
a

W4.0
Assembler and Preprocessor Manual

 Revision 1.0, January 2005

Part Number:
82-000420-04

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
©2005 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, the CROSSCORE logo, VisualDSP++,
SHARC, TigerSHARC, Blackfin, and EZ-KIT Lite are registered trade-
marks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS
CONTENTS

PREFACE

Purpose ... xi

Intended Audience .. xi

Manual Contents ... xii

What’s New in this Manual .. xii

Technical or Customer Support ... xiii

Supported Processors .. xiv

Product Information ... xv

MyAnalog.com .. xv

Processor Product Information .. xvi

Related Documents ... xvii

Online Technical Documentation ... xviii

Accessing Documentation From VisualDSP++ xviii

Accessing Documentation From Windows xix

Accessing Documentation From the Web xix

Printed Manuals .. xx

VisualDSP++ Documentation Set .. xx

Hardware Tools Manuals ... xx
VisualDSP++ 4.0 Assembler and Preprocessor Manual iii

CONTENTS
Processor Manuals .. xx

Data Sheets .. xx

Notation Conventions ... xxi

ASSEMBLER

Assembler Guide .. 1-2

Assembler Overview .. 1-3

Writing Assembly Programs ... 1-3

Program Content .. 1-6

Program Structure .. 1-7

Code File Structure and LDF for SHARC Processors 1-10

Code File Structure and LDF for TigerSHARC Processors 1-13

Code File Structure and LDF for Blackfin Processors 1-16

Program Interfacing Requirements 1-20

Using Assembler Support for C Structs 1-21

Preprocessing a Program .. 1-23

Using Assembler Feature Macros ... 1-25

Make Dependencies .. 1-28

Reading a Listing File .. 1-30

Statistical Profiling for Assembly Functions 1-30

Assembler Syntax Reference .. 1-32

Assembler Keywords and Symbols ... 1-33

Assembler Expressions ... 1-46

Assembler Operators ... 1-47

Numeric Formats .. 1-51
iv VisualDSP++ 4.0 Assembler and Preprocessor Manual

CONTENTS
Fractional Type Support .. 1-51

1.31 Fracts .. 1-52

1.0r Special Case ... 1-53

Fractional Arithmetic .. 1-53

Mixed Type Arithmetic ... 1-53

Comment Conventions ... 1-54

Conditional Assembly Directives .. 1-54

C Struct Support in Assembly Built-In Functions 1-57

OFFSETOF() Built-In Function 1-57

SIZEOF() Built-In Function ... 1-57

Struct References ... 1-58

Assembler Directives .. 1-61

.ALIGN, Specify an Address Alignment 1-65

.ALIGN_CODE, Specify an Address Alignment 1-67

.BYTE, Declare a Byte Data Variable or Buffer 1-69

ASCII String Initialization Support 1-71

.EXTERN, Refer to a Globally Available Symbol 1-72

.EXTERN STRUCT, Refer to a Struct Defined Elsewhere . 1-73

.FILE, Override the Name of a Source File 1-75

.GLOBAL, Make a Symbol Globally Available 1-76

.IMPORT, Provide Structure Layout Information 1-78

.INC/BINARY, Include Contents of a File 1-80

.LEFTMARGIN, Set the Margin Width of a Listing File 1-81

.LIST/.NOLIST, Listing Source Lines and Opcodes 1-82
VisualDSP++ 4.0 Assembler and Preprocessor Manual v

CONTENTS
.LIST_DATA/.NOLIST_DATA, Listing Data Opcodes 1-83

.LIST_DATFILE/.NOLIST_DATFILE, Listing Data Initialization
Files .. 1-84

.LIST_DEFTAB, Set the Default Tab Width for Listings ... 1-85

.LIST_LOCTAB, Set the Local Tab Width for Listings 1-86

.LIST_WRAPDATA/.NOLIST_WRAPDATA 1-87

.NEWPAGE, Insert a Page Break in a Listing File 1-88

.PAGELENGTH, Set the Page Length of a Listing File 1-89

.PAGEWIDTH, Set the Page Width of a Listing File 1-90

.PORT, Legacy Directive ... 1-91

.PRECISION, Select Floating-Point Precision 1-92

.PREVIOUS, Revert to the Previously Defined Section 1-93

.ROUND_, Select Floating-Point Rounding 1-95

.SECTION, Declare a Memory Section 1-97

TigerSHARC-Specific Qualifiers 1-97

SHARC-Specific Keywords ... 1-98

Common .SECTION Qualifiers 1-98

Initialization Section Qualifiers 1-100

.SEGMENT & .ENDSEG, Legacy Directives 1-102

.SEPARATE_MEM_SEGMENTS 1-102

.STRUCT, Create a Struct Variable 1-103

.TYPE, Change Default Symbol Type 1-106

.VAR, Declare a Data Variable or Buffer 1-107

.VAR and ASCII String Initialization Support 1-110

.WEAK, Support a Weak Symbol Definition and Reference 1-112
vi VisualDSP++ 4.0 Assembler and Preprocessor Manual

