment of the H:X register
* NOTE: The increment occurs after the move operation is
* completed
*

STHX TABLE_PTR ;Save modified pointer
*

Reference Manual CPU08 — Rev. 3.0

210 Instruction Set Examples MOTOROLA

Instruction Set Examples
Code Examples
NSA Nibble Swap Accumulator NSA
* NSA:
* Compress 2 bytes, each containing one BCD nibble, into 1
* byte. Each byte contains the BCD nibble in bits 0-3. Bits
* 4-7 are clear.
*
Label Operation Operand Comments

BCD1 RMB 1
BCD2 RMB 1
*

LDA BCD1 ;Read first BCD byte
NSA ;Swap LS and MS nibbles
ADD BCD2 ;Add second BCD byte

*

CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set Examples 211

Instruction Set Examples
PSHA Push Accumulator onto Stack PSHA
* PSHA:
* Jump table index calculation.
* Jump to a specific code routine based on a number held in A
*
* Entry : A = jump selection number, 0-3
*
Label Operation Operand Comments

PSHA ;Save selection number
LSLA ;Multiply by 2
ADD 1,SP ;Add stacked number;

;A now = A x 3
TAX ;Move to index reg
CLRH ;and clear MS byte
PULA ;Clean up stack
JMP TABLE1,X ;Jump into table....

TABLE1 JMP PROG_0
JMP PROG_1
JMP PROG_2
JMP PROG_3

*
PROG_0 EQU *
PROG_1 EQU *
PROG_2 EQU *
PROG_3 EQU *
*

Reference Manual CPU08 — Rev. 3.0

212 Instruction Set Examples MOTOROLA

Instruction Set Examples
Code Examples
PSHH Push H (Index Register High) onto Stack PSHH
* PSHH:
* 1) Save contents of H register at the start of an interrupt
* service routine
*
Label Operation Operand Comments

SCI_INT PSHH ;Save H (all other registers
;already stacked)

* |
* |
* |
* |
* |

PULH ;Restore H
RTI ;Unstack all other registers;

;return to main
*
*
* 2) Effective address calculation
*
* Entry : H:X=pointer, A=offset
* Exit : H:X = A + H:X (A = H)
*
Label Operation Operand Comments

PSHX ;Push X then H onto stack
PSHH
ADD 2,SP ;Add stacked X to A
TAX ;Move result into X
PULA ;Pull stacked H into A
ADC #0 ;Take care of any carry
PSHA ;Push modified H onto stack
PULH ;Pull back into H
AIS #1 ;Clean up stack

*

CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set Examples 213

Instruction Set Examples
PSHX Push X (Index Register Low) onto Stack PSHX
* PSHX:
* 1) Implement the transfer of the X register to the H
* register
*
Label Operation Operand Comments

PSHX ;Move X onto the stack
PULH ;Return back to H

*
* 2) Implement the exchange of the X register and A
*
Label Operation Operand Comments

PSHX ;Move X onto the stack
TAX ;Move A into X
PULA ;Restore X into A

*

Reference Manual CPU08 — Rev. 3.0

214 Instruction Set Examples MOTOROLA

Instruction Set Examples
Code Examples
PULA Pull Accumulator from Stack PULA
* Implement the transfer of the H register to A
*
Label Operation Operand Comments

PSHH ;Move H onto stack
PULA ;Return back to A
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set Examples 215

Instruction Set Examples
PULH Pull H (Index Register High) from Stack PULH
* Implement the exchange of the H register and A
*
Label Operation Operand Comments

PSHA ;Move A onto the stack
PSHH ;Move H onto the stack
PULA ;Pull H into A
PULH ;Pull A into H
Reference Manual CPU08 — Rev. 3.0

216 Instruction Set Examples MOTOROLA

Instruction Set Examples
Code Examples
PULX Pull X (Index Register Low) from Stack PULX
* Implement the exchange of the X register and A
*
Label Operation Operand Comments

PSHA ;Move A onto the stack
TXA ;Move X into A
PULX ;Restore A into X
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set Examples 217

Instruction Set Examples
STHX Store Index Register STHX
* Effective address calculation
*
* Entry : H:X=pointer, A=offset
* Exit : H:X = A + H:X
*
Label Operation Operand Comments

