
Data Sheet

TDA21106

High speed Driver with bootstrapping for dual Power MOSFETs

Features

- Fast rise and fall times for frequencies up to 2 MHz
- Capable of sinking more than 4A peak currents for lowest switching losses
- Charges High Side MOSFET gate drive voltage from 6 to 12V according to PVCC setting; Low Side MOSFET at 12 V.
- Adjustable High Side MOSFET gate drive voltage via PVCC pin for optimizing ON losses and gate drive losses
- Integrates the bootstrap diode for reducing the part count
- Prevents from cross-conducting by adaptive gate drive control
- High voltage rating on Phase node
- Supports shut-down mode for very low guiescent current through three-state input
- Compatible to standard PWM controller ICs (Intersil, Analog Devices)
- Floating High Side MOSFET drive
- Footprint compatible to TDA21101G and HIP6601B
- Ideal for multi-phase Desktop CPU supplies on motherboards and VRM's

Type	Package	Marking	Ordering Code
TDA21106	P-DSO-8	21106	Q67042-S4223

Top View GATE_{HS} 1 8 PHASE BOOT 2 7 P_{VCC} PWM 3 6 V_{CC} GND 4 5 GATE_{LS}

Pinout

Number	Name	Description
1	GATE _{HS}	Gate drive output for the N-Channel High side MOSFET
2	BOOT	Floating bootstrap pin. To be connected to the external bootstrap capacitor to generate the gate drive voltage for the high side N-Channel MOSFET
3	PWM	Input for the PWM controller signal
4	GND	Ground
5	GATE _{LS}	Gate drive output for the N-Channel Low Side MOSFET
6	VCC	Supply voltage
7	PVCC	Input to adjust the High Side gate drive
8	PHASE	To be connected to the junction of the High Side and the Low Side MOSFET

CoreControl[™] Data Sheet

TDA21106

General Description

The dual high speed driver is designed to drive a wide range of N-Channel low side and N-Channel high side MOSFETs with varying gate charges. It has a small propagation delay from input to output, short rise and fall times and the same pin configuration to be compatible to TDA21101G and HIP6601B. In addition it provides protection features as well as a three-state mode for efficiency reasons. The high breakdown voltage makes it suitable for mobile applications.

Target application

The dual high speed driver is designed to work well in half-bridge type circuits where dual N-Channel MOSFETs are utilized. A circuit designer can fully take advantage of the driver's capabilities in high-efficiency, high-density synchronous DC/DC converters that operate at high switching frequencies, e.g. in multi-phase converters for CPU supplies on motherboards and VRM's but also in motor drive and class-D amplifier type applications.

Absolute Maximum Ratings

At Tj = 25 °C, unless otherwise specified

Parameter	Symbol	Va	lue	Unit
		Min.	Max.	
Voltage supplied to 'VCC' pin; DC	V_{VCC}	-0.3	25	
Voltage supplied to 'PVCC' pin; DC	V_{PVCC}	-0.3	25	
Voltage supplied to 'PWM' pin	V_{PWM}	-0.3	5,5	
Voltage supplied to 'BOOT' pin referenced to 'PHASE'	V _{BOOT} –	-0,3	25	V
	V_{PHASE}			
Voltage supplied to 'BOOT' pin referenced to 'GND'	V_{BOOT}	-0,3	45	
Voltage rating at 'PHASE' pin, DC	V_{PHASE}	-1	25	
Voltage rating at 'PHASE' pin, t _{pulse_max} = 500ns	V_{PHASE}	-20	30	
Max Duty Cycle = 2%				
Voltage supplied to GATE _{HS} pin referenced to 'PHASE'	V_{GATEHS}	-3.5	V_{BOOT}	
T _{pulse max} < 100ns, Energy < 2uJ			+0.3	
Voltage supplied to GATE _{LS} pin referenced to 'GND'	V_{GATELS}	-5	V_{VCC}	
T _{pulse_max} < 100ns, Energy < 2uJ			+0.3	
Junction temperature	T_J	-25	150	°C
Storage temperature	Ts	-55	150	
ESD Rating; Human Body Model			4	KV
IEC climatic category; DIN EN 60068-1		55/1	50/56	-