CONTENTS
Assembler Command-Line Reference ... 1-113

Running the Assembler .. 1-114

Assembler Command-Line Switch Descriptions 1-116

-align-branch-lines .. 1-119

-char-size-8 ... 1-119

-char-size-32 ... 1-119

-char-size-any .. 1-120

-default-branch-np .. 1-120

-default-branch-p .. 1-120

-Dmacro[=definition] .. 1-121

-double-size-32 ... 1-121

-double-size-64 ... 1-121

-double-size-any .. 1-122

-flags-compiler .. 1-122

User-Specified Defines Options 1-122

Include Options .. 1-123

 -flags-pp -opt1 [,-opt2...] ... 1-124

-g ... 1-124

-h[elp] .. 1-124

-i|I directory ... 1-124

-l filename .. 1-125

-li filename ... 1-126

-M .. 1-126

-MM .. 1-126
VisualDSP++ 4.0 Assembler and Preprocessor Manual vii

CONTENTS
-Mo filename .. 1-127

-Mt filename .. 1-127

-micaswarn ... 1-127

-no-source-dependency ... 1-127

-o filename ... 1-128

-pp ... 1-128

-proc processor ... 1-128

-save-temps .. 1-129

-si-revision version .. 1-129

-sp ... 1-130

-stallcheck .. 1-130

-v[erbose] ... 1-130

-version .. 1-130

-w .. 1-131

-Wnumber[,number] .. 1-131

WARNING ea1121: Missing End Labels 1-131

Specifying Assembler Options in VisualDSP++ 1-133

PREPROCESSOR

Preprocessor Guide ... 2-2

Writing Preprocessor Commands ... 2-3

Header Files and #include Command 2-4

Writing Macros ... 2-6

Using Predefined Preprocessor Macros 2-9

Specifying Preprocessor Options .. 2-13
viii VisualDSP++ 4.0 Assembler and Preprocessor Manual

CONTENTS
Preprocessor Command Reference ... 2-14

Preprocessor Commands and Operators 2-14

#define ... 2-16

Variable Length Argument Definitions 2-17

#elif .. 2-19

#else ... 2-20

#endif ... 2-21

#error ... 2-22

#if .. 2-23

#ifdef .. 2-24

#ifndef .. 2-25

#include ... 2-26

#line ... 2-28

#pragma ... 2-29

#undef .. 2-30

#warning .. 2-31

(Argument) .. 2-32

(Concatenate) .. 2-33

? (Generate a Unique Label) .. 2-34

Preprocessor Command-Line Reference 2-36

Running the Preprocessor .. 2-36

Preprocessor Command-Line Switches 2-37

-cstring ... 2-39

-cs! ... 2-40
VisualDSP++ 4.0 Assembler and Preprocessor Manual ix

-cs/* ... 2-40

-cs// ... 2-40

-cs{ ... 2-40

-csall .. 2-41

-Dmacro[=def] ... 2-41

-h[elp] .. 2-41

-i .. 2-41

-i|I directory ... 2-42

Using the -I- Switch .. 2-43

-M ... 2-43

-MM .. 2-44

-Mo filename .. 2-44

-Mt filename .. 2-44

-o filename ... 2-44

-stringize .. 2-45

-tokenize-dot .. 2-45

-Uname .. 2-45

-v[erbose] ... 2-45

-version .. 2-46

-w .. 2-46

-Wnumber ... 2-46

-warn ... 2-46

INDEX
x VisualDSP++ 4.0 Assembler and Preprocessor Manual

PREFACE

Thank you for purchasing Analog Devices, Inc. development software for

digital signal processing (DSP) applications.

Purpose
The VisualDSP++ 4.0 Assembler and Preprocessor Manual contains infor-
mation about the assembler preprocessor utilties for the following Analog
Devices, Inc. processor families—SHARC® (ADSP-21xxx) processors,
TigerSHARC® (ADSP-TSxxx) processors, and Blackfin® (ADSP-BFxxx)
processors.

The manual describes how to write assembly programs for these processors
and reference information about related development software. It also
provides information on new and legacy syntax for assembler and prepro-
cessor directives and comments, as well as command-line switches.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices
processors can use this manual, but should supplement it with other texts
(such as the appropriate hardware reference and programming reference
manuals) that describe your target architecture.
VisualDSP++ 4.0 Assembler and Preprocessor Manual xi

Manual Contents
Manual Contents
The manual consists of:

• Chapter 1, “Assembler”
Provides an overview of the process of writing and building assem-
bly programs. It also provides information about the assembler’s
switches, expressions, keywords, and directives.

• Chapter 2, “Preprocessor”
Provides procedures for using preprocessor commands within
assembly source files as well as the preprocessor’s command-line
interface options and command sets.

What’s New in this Manual
The VisualDSP++ 4.0 Assembler and Preprocessor Manual is a new manual
that documents assembler support for all currently available Analog
Devices’ SHARC, TigerSHARC and Blackfin processors listed in
“Supported Processors”.

Refer to VisualDSP++ 4.0 Product Release Bulletin for information on all
new and updated VisualDSP++® 4.0 features and other release
information.
xii VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preface
Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technicalSupport

• E-mail tools questions to
dsptools.support@analog.com

• E-mail processor questions to
dsp.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:

Analog Devices, Inc.
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA
VisualDSP++ 4.0 Assembler and Preprocessor Manual xiii

Supported Processors
Supported Processors
The following is the list of Analog Devices, Inc. processors supported in
VisualDSP++ 4.0.

TigerSHARC (ADSP-TSxxx) Processors
The name “TigerSHARC” refers to a family of floating-point and
fixed-point [8-bit, 16-bit, and 32-bit] processors. VisualDSP++ currently
supports the following TigerSHARC processors:

SHARC (ADSP-21xxx) Processors
The name “SHARC” refers to a family of high-performance, 32-bit,
floating-point processors that can be used in speech, sound, graphics, and
imaging applications. VisualDSP++ currently supports the following
SHARC processors:

ADSP-TS101 ADSP-TS201 ADSP-TS202 ADSP-TS203

ADSP-21020 ADSP-21060 ADSP-21061 ADSP-21062

ADSP-21065L ADSP-21160 ADSP-21161 ADSP-21261

ADSP-21262 ADSP-21266 ADSP-21267 ADSP-21363

ADSP-21364 ADSP-21365 ADSP-21366 ADSP-21367

ADSP-21368 ADSP-21369
xiv VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preface
Blackfin (ADSP-BFxxx) Processors
The name “Blackfin” refers to a family of 16-bit, embedded processors.
VisualDSP++ currently supports the following Blackfin processors:

Product Information
You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices Web site that allows
customization of a Web page to display only the latest information on
products you are interested in. You can also choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests. MyAnalog.com provides access to books, application notes, data
sheets, code examples, and more.