ORG $50 ;RAM address space
TEMP RMB 2
*

ORG $6E00 ;ROM/EPROM address space
STHX TEMP ;Save H:X
ADD TEMP+1 ;Add saved X to A
TAX ;Move result into X
LDA TEMP ;Load saved X into A
ADC #0 ;Take care of any carry
PSHA ;Push modified H onto stack
PULH ;Pull back into H

*

Reference Manual CPU08 — Rev. 3.0

218 Instruction Set Examples MOTOROLA

Instruction Set Examples
Code Examples
TAP Transfer Accumulator to Condition Code Register TAP
*
* NOTE: The TAP instruction was added to improve testability of
* the CPU08, and so few practical applications of the
* instruction exist.
*

CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set Examples 219

Instruction Set Examples
TPA Transfer Condition Code Register to Accumulator TPA
* Implement branch if 2’s complement signed overflow bit
* (V-bit) is set
*
Label Operation Operand Comments

TPA
*
* NOTE: Transfering the CCR to A does not modify the CCR.
*

TSTA
BMI V_SET

*
V_SET EQU *
*

Reference Manual CPU08 — Rev. 3.0

220 Instruction Set Examples MOTOROLA

Instruction Set Examples
Code Examples
TSX Transfer Stack Pointer to Index Register TSX
* TSX:
* Create a stack frame pointer. H:X points to the stack frame
* irrespective of stack depth. Useful for handling nested
* subroutine calls (e.g. recursive routines) which reference
* the stack frame data.
*
Label Operation Operand Comments

LOCAL EQU $20
*

AIS #LOCAL ;Create local variable space in
;stack frame

TSX ;SP +1 > H:X
*
* NOTE: TSX transfers SP+1 to allow the H:X register to point
* to the first used stack byte (SP always points to the next
* available stack byte). The SP itself is not modified.
*
* |
* |
*

LDA 0,X ;Load the 1st byte in local space
*
* |
* |
* |
*

CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Instruction Set Examples 221

Instruction Set Examples
TXS Transfer Index Register to Stack Pointer TXS
* Initialize the SP to a value other than the reset state
*
Label Operation Operand Comments

STACK1 EQU $0FFF
*

LDHX #STACK1+1 ;$1000 > H:X
TXS ;$0FFF > SP

*
* NOTE: TXS subtracts 1 from the value in H:X before it
* transfers to SP.
Reference Manual CPU08 — Rev. 3.0

222 Instruction Set Examples MOTOROLA

Reference Manual — CPU08

Glossary
$xxxx — The digits following the “$” are in hexadecimal format.

#xxxx — The digits following the “#” indicate an immediate operand.

A — Accumulator. See “accumulator.”

accumulator (A) — An 8-bit general-purpose register in the CPU08.
The CPU08 uses the accumulator to hold operands and results
of arithmetic and non-arithmetic operations.

address bus — The set of conductors used to select a specific memory
location so that the CPU can write information into the memory
location or read its contents.

addressing mode — The way that the CPU obtains (addresses) the
information needed to complete an instruction. The M68HC08
CPU has 16 addressing modes.

algorithm — A set of specific procedures by which a solution is
obtained in a finite number of steps, often used in numerical
calculation.

ALU — Arithmetic logic unit. See “arithmetic logic unit.”

arithmetic logic unit (ALU) — The portion of the CPU of a computer
where mathematical and logical operations take place. Other
circuitry decodes each instruction and configures the ALU to
perform the necessary arithmetic or logical operations at each
step of an instruction.

assembly language — A method used by programmers for
representing machine instructions (binary data) in a more
convenient form. Each machine instruction is given a simple,
short name, called a mnemonic (or memory aid), which has a
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Glossary 223

Glossary
one-to-one correspondence with the machine instruction. The
mnemonics are translated into an object code program that a
microcontroller can use.

ASCII — American Standard Code for Information Interchange. A
widely accepted correlation between alphabetic and numeric
characters and specific 7-bit binary numbers.

asynchronous — Refers to circuitry and operations without common
clock signals.

BCD — Binary-coded decimal. See “binary-coded decimal.”

binary — The binary number system using 2 as its base and using only
the digits 0 and 1. Binary is the numbering system used by
computers because any quantity can be represented by a series
of 1s and 0s. Electrically, these 1s and 0s are represented by
voltage levels of approximately VDD (input) and VSS (ground),
respectively.

 binary-coded decimal (BCD) — A notation that uses binary values to
represent decimal quantities. Each BCD digit uses four binary
bits. Six of the possible 16 binary combinations are considered
illegal.

bit — A single binary digit. A bit can hold a single value of 0 or 1.