Data Sheet

TDA21106

Thermal Characteristic

Parameter	Symbol	,	Values	;	Unit
		Min.	Тур.	Max.	
Thermal resistance, junction-soldering point			95		K/W
Thermal resistance, junction-ambient			125		

Operating ConditionsAt Tj = 25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Values		Unit	
	_		Min.	Тур.	Max.	
Voltage supplied to 'VCC' pins	V _{VCC}		10.8		13.2	V
Voltage supplied to 'PVCC' pins	V_{PVCC}		6		13.2	V
Input signal transition frequency	f		0.1		2	MHz
Power dissipation	P _{TOT}	$T_A = 25 ^{\circ}\text{C}, T_J = 125 ^{\circ}\text{C}$		8.0		W
Junction temperature	T_J		-25		150	°C

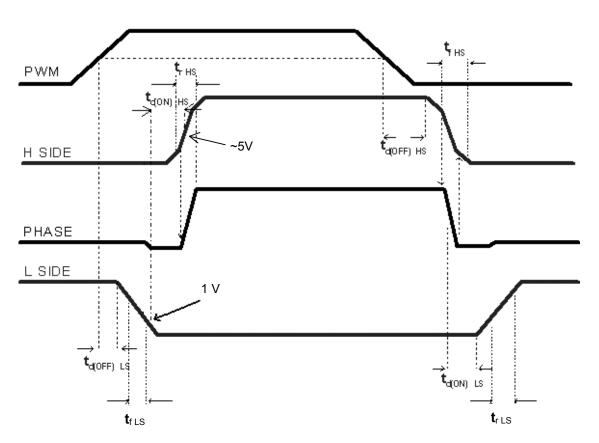
Electrical Characteristic

At Ti = 25 °C. unless otherwise specified

Parameter	Symbol	Conditions		Values	3	Unit
			Min.	Тур.	Max.	
Supply Characteristic	;					
Quiescent current	I _{PVCC} +I _{VCCQ}	$1.8~V \leq V_{PWM} \leq 3.0~V$		1,3.	3	
VCC supply current	I _{vcc}	f =1 MHz,				
		$V_{PVCC} = V_{VCC} = 12 V$ No load		5	8	mA
PVCC supply current	I _{PVCC}	f =1 MHz,				
		$V_{PVCC} = V_{VCC} = 12 V$ No load		6	8.5	
Under-voltage		V _{VCC} rising threshold	9.7	10.1	10.5	V
lockout						
Under-voltage		V _{VCC} falling threshold	7.3	7.6	8.0	
lockout						
Input Characteristic						
Current in 'PWM' pin	I _{PWM L}	$V_{PWM} = 0.4 V$	-80	-115	-150	μA
Current in 'PWM' pin	I _{PWM H}	$V_{PWM} = 4.5 V$	120	180	250	
Shut down window	V_{IN} shut	t_ _{SHUT} > 300 ns	1.7		3.1	V
Shut down hold-off	t_s _{HUT}	$1.6~V \leq V_{PWM} \leq 3.2~V$	100	190	300	ns
time						
PWM pin open	V_{PWM_O}		1.8	2.0	2.2	
PWM Low level	V _{PWM L}				1.4	
PWM High level	V _{PWM H}		3.7			V
Pulse width High	t_ _P	= Pulse width on PWM		40		ns
Side	_	pin				