ADSP-BF531 ADSP-BF532 (formerly ADSP-21532)

ADSP-BF533 ADSP-BF535 (formerly ADSP-21535)

ADSP-BF536 ADSP-BF537

ADSP-BF538 ADSP-BF539

ADSP-BF561 ADSP-BF566

AD6532
VisualDSP++ 4.0 Assembler and Preprocessor Manual xv

Product Information
Registration

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as a means to select the
information you want to receive.

If you are already a registered user, just log on. Your user name is your
e-mail address.

Processor Product Information
For information on embedded processors and DSPs, visit our Web site at
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product
announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• E-mail questions or requests for information to
dsp.support@analog.com

• Fax questions or requests for information to
1-781-461-3010 (North America)
089/76 903-557 (Europe)

• Access the FTP Web site at
ftp ftp.analog.com or ftp 137.71.23.21
ftp://ftp.analog.com
xvi VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preface
Related Documents
For information on product related development software, see these
publications:

• VisualDSP++ 4.0 Getting Started Guide

• VisualDSP++ 4.0 User’s Guide

• VisualDSP++ 4.0 C/C++ Compiler and Library Manual for SHARC
Processors

• VisualDSP++ 4.0 C/C++ Compiler and Library Manual for
TigerSHARC Processors

• VisualDSP++ 4.0 C/C++ Compiler and Library Manual for Blackfin
Processors

• VisualDSP++ 4.0 Assembler and Preprocessor Manual

• VisualDSP++ 4.0 Linker and Utilities Manual

• VisualDSP++ 4.0 Loader Manual

• VisualDSP++ 4.0 Product Release Bulletin

• VisualDSP++ Kernel (VDK) User’s Guide

• Quick Installation Reference Card

For hardware information, refer to your processors’s hardware reference,
programming reference, or data sheet. All documentation is available
online. Most documentation is available in printed form.

Visit the Technical Library Web site to access all processor and tools man-
uals and data sheets:

http://www.analog.com/processors/resources/technicalLibrary
VisualDSP++ 4.0 Assembler and Preprocessor Manual xvii

Product Information
Online Technical Documentation
Online documentation includes the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and Flexible License Manager (FlexLM) network
license manager software documentation. You can easily search across the
entire VisualDSP++ documentation set for any topic of interest using the
Search function of VisualDSP++ Help system. For easy printing, supple-
mentary .PDF files of most manuals are also provided.

Each documentation file type is described as follows.

Access the online documentation from the VisualDSP++ environment,
Windows® Explorer, or the Analog Devices Web site.

Accessing Documentation From VisualDSP++

From the VisualDSP++ environment:

• Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

• Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

File Description

.CHM Help system files and manuals in Help format

.HTM or

.HTML
Dinkum Abridged C++ library and FlexLM network license manager software doc-
umentation. Viewing and printing the .HTML files requires a browser, such as
Internet Explorer 4.0 (or higher).

.PDF VisualDSP++ and processor manuals in Portable Documentation Format (PDF).
Viewing and printing the .PDF files requires a PDF reader, such as Adobe Acrobat
Reader (4.0 or higher).
xviii VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preface
Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.CHM) are located in the Help folder of VisualDSP++
environment. The .PDF files are located in the Docs folder of your
VisualDSP++ installation CD-ROM. The Docs folder also contains the
Dinkum Abridged C++ library and the FlexLM network license manager
software documentation.

Using Windows Explorer

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files.

• Open your VisualDSP++ installation CD-ROM and double-click
any file that is part of the VisualDSP++ documentation set.

Using the Windows Start Button

• Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, Analog Devices, VisualDSP++, and
VisualDSP++ Documentation.

Accessing Documentation From the Web

Download manuals in PDF format at the following Web site:
http://www.analog.com/processors/resources/technicalLibrary/manuals

Select a processor family and book title. Download archive (.ZIP) files, one
for each manual. Use any archive management software, such as WinZip,
to decompress downloaded files.
VisualDSP++ 4.0 Assembler and Preprocessor Manual xix

Product Information
Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

To purchase VisualDSP++ manuals, call 1-603-883-2430. The manuals
may be purchased only as a kit.

If you do not have an account with Analog Devices, you are referred to
Analog Devices distributors. For information on our distributors, log onto
http://www.analog.com/salesdir/continent.asp.

Hardware Tools Manuals

To purchase EZ-KIT Lite® and In-Circuit Emulator (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product
number located on the back cover of each manual.

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from
the Web site.
xx VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preface
To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,
check for it on the Web site.

Notation Conventions
Text conventions used in this manual are identified and described as
follows.

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example Description

Close command
(File menu)

Titles in in bold style reference sections indicate the location of an item
within the VisualDSP++ environment’s menu system (for example, the
Close command appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.
VisualDSP++ 4.0 Assembler and Preprocessor Manual xxi

Notation Conventions
Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Example Description
xxii VisualDSP++ 4.0 Assembler and Preprocessor Manual

1 ASSEMBLER

This chapter provides information on how to use the assembler for devel-

oping and assembling programs with SHARC (ADSP-21xxx) processors,
TigerSHARC (ADSP-TSxxx) processors, and Blackfin (ADSP-BFxxx)
processors.