Boolean — A mathematical system of representing logic through a
series of algebraic equations that can only be true or false, using
operators such as AND, OR, and NOT.

branch instructions — Computer instructions that cause the CPU to
continue processing at a memory location other than the next
sequential address. Most branch instructions are conditional.
That is, the CPU continues to the next sequential address (no
branch) if a condition is false, or continue to some other address
(branch) if the condition is true.

bus — A collection of logic lines (conductor paths) used to transfer
data.

byte — A set of exactly eight binary bits.
Reference Manual CPU08 — Rev. 3.0

224 Glossary MOTOROLA

Glossary
C — Abbreviation for carry/borrow in the condition code register of the
CPU08. The CPU08 sets the carry/borrow flag when an addition
operation produces a carry out of bit 7 of the accumulator or
when a subtraction operation requires a borrow. Some logical
operations and data manipulation instructions also clear or set
the C flag (as in bit test and branch instructions and shifts and
rotates).

CCR — Abbreviation for condition code register in the CPU08. See
“condition code register.”

central processor unit (CPU) — The primary functioning unit of any
computer system. The CPU controls the execution of
instructions.

checksum — A value that results from adding a series of binary
numbers. When exchanging information between computers, a
checksum gives an indication about the integrity of the data
transfer. If values were transferred incorrectly, it is unlikely that
the checksum would match the value that was expected.

clear — To establish logic 0 state on a bit or bits; the opposite of “set.”

clock — A square wave signal used to sequence events in a computer.

condition code register (CCR) — An 8-bit register in the CPU08 that
contains the interrupt mask bit and five bits (flags) that indicate
the results of the instruction just executed.

control unit — One of two major units of the CPU. The control unit
contains logic functions that synchronize the machine and direct
various operations. The control unit decodes instructions and
generates the internal control signals that perform the requested
operations. The outputs of the control unit drive the execution
unit, which contains the arithmetic logic unit (ALU), CPU
registers, and bus interface.

CPU — Central processor unit. See “central processor unit.”

CPU08 — The central processor unit of the M68HC08 Family.
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Glossary 225

Glossary
CPU cycles — A CPU clock cycle is one period of the internal bus-rate
clock, normally derived by dividing a crystal oscillator source by
two or more so the high and low times are equal. The length of
time required to execute an instruction is measured in CPU clock
cycles.

CPU registers — Memory locations that are wired directly into the CPU
logic instead of being part of the addressable memory map. The
CPU always has direct access to the information in these
registers. The CPU registers in an M68HC08 are:

— A (8-bit accumulator)

— H:X (16-bit accumulator)

— SP (16-bit stack pointer)

— PC (16-bit program counter)

— CCR (condition code register containing the V, H, I, N, Z,
and C bits)

cycles — See “CPU cycles.”

data bus — A set of conductors used to convey binary information from
a CPU to a memory location or from a memory location to a
CPU.

decimal — Base 10 numbering system that uses the digits zero
through nine.

direct address — Any address within the first 256 addresses of
memory ($0000–$00FF). The high-order byte of these
addresses is always $00. Special instructions allow these
addresses to be accessed using only the low-order byte of their
address. These instructions automatically fill in the assumed $00
value for the high-order byte of the address.

direct addressing mode — Direct addressing mode uses a
program-supplied value for the low-order byte of the address of
an operand. The high-order byte of the operand address is
assumed to be $00 and so it does not have to be explicitly
specified. Most direct addressing mode instructions can access
any of the first 256 memory addresses.
Reference Manual CPU08 — Rev. 3.0

226 Glossary MOTOROLA

Glossary
direct memory access (DMA) — One of a number of modules that
handle a variety of control functions in the modular M68HC08
Family. The DMA can perform interrupt-driven and
software-initiated data transfers between any two
CPU-addressable locations. Each DMA channel can
independently transfer data between any addresses in the
memory map. DMA transfers reduce CPU overhead required for
data movement interrupts.

direct page — The first 256 bytes of memory ($0000–$00FF); also
called page 0.

