2N7000

DMOS Transistors (N-Channel)

TO-92 181 (4.6) 142 (3.6) 147 (1.5) 148 (1.6) 149 (1.6) 140 (1.6) 141 (1.6) 142 (3.6) 143 (1.6) 144 (1.6) 145 (1.5) 145 (1.5) 146 (1.6) 147 (1.6) 148 (1.6) 149 (1.6) 140

Dimensions in inches and (millimeters)

FEATURES

- High input impedance
- Low gate threshold voltage
- ♦ Low drain-source ON resistance
- High-speed switching
- ♦ No minority carrier storage time
- ♦ CMOS logic compatible input
- No thermal runaway
- ♦ No secondary breakdown

MECHANICAL DATA

Case: TO-92 Plastic Package Weight: approx. 0.18 g

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified

V _{DSS}	60	
	00	V
V _{DGS}	60	V
V _{GS}	± 20	V
I _D	300	mA
P _{tot}	8301)	mW
Tj	150	°C
T _S	-65 to +150	°C
	V _{GS} I _D P _{tot} T _j T _S	VGS ± 20 ID 300 Ptot 830¹¹ Tj 150

¹⁾ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

Inverse Diode

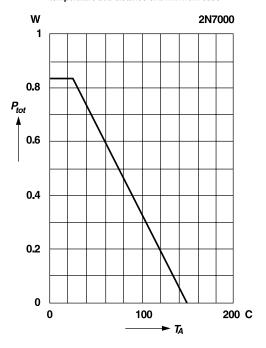
	Symbol	Value	Unit
Max. Forward Current (continuous) at T _{amb} = 25 °C	l _F	500	mA
Forward Voltage Drop (typ.) at $V_{GS} = 0$, $I_F = 0.5$ A, $T_j = 25$ °C	V _F	850	mV

2N7000

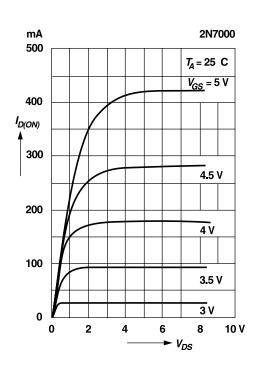
ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified

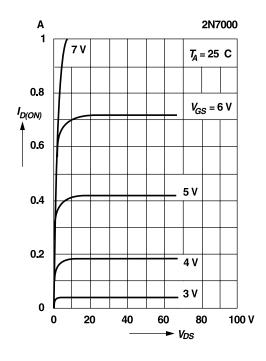
	Symbol	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage at $I_D = 100~\mu A, V_{GS} = 0~V$	V _{(BR)DSS}	60	90	_	V
Gate-Body Leakage Current, Forward at V _{GSF} = 20 V, V _{DS} = 0 V	I _{GSSF}	_	_	10	nA
Gate-Body Leakage Current, Reverse at V _{GSR} = -20 V, V _{DS} = 0 V	I _{GSSR}	_	_	-10	nA
Drain Cutoff Current at V _{DS} = 48 V, V _{GS} = 0 V	I _{DSS}	_	_	1	μΑ
Gate-Source Threshold Voltage at $V_{GS} = V_{DS}$, $I_D = 1.0$ mA	V _{GS(th)}	0.8	1.5	3	V
Drain-Source ON Resistance at $V_{GS} = 10 \text{ V}$, $I_D = 500 \text{ mA}$	R _{DS(ON)}	_	3.5	5.0	Ω
Capacitance at V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz Input Capacitance Output Capacitance Feedback Capacitance	C _{iSS} C _{OSS} C _{rSS}	_ _ _	60 25 5	- - -	pF pF pF
Switching Times at V_{GS} = 10 V, V_{DS} = 10 V, V_{DS} = 10 V, V_{DS} = 10 U, V_{DS} = 100 V_{DS} Turn-On Time Turn-Off Time	t _{on} t _{off}	_ _ _	10 10		ns ns
Thermal Resistance Junction to Ambient Air	R _{thJA}	_	_	150 ¹⁾	K/W