The chapter contains:

• “Assembler Guide” on page 1-2
Describes the process of developing new programs in the proces-
sor’s assembly language

• “Assembler Syntax Reference” on page 1-32
Provides the assembler rules and conventions of syntax which are
used to define symbols (identifiers), expressions, and to describe
different numeric and comment formats

• “Assembler Command-Line Reference” on page 1-113
Provides reference information on the assembler’s switches and
conventions

The code examples in this manual have been compiled using
VisualDSP++ 4.0. The examples compiled with other versions of
VisualDSP++ may result in build errors or different output
although the highlighted algorithms stand and should continue to
stand in future releases of VisualDSP++.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-1

Assembler Guide
Assembler Guide
In VisualDSP++ 4.0, the assembler drivers for each processor family run
from the VisualDSP++ Integrated Debugging and Development Environ-
ment (IDDE) or from an operating system command line. The assembler
processes assembly source, data, header files, and produces an object file.
Assembler operations depend on two types of controls: assembler direc-
tives and assembler switches.

VisualDSP++ 4.0 supports the following assembler drivers:

• For SHARC processors – easm21k.exe assembler driver

• For TigerSHARC processors – easmts.exe assembler driver

• For Blackfin processors – easmblkfn.exe assembler driver

This section describes the process of developing new programs in the Ana-
log Devices’ processor assembly language. It provides information on how
to assemble your programs from the operating system’s command line.

Software developers using the assembler should be familiar with:

• “Writing Assembly Programs” on page 1-3

• “Using Assembler Support for C Structs” on page 1-21

• “Preprocessing a Program” on page 1-23

• “Using Assembler Feature Macros” on page 1-25

• “Make Dependencies” on page 1-28

• “Reading a Listing File” on page 1-30

• “Statistical Profiling for Assembly Functions” on page 1-30

• “Specifying Assembler Options in VisualDSP++” on page 1-133
1-2 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
For information about the processor architecture, including the instruc-
tion set used when writing the assembly programs, see the hardware
reference manual and instruction set manual for an appropriate processor.

Assembler Overview
The assembler processes data from assembly source (.ASM), data (.DAT),
and include header (.H) files to generate object files in Executable and
Linkable Format (ELF), an industry-standard format for binary object
files. The object file name has a.DOJ extension.

In addition to the object file, the assembler can produce a listing file,
which shows the correspondence between the binary code and the source.

Assembler switches are specified from the VisualDSP++ IDDE or in the
command used to invoke the assembler. These switches allow you to con-
trol the assembly process of source, data, and header files. Use these
switches to enable and configure assembly features, such as search paths,
output file names, and macro preprocessing. See “Assembler Com-
mand-Line Reference” on page 1-113.

You can also set assembler options via the Assemble tab of the
VisualDSP++ Project Options dialog box (see “Specifying Assembler
Options in VisualDSP++” on page 1-133).

Writing Assembly Programs
Assembler directives are coded in assembly source files. The directives
allow you to define variables, set up some hardware features, and identify
program’s sections for placement within processor memory. The assembler
uses directives for guidance as it translates a source program into object
code.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-3

Assembler Guide
Write assembly language programs using the VisualDSP++ editor or any
editor that produces text files. Do not use a word processor that embeds
special control codes in the text. Use an .ASM extension to source file
names to identify them as assembly source files.

Figure 1-1 on page 1-5 shows a graphical overview of the assembly pro-
cess. The figure shows the preprocessor processing the assembly source
(.ASM) and header (.H) files.

Assemble your source files from the VisualDSP++ environment or using
any mechanism, such as a batch file or makefile, that will support invok-
ing an appropriate assembler driver with a specified command-line
command. By default, the assembler processes an input file to produce a
binary object file (.DOJ) and an optional listing file (.LST).

Object files produced by the processor assembler may be used as input to
the linker and archiver. You can archive the output of an assembly process
into a library file (.DLB), which can then be linked with other objects into
an executable. Use the linker to combine separately assembled object files
and objects from library files to produce an executable file. For more
information on the linker and archiver, see the VisualDSP++ 4.0 Linker
and Utilities Manual .

A binary object file (.DOJ) and an optional listing (.LST) file are final
results of the successful assembly.

The assembler listing files are text files read for information on the results
of the assembly process. the listing file also provides information about the
imported c data structures. the listing file tells which imports were used
within the program, followed by a more detailed section (see the .import
directive on page 1-78). it shows the name, total size and layout with off-
set for the members. the information appears at the end of the listing. you
must specify the -l listname switch (on page 1-126) to get the
information.
1-4 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
The assembly source file may contain preprocessor commands, such as
#include, that cause the preprocessor to include header files (.h) into the
source program. the preprocessor’s only output, an intermediate source
file (.is), is the assembler’s primary input. in normal operation, the pre-
processor output is a temporary file that will be deleted during the
assembly process.

Figure 1-1. Assembler Input and Output Files
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-5

Assembler Guide
Program Content

Assembly source file statements include assembly instructions, assembler
directives, and preprocessor commands.

Assembly Instructions
Instructions adhere to the processor’s instruction set syntax documented
in the processor’s instruction set manual. Each instruction line must be
terminated by a semicolon (;). Figure 1-2 on page 1-10 shows an example
assembly source file.

To mark the location of an instruction, place an address label at the begin-
ning of an instruction line or on the preceding line. End the label with a
colon (:) before beginning the instruction. Your program can then refer to
this memory location using the label instead of an address. The assembler
places no restriction on the number of characters in a label.