DMA — Direct memory access. See “direct memory access.”

EA — Effective address. See “effective address.”

effective address (EA) — The address where an instruction operand is
located. The addressing mode of an instruction determines how
the CPU calculates the effective address of the operand.

EPROM — Erasable, programmable, read-only memory. A non-volatile
type of memory that can be erased by exposure to an ultraviolet
light source.

EU — Execution unit. See “execution unit.”

execution unit (EU) — One of the two major units of the CPU
containing the arithmetic logic unit (ALU), CPU registers, and
bus interface. The outputs of the control unit drive the execution
unit.

extended addressing mode — In this addressing mode, the
high-order byte of the address of the operand is located in the
next memory location after the opcode. The low-order byte of the
operand address is located in the second memory location after
the opcode. Extended addressing mode instructions can access
any address in a 64-Kbyte memory map.

H — Abbreviation for the upper byte of the 16-bit index register (H:X) in
the CPU08.
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Glossary 227

Glossary
H — Abbreviation for “half-carry” in the condition code register of the
CPU08. This bit indicates a carry from the low-order four bits of
the accumulator value to the high-order four bits. The half-carry
bit is required for binary-coded decimal arithmetic operations.
The decimal adjust accumulator (DAA) instruction uses the state
of the H and C flags to determine the appropriate correction
factor.

hexadecimal — Base 16 numbering system that uses the digits 0
through 9 and the letters A through F. One hexadecimal digit can
exactly represent a 4-bit binary value. Hexadecimal is used by
people to represent binary values because a 2-digit number is
easier to use than the equivalent 8-digit number.

high order — The leftmost digit(s) of a number; the opposite of low
order.

H:X — Abbreviation for the 16-bit index register in the CPU08. The
upper byte of H:X is called H. The lower byte is called X. In the
indexed addressing modes, the CPU uses the contents of H:X to
determine the effective address of the operand. H:X can also
serve as a temporary data storage location.

I — Abbreviation for “interrupt mask bit” in the condition code register of
the CPU08. When I is set, all interrupts are disabled. When I is
cleared, interrupts are enabled.

immediate addressing mode — In immediate addressing mode, the
operand is located in the next memory location(s) after the
opcode. The immediate value is one or two bytes, depending on
the size of the register involved in the instruction.

index register (H:X) — A 16-bit register in the CPU08. The upper byte
of H:X is called H. The lower byte is called X. In the indexed
addressing modes, the CPU uses the contents of H:X to
determine the effective address of the operand. H:X can also
serve as a temporary data storage location.

indexed addressing mode — Indexed addressing mode instructions
access data with variable addresses. The effective address of
the operand is determined by the current value of the H:X
register added to a 0-, 8-, or 16-bit value (offset) in the
Reference Manual CPU08 — Rev. 3.0

228 Glossary MOTOROLA

Glossary
instruction. There are separate opcodes for 0-, 8-, and 16-bit
variations of indexed mode instructions, and so the CPU knows
how many additional memory locations to read after the opcode.

indexed, post increment addressing mode — In this addressing
mode, the effective address of the operand is determined by the
current value of the index register, added to a 0- or 8-bit value
(offset) in the instruction, after which the index register is
incremented. Operands with variable addresses can be
addressed with the 8-bit offset instruction.

inherent addressing mode — The inherent addressing mode has no
operand because the opcode contains all the information
necessary to carry out the instruction. Most inherent instructions
are one byte long.

input/output (I/O) — Input/output interfaces between a computer
system and the external world. A CPU reads an input to sense
the level of an external signal and writes to an output to change
the level on an external signal.

instructions — Instructions are operations that a CPU can perform.
Instructions are expressed by programmers as assembly
language mnemonics. A CPU interprets an opcode and its
associated operand(s) and instruction(s).

instruction set — The instruction set of a CPU is the set of all
operations that the CPU can perform. An instruction set is often
represented with a set of shorthand mnemonics, such as LDA,
meaning “load accumulator (A).” Another representation of an
instruction set is with a set of opcodes that are recognized by the
CPU.

interrupt — Interrupts provide a means to temporarily suspend normal
program execution so that the CPU is freed to service sets of
instructions in response to requests (interrupts) from peripheral
devices. Normal program execution can be resumed later from
its original point of departure. The CPU08 can process up to 128
separate interrupt sources, including a software interrupt (SWI).
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Glossary 229

Glossary
I/O — Input/output. See “input/output.”