¹⁾ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

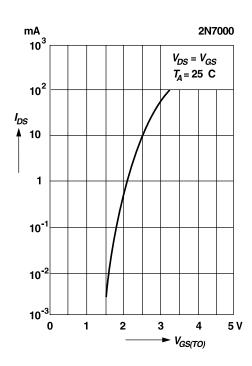
RATINGS AND CHARACTERISTIC CURVES 2N7000


Admissible power dissipation versus temperature

Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case


Saturation characteristics

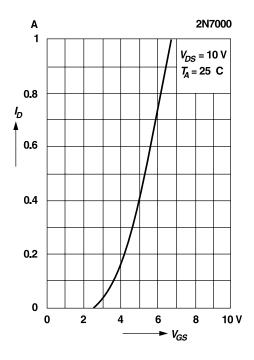
Pulse test width 80 ms; pulse duty factor 1%.

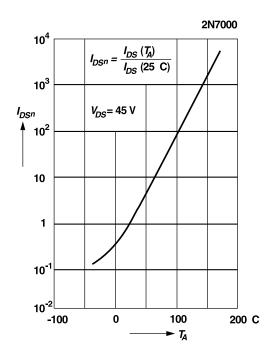


Output characteristics

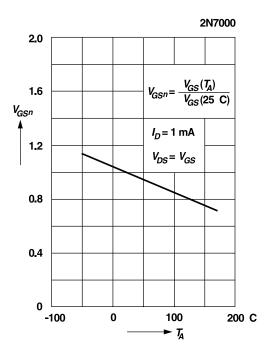
Pulse test width 80 ms; pulse duty factor 1%.

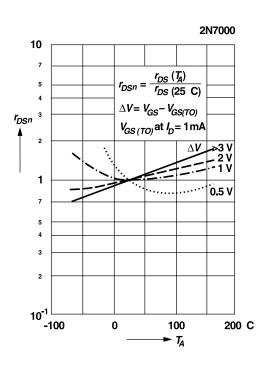
Drain-source current versus gate threshold voltage



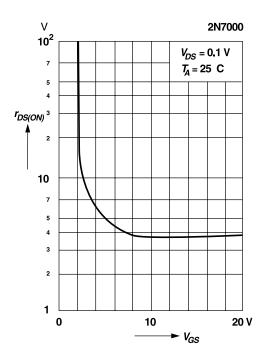

RATINGS AND CHARACTERISTIC CURVES 2N7000

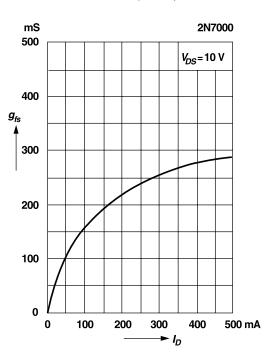
Drain current versus gate-source voltage


Pulse test width 80 ms; pulse duty factor 1%.

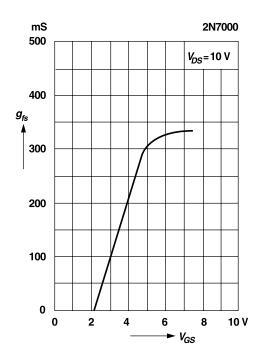

Normalized drain-source current versus temperature

Normalized gate-source voltage versus temperature

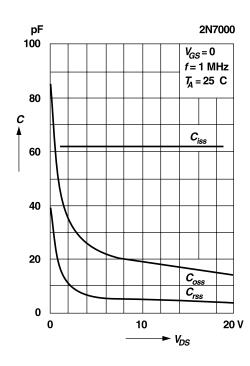

Normalized drain-source resistance versus temperature


RATINGS AND CHARACTERISTIC CURVES 2N7000

Drain-source resistance versus gate-source voltage


Transconductance versus drain current

Pulse test width 80 ms; pulse duty factor 1%



Transconductance versus gate-source voltage

Pulse test width 80 ms; pulse duty factor 1%

Capacitance versus drain-source voltage