Labels are case sensitive. The assembler treats “outer” and “Outer” as
unique labels. For example (in TigerSHARC processors),

outer: J0 = J0-1;;
Outer: J1 = J0;;
JUMP outer;; //jumps back 2 instructions

Assembler Directives
Directives begin with a period (.) and end with a semicolon (;). The
assembler does not differentiate between directives in lowercase or
uppercase.

This manual prints directives in uppercase to distinguish them
from other assembly statements.

For example (in TigerSHARC processors),

.SECTION data1;

.VAR sqrt_coeff[2] = 0x5D1D, 0xA9ED;

For a complete description of the assembler’s directive set, see “Assembler
Directives” on page 1-61.
1-6 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
Preprocessor Commands
Preprocessor commands begin with a pound sign (#) and end with a car-
riage return. The pound sign must be the first non-white space character
on the line containing the command. If the command is longer than one
line, use a backslash (\) and a carriage return to continue the command
onto the next line.

Do not put any characters between the backslash and the carriage return.
Unlike assembler directives, preprocessor commands are case sensitive and
must be lowercase. For example,

 #include "string.h"

 #define MAXIMUM 100

For more information, see “Writing Preprocessor Commands” on
page 2-3. For a list of the preprocessor commands, see “Preprocessor
Command Reference” on page 2-14.

Program Structure

An assembly source file defines code (instructions) and data. It also orga-
nizes the instructions and data to allow the use of the Linker Description
File (LDF) to describe how code and data are mapped into the memory on
your target processor. The way you structure your code and data into
memory should follow the memory architecture of the target processor.

Use the .SECTION directive to organize the code and data in assembly
source files. The .SECTION directive defines a grouping of instructions and
data that occupies contiguous memory addresses in the processor. The
name given in a section directive corresponds to an input section name in
the Linker Description File.

Table 1-1, Table 1-2, and Table 1-3 show suggested input section names
for data and code that you could use in your assembly source for various
processors. Using these predefined names in your sources makes it easier
to take advantage of the default .LDF file included in your DSP system.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-7

Assembler Guide
However, you may also define your own sections. For detailed informa-
tion on the .LDF files, refer to the VisualDSP++ 4.0 Linker and Utilities
Manual..

You can use sections in a program to group elements to meet hardware
constraints. For example, the ADSP-BF535 processor has a separate pro-
gram and data memory in the Level 1 memory only. Level 2 memory and
external memory are not separated into instruction and data memory.

Table 1-1. Suggested Input Section Names for a SHARC LDF

.SECTION Name Description

seg_pmco A section in Program Memory that holds code

seg_dmda A section in Data Memory that holds data

seg_pmda A section in Program Memory that holds data

seg_rth A section in Program Memory that holds system initialization code
and interrupt service routines

Table 1-2. Suggested Input Section Names for a TigerSHARC LDF

.SECTION Name Description

data1 A section that holds data in Memory Block M1.

data2 A section that holds data in Memory Block M2 (specified with the
PM memory qualifier).

program A section that holds code.

Table 1-3. Suggested Input Section Names for a Blackfin LDF

.SECTION Name Description

data1 A section that holds data.

program A section that holds code.

constdata A section that holds global data which is declared as constant, and
literal constants such as strings and array initializers.
1-8 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
To group the code that resides in off-chip memory, declare a section for
that code and place that section in the selected memory with the linker.

Use sections in a program to group elements to meet hardware constraints.
The example assembly program defines three sections. Each section begins
with a .SECTION directive and ends with the occurrence of the next
.SECTION directive or end-of-file.

The source program contains the following sections:

Figure 1-2, Figure 1-3 on page 1-13, and Figure 1-4 on page 1-17
describe assembly code file structure for each of processor families. They
shows how a program divides into sections that match the memory seg-
mentation of a DSP system. Notice that a assembly source may contain
preprocessor commands, such as #include to include other files in your
source code, #ifdef for conditional assembly, or #define to define mac-
ros. The SECTIONS{} commands define the .SECTION placements in the
system’s physical memory as defined by the linker’s MEMORY{} command.
Assembler directives, such as .VAR (or .BYTE for Blackfin processors),
appear within sections to declare and initialize variables.

Section SHARC TigerSHARC Blackfin

Data Section
Variables and buffers are declared and
can be initialized

seg_dmda data1
data2

data1
constdata

Program Section
Data, instructions, and possibly other
types of statements are in this section,
including statements that are needed
for conditional assembly

seg_pmco program seg_rth

program.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-9

Assembler Guide
Code File Structure and LDF for SHARC Processors

Figure 1-2 describes assembly code file structure for SHARC processors.

Looking at Figure 1-2, notice that the .PRECISION and .ROUND_ZERO direc-
tives tell the assembler to store floating-point data with 40-bit precision
and to round a floating-point value to a closer-to-zero value if it does not
fit in the 40-bit format.

Listing 1-1 shows a sample user-defined LDF for SHARC Processors.
Looking at the LDF’s SECTIONS{} command, notice that the
INPUT_SECTION commands map to the memory sections’ names (such as
program, data1, data2, ctor, heaptab, etc.) used in the example assembly
sample program.