IRQ — Interrupt request. The overline indicates an active-low signal.

least significant bit (LSB) — The rightmost digit of a binary value; the
opposite of most significant bit (MSB).

logic 1 — A voltage level approximately equal to the input power
voltage (VDD).

logic 0 — A voltage level approximately equal to the ground voltage
(VSS).

low order — The rightmost digit(s) of a number; the opposite of high
order.

LS — Least significant.

LSB — Least significant bit. See “least significant bit.”

M68HC08 — The Motorola Family of 8-bit MCUs.

machine codes — The binary codes processed by the CPU as
instructions. Machine code includes both opcodes and operand
data.

MCU — Microcontroller unit. See “microcontroller unit.”

memory location — In the M68HC08, each memory location holds one
byte of data and has a unique address. To store information into
a memory location, the CPU places the address of the location
on the address bus, the data information on the data bus, and
asserts the write signal. To read information from a memory
location, the CPU places the address of the location on the
address bus and asserts the read signal. In response to the read
signal, the selected memory location places its data onto the
data bus.

memory map — A pictorial representation of all memory locations in a
computer system.

memory-to-memory addressing mode — In this addressing mode,
the accumulator has been eliminated from the data transfer
process, thereby reducing execution cycles. This addressing
mode, therefore, provides rapid data transfers because it does
Reference Manual CPU08 — Rev. 3.0

230 Glossary MOTOROLA

Glossary
not use the accumulator and associated load and store
instructions. There are four memory-to-memory addressing
mode instructions. Depending on the instruction, operands are
found in the byte following the opcode, in a direct page location
addressed by the byte immediately following the opcode, or in a
location addressed by the index register.

microcontroller unit (MCU) — A complete computer system, including
a CPU, memory, a clock oscillator, and input/output (I/O) on a
single integrated circuit.

mnemonic — Three to five letters that represent a computer operation.
For example, the mnemonic form of the “load accumulator”
instruction is LDA.

most significant bit (MSB) — The leftmost digit of a binary value; the
opposite of least significant bit (LSB).

MS — Abbreviation for “most significant.”

MSB — Most significant bit. See “most significant bit.”

N — Abbreviation for “negative,” a bit in the condition code register of
the CPU08. The CPU sets the negative flag when an arithmetic
operation, logical operation, or data manipulation produces a
negative result.

nibble — Half a byte; four bits.

object code — The output from an assembler or compiler that is itself
executable machine code or is suitable for processing to
produce executable machine code.

one — A logic high level, a voltage level approximately equal to the
input power voltage (VDD).

one’s complement — An infrequently used form of signed binary
numbers. Negative numbers are simply the complement of their
positive counterparts. One’s complement is the result of a
bit-by-bit complement of a binary word: All 1s are changed to 0s
and all 0s changed to 1s. One’s complement is two’s
complement without the increment.
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Glossary 231

Glossary
opcode — A binary code that instructs the CPU to do a specific
operation in a specific way.

operand — The fundamental quantity on which a mathematical
operation is performed. Usually a statement consists of an
operator and an operand. The operator may indicate an add
instruction; the operand therefore will indicate what is to be
added.

oscillator — A circuit that produces a constant frequency square wave
that is used by the computer as a timing and sequencing
reference.

page 0 — The first 256 bytes of memory ($0000–$00FF). Also called
direct page.

PC — Program counter. See “program counter.”

pointer — Pointer register. An index register is sometimes called a
pointer register because its contents are used in the calculation
of the address of an operand, and therefore “points” to the
operand.

program — A set of computer instructions that cause a computer to
perform a desired operation or operations.

programming model — The registers of a particular CPU.

program counter (PC) — A 16-bit register in the CPU08. The PC
register holds the address of the next instruction or operand that
the CPU will use.

pull — The act of reading a value from the stack. In the M68HC08, a
value is pulled by the following sequence of operations. First, the
stack pointer register is incremented so that it points to the last
value saved on the stack. Next, the value at the address
contained in the stack pointer register is read into the CPU.

push — The act of storing a value at the address contained in the stack
pointer register and then decrementing the stack pointer so that
it points to the next available stack location.
Reference Manual CPU08 — Rev. 3.0

232 Glossary MOTOROLA

Glossary
random access memory (RAM) — A type of memory that can be read
or written by the CPU. The contents of a RAM memory location
remain valid until the CPU writes a different value or until power
is turned off.