Data Sheet

TDA21106

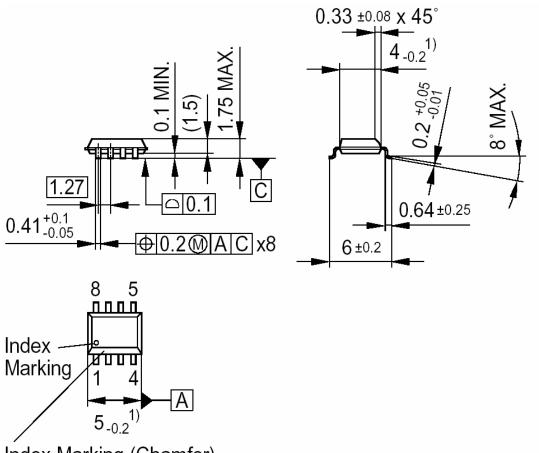

At Tj = 25 °C, unless otherwise specified

Dynamic Characteristic						
Turn-on propagation	t _{d(ON)} HS			20	35	
Delay High Side						
Turn-off propagation	$t_{d(OFF)_HS}$			15	25	
delay High Side						
Rise time High Side	t_{r} HS			20	33	
Fall time High Side	t_{f_HS}	$P_{PVCC} = V_{VCC} = 12 V$		15	25	ns
Turn-on propagation	$t_{d(ON)_LS}$	$C_{ISS} = 3000 pF$		15	27	
Delay Low Side						
Turn-off propagation	t _{d(OFF)_LS}			10	20	
delay Low Side						
Rise time Low Side	t_{r_LS}			20	33	
Fall time Low Side	t_f_LS			15	25	

At Tj = 125 °C, unless otherwise specified

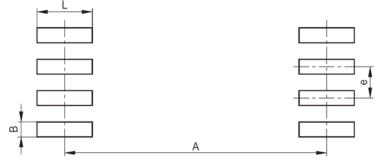
Dynamic Characteristic						
Turn-on propagation	t _{d(ON)_HS}		25			
Delay High Side						
Turn-off propagation	t _{d(OFF)_HS}		18			
delay High Side						
Rise time High Side	t _{r HS}		24			
Fall time High Side	t _{f HS}	$P_{PVCC} = V_{VCC} = 12 V$	22	ns		
Turn-on propagation	$t_{d(ON)_LS}$	$C_{ISS} = 3000 pF$	18			
Delay Low Side						
Turn-off propagation	t _{d(OFF)_LS}		15			
delay Low Side						
Rise time Low Side	t _{r_LS}		21			
Fall time Low Side	t _{f_LS}		19			

Timing diagram



At Ti = 25 °C, unless otherwise specified

Parame	eter	Conditions	Values		3	Unit
			Min.	Тур.	Max.	
Output Character	ristic High Side	e (HS) and Low Side (LS), e	ensure	d by d	lesign	
Output	HS; Source	$V_{PVCC} = V_{VCC} = 12 V$				
Resistance		$I_{HS_SRC} = 2 A$		1 (1)		Ω
	HS; Sink	$V_{PVCC} = V_{VCC} = 12 V$		0.9	1.3	Ω
	LS; Source	V _{PVCC} = V _{VCC} = 12 V				
		$I_{HS_SRC} = 2 A$		1.4 ⁽²⁾		Ω
	LS; Sink	V _{PVCC} = V _{VCC} = 12 V		0.9	1.3	Ω
	HS; Source	$V_{PVCC} = V_{VCC} = 12 V$	4			
Peak output-	HS; Sink	t_ _{P_HS} / Pulse < 20 ns	4			Α
current	LS; Source	t_ _{P_LS} / Pulse < 40 ns	4			
	LS; Sink		4			


 $^{^1}$ Incremental resistance V_BOOT-V_GATEHS=4.3V @ I_SOURCE=2A 2 Incremental resistance V_VCC -V_GATELS=4.4V @ I_SOURCE=2A

Package Drawing P-DSO-8-3

Index Marking (Chamfer)

Footprint Drawing P-DSO-8-3

е	A	L	В
1,27 mm	5,69 mm	1,31 mm	0,65 mm

¹⁾ Does not include plastic or metal protrusion of 0.15 max. per side

CoreControl[™] Data Sheet

TDA21106

Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.