Figure 1-2. Assembly Code File Structure for SHARC Processors
1-10 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
Listing 1-1. LDF Example for SHARC Processors

ARCHITECTURE(ADSP-21062)
SEARCH_DIR($ADI_DSP\21k\lib)
$LIBRARIES = lib060.dlb, libc.dlb;
$OBJECTS = $COMMAND_LINE_OBJECTS, adi_dsp\21k\lib\060_hdr.obj,
seg_init.doj;

MEMORY {
seg_rth {TYPE(PM RAM) START(0x20000) END(0x20fff) WIDTH(48)}
seg_init{TYPE(PM RAM) START(0x21000) END(0x2100f) WIDTH(48)}
seg_pmco{TYPE(PM RAM) START(0x21010) END(0x24fff) WIDTH(48)}
seg_pmda{TYPE(DM RAM) START(0x28000) END(0x28fff) WIDTH(32)}
seg_dmda{TYPE(DM RAM) START(0x29000) END(0x29fff) WIDTH(32)}
seg_stak{TYPE(DM RAM) START(0x2e000) END(0x2ffff) WIDTH(32)}

/* memory declarations for default heap */
seg_heap{TYPE(DM RAM) START(0x2a000) END(0x2bfff) WIDTH(32)}

/* memory declarations for custom heap */
seg_heaq{TYPE(DM RAM) START(0x2c000) END(0x2dfff) WIDTH(32)}
} // End MEMORY

PROCESSOR p0 {
LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)
OUTPUT($COMMAND_LINE_OUTPUT_FILE)

SECTIONS {
.seg_rth {

INPUT_SECTIONS($OBJECTS(seg_rth) $LIBRARIES(seg_rth))
} > seg_rth
.seg_init {

INPUT_SECTIONS($OBJECTS(seg_init) $LIBRARIES(seg_init))
} > seg_init
.seg_pmco {

INPUT_SECTIONS($OBJECTS(seg_pmco) $LIBRARIES(seg_pmco))
} > seg_pmco
.seg_pmda {

INPUT_SECTIONS($OBJECTS(seg_pmda) $LIBRARIES(seg_pmda))
} > seg_pmda
.seg_dmda {

INPUT_SECTIONS($OBJECTS(seg_dmda) $LIBRARIES(seg_dmda))
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-11

Assembler Guide
} > seg_dmda
.stackseg {

ldf_stack_space = .;
ldf_stack_length = 0x2000;

} > seg_stak

/* section placement for default heap */
.heap {

ldf_heap_space = .;
ldf_heap_end = ldf_heap_space + 0x2000;
ldf_heap_length = ldf_heap_end - ldf_heap_space;

} > seg_heap

/* section placement for additional custom heap */
.heap {

ldf_heaq_space = .;
ldf_heaq_end = ldf_heaq_space + 0x2000;
ldf_heaq_length = ldf_heaq_end - ldf_heaq_space;

} > seg_heaq
} // End SECTIONS

} // End P0
1-12 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
Code File Structure and LDF for TigerSHARC Processors

Figure 1-3 describes assembly code file structure for TigerSHARC proces-
sors. Looking at Figure 1-3, notice that an assembly source may contain
preprocessor commands, such as #include to include other files in your
source code, #ifdef for conditional assembly, or #define to define
macros.

Assembler directives, such as .VAR, appear within sections to declare and
initialize variables.

Figure 1-3. Assembly Code File Structure for TigerSHARC Processors
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-13

Assembler Guide
Listing 1-2 shows a sample user-defined LDF for TigerSHARC proces-
sors. Looking at the LDF’s SECTIONS{} command, notice that the
INPUT_SECTION commands map to the memory sections’ names (such as
program, data1, data2, ctor, heaptab, etc.) used in the example assembly
sample program.

Listing 1-2. Example Linker Description File for TigerSHARC Processors

ARCHITECTURE(ADSP-TS101)
SEARCH_DIR($ADI_DSP\TS\lib)
$OBJECTS = $COMMAND_LINE_OBJECTS;

// Internal memory blocks are 0x10000 (64k)

MEMORY
{

M0Code { TYPE(RAM) START(0x00000000) END(0x0000FFFF) WIDTH(32) }
M1Data { TYPE(RAM) START(0x00080000) END(0x0008BFFF) WIDTH(32) }
M1Heap { TYPE(RAM) START(0x0008C000) END(0x0008C7FF) WIDTH(32) }
M1Stack { TYPE(RAM) START(0x0008C800) END(0x0008FFFF) WIDTH(32) }
M2Data { TYPE(RAM) START(0x00100000) END(0x0010BFFF) WIDTH(32) }
M2Stack { TYPE(RAM) START(0x0010C000) END(0x0010FFFF) WIDTH(32) }
SDRAM { TYPE(RAM) START(0x04000000) END(0x07FFFFFF) WIDTH(32) }
MS0 { TYPE(RAM) START(0x08000000) END(0x0BFFFFFF) WIDTH(32) }
MS1 { TYPE(RAM) START(0x0C000000) END(0x0FFFFFFF) WIDTH(32) }

}

PROCESSOR p0 /* The processor in the system */
{

OUTPUT($COMMAND_LINE_OUTPUT_FILE)

SECTIONS
{ /* List of sections for processor P0 */

code
{

FILL(0xb3c00000)
INPUT_SECTION_ALIGN(4)
INPUT_SECTIONS($OBJECTS(program))

} >M0Code
1-14 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
data1
{

INPUT_SECTIONS($OBJECTS(data1))
} >M1Data

data2
{

INPUT_SECTIONS($OBJECTS(data2))
} >M2Data

// Provide support for initialization, including C++ static
// initialization. This section builds a table of
// initialization function pointers.
ctor
{

INPUT_SECTIONS($OBJECTS(ctor0))
INPUT_SECTIONS($OBJECTS(ctor1))
INPUT_SECTIONS($OBJECTS(ctor2))
INPUT_SECTIONS($OBJECTS(ctor3))
INPUT_SECTIONS($OBJECTS(ctor))

} >M1Data

// Table containing heap segment descriptors
heaptab
{

INPUT_SECTIONS($OBJECTS(heaptab))
} >M1Data

// Allocate stacks for the application.
jstackseg
{

ldf_jstack_limit = .;
ldf_jstack_base = . + MEMORY_SIZEOF(M1Stack);

} >M1Stack

kstackseg
{

ldf_kstack_limit = .;
ldf_kstack_base = . + MEMORY_SIZEOF(M2Stack);
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-15

Assembler Guide
} >M2Stack

// The default heap occupies its own memory block.
defheapseg
{

ldf_defheap_base = .;
ldf_defheap_size = MEMORY_SIZEOF(M1Heap);

} >M1Heap
}

}

Code File Structure and LDF for Blackfin Processors

Figure 1-4 describes the Blackfin processor’s assembly code file structure
and shows how a program divides into sections that match the memory
segmentation of Blackfin processors.