RAM — Random access memory. See “random-access memory.”

read — To transfer the contents of a memory location to the CPU.

read-only memory — A type of memory that can be read but cannot
be changed (written) by the CPU. The contents of ROM must be
specified before manufacturing the MCU.

registers — Memory locations wired directly into the CPU logic instead
of being part of the addressable memory map. The CPU always
has direct access to the information in these registers. The CPU
registers in an M68HC08 are:

— A (8-bit accumulator)

— (H:X) (16-bit index register)

— SP (16-bit stack pointer)

— PC (16-bit program counter)

— CCR (condition code register containing the V, H, I, N, Z,
and C bits)

 Memory locations that hold status and control information for
on-chip peripherals are called input/output (I/O) and control
registers.

relative addressing mode — Relative addressing mode is used to
calculate the destination address for branch instructions. If the
branch condition is true, the signed 8-bit value after the opcode
is added to the current value of the program counter to get the
address where the CPU will fetch the next instruction. If the
branch condition is false, the effective address is the content of
the program counter.

reset — Reset is used to force a computer system to a known starting
point and to force on-chip peripherals to known starting
conditions.
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Glossary 233

Glossary
ROM — Read-only memory. See “read-only memory.”

set — To establish a logic 1 state on a bit or bits; the opposite of “clear.”

signed — A form of binary number representation accommodating both
positive and negative numbers. The most significant bit is used
to indicate whether the number is positive or negative, normally
zero for positive and one for negative, and the other seven bits
indicate the magnitude.

SIM — System integration module. See “system integration module.”

SP — Stack pointer. See “stack pointer.”

stack — A mechanism for temporarily saving CPU register values
during interrupts and subroutines. The CPU maintains this
structure with the stack pointer (SP) register, which contains the
address of the next available (empty) storage location on the
stack. When a subroutine is called, the CPU pushes (stores) the
low-order and high-order bytes of the return address on the stack
before starting the subroutine instructions. When the subroutine
is done, a return from subroutine (RTS) instruction causes the
CPU to recover the return address from the stack and continue
processing where it left off before the subroutine. Interrupts work
in the same way except that all CPU registers are saved on the
stack instead of just the program counter.

stack pointer (SP) — A 16-bit register in the CPU08 containing the
address of the next available (empty) storage on the stack.

stack pointer addressing mode — Stack pointer (SP) addressing
mode instructions operate like indexed addressing mode
instructions except that the offset is added to the stack pointer
instead of the index register (H:X). The effective address of the
operand is formed by adding the unsigned byte(s) in the stack
pointer to the unsigned byte(s) following the opcode.

subroutine — A sequence of instructions to be used more than once in
the course of a program. The last instruction in a subroutine is a
return-from-subroutine (RTS) instruction. At each place in the
main program where the subroutine instructions are needed, a
jump or branch to subroutine (JSR or BSR) instruction is used to
Reference Manual CPU08 — Rev. 3.0

234 Glossary MOTOROLA

Glossary
call the subroutine. The CPU leaves the flow of the main
program to execute the instructions in the subroutine. When the
RTS instruction is executed, the CPU returns to the main
program where it left off.

synchronous — Refers to two or more things made to happen
simultaneously in a system by means of a common clock signal.

system integration module (SIM) — One of a number of modules that
handle a variety of control functions in the modular M68HC08
Family. The SIM controls mode of operation, resets and
interrupts, and system clock generation.

table — A collection or ordering of data (such as square root values)
laid out in rows and columns and stored in a computer memory
as an array.

two’s complement — A means of performing binary subtraction using
addition techniques. The most significant bit of a two’s
complement number indicates the sign of the number (1
indicates negative). The two’s complement negative of a number
is obtained by inverting each bit in the number and then adding 1
to the result.

unsigned — Refers to a binary number representation in which all
numbers are assumed positive. With signed binary, the most
significant bit is used to indicate whether the number is positive
or negative, normally 0 for positive and 1 for negative, and the
other seven bits are used to indicate the magnitude.

variable — A value that changes during the course of executing a
program.

word — Two bytes or 16 bits, treated as a unit.

write — The transfer of a byte of data from the CPU to a memory
location.

X — Abbreviation for the lower byte of the index register (H:X) in the
CPU08.
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Glossary 235

Glossary
Z — Abbreviation for zero, a bit in the condition code register of the
CPU08. The CPU08 sets the zero flag when an arithmetic
operation, logical operation, or data manipulation produces a
result of $00.

zero — A logic low level, a voltage level approximately equal to the
ground voltage (VSS).
Reference Manual CPU08 — Rev. 3.0

236 Glossary MOTOROLA

Reference Manual — CPU08

Index
A
Accumulator (A). 25
Addressing modes

direct . 61
extended . 63
immediate. 59
indexed with post increment. 77
indexed, 16-bit offset . 66
indexed, 8-bit offset . 65
indexed, 8-bit offset with post increment 78
indexed, no offset. 65
inherent . 57
memory to memory direct to direct. 73
memory to memory direct to indexed with post increment. 76
memory to memory immediate to direct. 73
memory to memory indexed to direct with post increment. 74
relative . 71
stack pointer, 16-bit offset . 68
stack pointer, 8-bit offset . 68

C
Carry/borrow flag (C) . 29
Condition code register (CCR)

carry/borrow flag (C) . 29
half-carry flag (H) . 28
interrupt mask (I) . 29
negative flag (N). 29
overflow flag (V) . 28
zero flag (Z) . 29
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Index 237

Index
CPU08
accumulator (A) . 25
block diagram. 30
condition code register (CCR) . 28
control unit . 32
execution unit . 33
features . 20
functional description . 30
index register (HX) . 25
instruction execution . 33–35
internal timing. 31
low-power modes . 22
program counter (PC) . 27
programming model . 24
registers . 24
stack pointer (SP). 26

D
Direct addressing mode. 61
DMA (direct memory access module) . 39

E
Extended addressing mode. 63

H
HX (index register). 25

I
Immediate addressing mode . 59
Index register (HX) . 25
Indexed with post increment addressing mode 77
Indexed, 16-bit offset addressing mode . 66
Indexed, 8-bit offset addressing mode . 65
Indexed, 8-bit offset with post increment addressing mode 78
Indexed, no offset addressing mode . 65
Inherent addressing mode. 57
Reference Manual CPU08 — Rev. 3.0

238 Index MOTOROLA

Index
Instruction execution . 33–35
instruction boundaries . 34

Instruction set
convention definition . 96
nomenclature . 92

Interrupts
allocating scratch space. 53
arbitration . 41
DMA (direct memory access module) . 39
flow and timing . 42
H register storage. 41
interrupt processing . 49
interrupt recognition . 43–44
masking . 43
nesting of multiple interrupts . 50, 52
priority . 51
recognition . 39
return to calling program . 45
SIM (system integration module) . 41
sources. 51
stacking . 40
vectors . 51

L
Legal label . 95
Literal expression . 95

M
Memory to memory direct to direct addressing mode 73
Memory to memory direct to indexed

with post increment addressing mode . 76
Memory to memory immediate to direct addressing mode 73
Memory to memory indexed to direct with post increment

addressing mode . 74
Monitor mode. 47
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Index 239

Index
N
Negative flag (N) . 29
Notation

Source forms . 94

O
Opcode map . 88
Overflow flag (V) . 28

P
Program counter (PC) . 27

R
Register designators . 95
Registers

accumulator (A) . 24
condition code (CCR). 24
index (HX) . 24
program counter (PC) . 24
stack pointer (SP). 24

Relative addressing mode
conditional branch . 71

Resets
arbitration . 41
CPU . 47
DMA (direct memory access module) . 39
exiting. 46
external . 49
H register storage. 41
I bit . 50
initial conditions . 47
internal . 49
local enable mask bits . 50
masking . 43
mode selection . 47
monitor mode . 47
recognition . 39
resetting processing . 46
Reference Manual CPU08 — Rev. 3.0

240 Index MOTOROLA

Index
Resets (continued)
SIM (system integration module) . 41, 48
sources. 48
stacking . 40
user mode .47

S
SIM (system integration module). 41, 48
Source form notation . 94
Stack pointer (SP) . 26
Stack pointer, 16-bit offset addressing mode 68
Stack pointer, 8-bit offset addressing mode 68
System integration module (SIM) . 41, 48

T
Timing

control unit . 33
internal . 31
interrupt processing flow . 42

U
User mode. 47

V
V (overflow flag). 28

Z
Zero flag (Z). 29
CPU08 — Rev. 3.0 Reference Manual

MOTOROLA Index 241

Index
Reference Manual CPU08 — Rev. 3.0

242 Index MOTOROLA

blank

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.;
Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software

implementers to use Motorola products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits or

integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products

herein. Motorola makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Motorola assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters which may be provided in Motorola data sheets

and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals”

must be validated for each customer application by customer’s technical experts.