 You can use sections in a program to group elements to meet hardware
constraints. For example, the ADSP-BF535 processor has a separate pro-
gram and data memory in the Level 1 memory only. Level 2 memory and
external memory are not separated into instruction and data memory.

Listing 1-3 on page 1-18 shows a sample user-defined Linker Description
File. Looking at the LDF’s SECTIONS{} command, notice that the
INPUT_SECTION commands map to sections program, data1, constdata,
ctor, and seg_rth.
1-16 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
Figure 1-4. Assembly Source File Structure for Blackfin Processors
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-17

Assembler Guide
Listing 1-3. Example Linker Description File for Blackfin Processors

ARCHITECTURE(ADSP-BF535)
SEARCH_DIR($ADI_DSP\Blackfin\lib)
LIBS libc.dlb, libdsp.dlb
$LIBRARIES = LIBS, librt535.dlb
$OBJECTS = $COMMAND_LINE_OBJECTS;

MEMORY /* Define/label system memory
{ /* List of global Memory Segments */
MEM_PROGRAM { TYPE(RAM) START(0xF0000000) END(0xF002FFFF) WIDTH(8) }
MEM_HEAP { TYPE(RAM) START(0xF0030000) END(0xF0037FFF) WIDTH(8) }
MEM_STACK { TYPE(RAM) START(0xF0038000) END(0xF003DFFF) WIDTH(8) }
MEM_SYSSTACK { TYPE(RAM) START(0xF003E000) END(0xF003FDFF) WIDTH(8) }
MEM_ARGV { TYPE(RAM) START(0xF003FE00) END(0xF003FFFF) WIDTH(8) }
}

PROCESSOR p0 /* The processor in the system */
{

OUTPUT($COMMAND_LINE_OUTPUT_FILE)

SECTIONS
{ /* List of sections for processor P0 */

program
{ // Align all code sections on 2 byte boundary

INPUT_SECTION_ALIGN(2)
INPUT_SECTIONS($OBJECTS(program) $LIBRARIES(program))

INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS($OBJECTS(data1) $LIBRARIES(data1))

INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS($OBJECTS(constdata)$LIBRARIES(constdata))

INPUT_SECTION_ALIGN(1)
INPUT_SECTIONS($OBJECTS(ctor) $LIBRARIES(ctor))

INPUT_SECTION_ALIGN(2)
INPUT_SECTIONS($OBJECTS(seg_rth))

} >MEM_PROGRAM

stack
1-18 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
{
ldf_stack_space = .;
ldf_stack_end = ldf_stack_space +

MEMORY_SIZEOF(MEM_STACK) - 4;
} >MEM_STACK

sysstack
{

ldf_sysstack_space = .;
ldf_sysstack_end = ldf_sysstack_space +

MEMORY_SIZEOF(MEM_SYSSTACK) - 4;
} >MEM_SYSSTACK

heap
{ // Allocate a heap for the application

ldf_heap_space = .;
ldf_heap_end = ldf_heap_space + MEMORY_SIZEOF(MEM_HEAP)

- 1;
ldf_heap_length = ldf_heap_end - ldf_heap_space;

} >MEM_HEAP

argv
{ // Allocate argv space for the application

ldf_argv_space = .;
ldf_argv_end = ldf_argv_space + MEMORY_SIZEOF(MEM_ARGV)

- 1;
ldf_argv_length = ldf_argv_end - ldf_argv_space;

} >MEM_ARGV
}

}

VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-19

Assembler Guide
Program Interfacing Requirements

You can interface your assembly program with a C or C++ program. The
C/C++ compiler supports two methods for mixing C/C++ and assembly
language:

• Embedding assembly code in C or C++ programs

• Linking together C or C++ and assembly routines

To embed (inline) assembly code in your C or C++ program, use the
asm() construct. To link together programs that contain C/C++ and
assembly routines, use assembly interface macros. These macros facilitate
the assembly of mixed routines. For more information about these meth-
ods, see the VisualDSP++ 4.0 C/C++ Compiler and Library Manual for
appropriate target processors.

When writing a C or C++ program that interfaces with assembly, observe
the same rules that the compiler follows as it produces code to run on the
processor. These rules for compiled code define the compiler’s run-time
environment. Complying with a run-time environment means following
rules for memory usage, register usage, and variable names.

The definition of the run-time environment for the C/C++ compiler is
provided in the VisualDSP++ 4.0 C/C++ Compiler and Library Manual for
appropriate target processors, which also includes a series of examples to
demonstrate how to mix C/C++ and assembly code.
1-20 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
Using Assembler Support for C Structs
The assembler supports C typedef/struct declarations within assembly
source. These are the assembler data directives and built-ins that provide
high-level programming features with C structs in the assembler:

• Data Directives:
.IMPORT (see on page 1-78)
.EXTERN STRUCT (see on page 1-73)
.STRUCT (see on page 1-103)

• C Struct in Assembly Built-ins:
OFFSETOF(struct/typedef,field) (see on page 1-57)
SIZEOF(struct/typedef) (see on page 1-57)

• Struct References:
struct->field (nesting supported) (see on page 1-58)

For more information on C struct support, refer to the “-flags-compiler”
command-line switch on page 1-122 and to “Reading a Listing File” on
page 1-30.