Motorola does not convey any license under its patent rights nor the rights of

others. Motorola products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other

applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or

death may occur. Should Buyer purchase or use Motorola products for any such

unintended or unauthorized application, Buyer shall indemnify and hold Motorola

and its officers, employees, subsidiaries, affiliates, and distributors harmless

against all claims, costs, damages, and expenses, and reasonable attorney fees

arising out of, directly or indirectly, any claim of personal injury or death associated

with such unintended or unauthorized use, even if such claim alleges that Motorola

was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark
Office. digital dna is a trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2001

CPU08RM/AD

	List of Sections
	Table of Contents
	List of Figures
	List of Tables
	Section 1. General Description
	1.1 Contents
	1.2 Introduction
	1.3 Features
	1.4 Programming Model
	1.5 Memory Space
	1.6 Addressing Modes
	1.7 Arithmetic Instructions
	1.8 Binary-Coded Decimal (BCD) Arithmetic Support
	1.9 High-Level Language Support
	1.10 Low-Power Modes

	Section 2. Architecture
	2.1 Contents
	2.2 Introduction
	2.3 CPU08 Registers
	2.3.1 Accumulator
	2.3.2 Index Register
	2.3.3 Stack Pointer
	2.3.4 Program Counter
	2.3.5 Condition Code Register

	2.4 CPU08 Functional Description
	2.4.1 Internal Timing
	2.4.2 Control Unit
	2.4.3 Execution Unit
	2.4.4 Instruction Execution

	Section 3. Resets and Interrupts
	3.1 Contents
	3.2 Introduction
	3.3 Elements of Reset and Interrupt Processing
	3.3.1 Recognition
	3.3.2 Stacking
	3.3.3 Arbitration
	3.3.4 Masking
	3.3.5 Returning to Calling Program

	3.4 Reset Processing
	3.4.1 Initial Conditions Established
	3.4.2 CPU
	3.4.3 Operating Mode Selection
	3.4.4 Reset Sources
	3.4.5 External Reset
	3.4.6 Active Reset from an Internal Source

	3.5 Interrupt Processing
	3.5.1 Interrupt Sources and Priority
	3.5.2 Interrupts in Stop and Wait Modes
	3.5.3 Nesting of Multiple Interrupts
	3.5.4 Allocating Scratch Space on the Stack

	Section 4. Addressing Modes
	4.1 Contents
	4.2 Introduction
	4.3 Addressing Modes
	4.3.1 Inherent
	4.3.2 Immediate
	4.3.3 Direct
	4.3.4 Extended
	4.3.5 Indexed, No Offset
	4.3.6 Indexed, 8�Bit Offset
	4.3.7 Indexed, 16-Bit Offset
	4.3.8 Stack Pointer, 8-Bit Offset
	4.3.9 Stack Pointer, 16-Bit Offset
	4.3.10 Relative
	4.3.11 Memory-to-Memory Immediate to Direct
	4.3.12 Memory-to-Memory Direct to Direct
	4.3.13 Memory-to-Memory Indexed to Direct with Post Increment
	4.3.14 Memory-to-Memory Direct to Indexed with Post Increment
	4.3.15 Indexed with Post Increment
	4.3.16 Indexed, 8-Bit Offset with Post Increment

	4.4 Instruction Set Summary
	4.5 Opcode Map

	Section 5. Instruction Set
	5.1 Contents
	5.2 Introduction
	5.3 Nomenclature
	5.4 Convention Definitions
	5.5 Instruction Set

	Section 6. Instruction Set Examples
	6.1 Contents
	6.2 Introduction
	6.3 M68HC08 Unique Instructions
	6.4 Code Examples

	Glossary
	Index