C structs in assembly features accept the full set of legal C symbol names,
including those that are otherwise reserved in the appropriate assembler.
For example,

• In the SHARC assembler, I1, I2 and I3 are reserved keywords, but
it is legal to reference them in the context of the C struct in assem-
bly features.

• In the TigerSHARC assembler, J1, J2 and J3 use reserved key-
words , but it is legal to reference them in the context of the C
struct in assembly features.

• In the Blackfin assembler, as an example, “X” and “Z” are reserved
keywords, but it is legal to reference them in the context of the C
struct in assembly features.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-21

Assembler Guide
The examples below show how to access the parts of the struct defined in
the header file, but they are not complete programs on their own. Refer to
your DSP project files for complete code examples.

Blackfin Example

.IMPORT "Coordinate.h";
// typedef struct Coordinate {
// int X;
// int Y;
// int Z;
// } Coordinate;

.SECTION data1;

.STRUCT Coordinate Coord1 = {
X = 1,
Y = 4,
Z = 7
};

.SECTION program;

P0.l = Coord1->X;
P0.h = Coord1->X;

P1.l = Coord1->Y;
P1.h = Coord1->Y;

P2.l = Coord1->Z;
P2.h = Coord1->Z;

P3.l = Coord1+OFFSETOF(Coordinate,Z);
P3.h = Coord1+OFFSETOF(Coordinate,Z);

SHARC Example

.IMPORT "Samples.h";
// typedef struct Samples {
// int I1;
// int I2;
// int I3;
// }Samples;
1-22 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.SECTION/DM seg_dmda;

.STRUCT Samples Sample1 ={
I1 = 0x1000,
I2 = 0x2000,
I3 = 0x3000
};

.SECTION/PM seg_pmco;
doubleMe:
// The code may look confusing, but I2 can be used both
// as a register and a struct member name
B2 = Sample1;
M2 = OFFSETOF(Sample1,I2);
R0 = DM(M2,I2);
R0 = R0+R0;
DM(M2,I2) = R0;

For better code readability, avoid .STRUCT member names that have
the same spelling as assembler keywords. This may not always be
possible if your application needs to use an existing set of C header
files.

Preprocessing a Program
The assembler includes a preprocessor that allows the use of C-style pre-
processor commands in your assembly source files. The preprocessor
automatically runs before the assembler unless you use the assembler’s -sp
(skip preprocessor) switch. Table 2-5 on page 2-15 lists preprocessor com-
mands and provides a brief description of each command.

You can see the command line the assembler uses to invoke the preproces-
sor by adding the “-v[erbose]” switch (on page 1-130) to the assembler
command line or by selecting Verbose output on the Assemble tab (prop-
erty page) of the Project Options dialog box, accessible from the Project
menu. See “Specifying Assembler Options in VisualDSP++” on
page 1-133.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-23

Assembler Guide
Preprocessor commands are useful for modifying assembly code. For
example, you can use the #include command to fill memory, load config-
uration registers, and set up processor parameters. You can use the
#define command to define constants and aliases for frequently used
instruction sequences. The preprocessor replaces each occurrence of the
macro reference with the corresponding value or series of instructions.

For example, the macro MAXIMUM in the example on page 1-7 is replaced
with the number 100 during preprocessing.

For more information on the preprocessor command set, see “Preproces-
sor Command Reference” on page 2-14. For more information on
preprocessor usage, see “-flags-pp -opt1 [,-opt2...]” on page 1-124

Note that there is one important difference between the assembler prepro-
cessor and compiler preprocessor. The assembler preprocessor treats the
character “.” as part of an identifier. Thus, “.EXTERN” is a single identifier
and will not match a preprocessor macro “extern”.

This behavior can affect how macro expansion is done for some
instructions.

For example,

#define EXTERN ox123

.EXTERN Coordinate; // EXTERN not affected by macro

#define MY_REG P0
MY_REG.1 = 14; // MY_REG.1 is not expanded;

// “.” is part of token
1-24 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
Using Assembler Feature Macros
The assembler includes the command to invoke preprocessor macros to
define the context, such as the source language, the architecture, and the
specific processor. These “feature macros” allow the programmer to use
preprocessor conditional commands to configure the source for assembly
based on the context.

Table 1-4 provides the set of feature macros for SHARC processors.

Table 1-4. Feature Macros for SHARC Processors

-D_LANGUAGE_ASM=1 Always present

-D__ADSP21000__=1 Always present

-D__ADSP21020__=1
-D__2102x__=1

Present when running easm21K -proc ADSP-21020
with ADSP-21020 processors

-D__ADSP21060__=1
-D__2106x__=1

Present when running easm21K -proc ADSP-21060
with ADSP-21060 processors

-D__ADSP21061__=1
-D__2106x__=1

Present when running easm21K -proc ADSP-21061
with ADSP-21061 processors

-D__ADSP21062__=1
-D__2106x__=1

Present when running easm21K -proc ADSP-21062
with ADSP-21062 processors

-D__ADSP21065L__=1
-D__2106x__=1

Present when running easm21K -proc ADSP-21065L
with ADSP-21065L processors

-D__ADSP21160__=1
-D__2116x__=1

Present when running easm21K -proc ADSP-21160
with ADSP-21160 processors

-D__ADSP21161__=1
-D__2116x__=1

Present when running easm21K -proc ADSP-21161
with ADSP-21161 processors

-D__ADSP21261__=1
-D__2126x__=1

Present when running easm21K -proc ADSP-21261
with ADSP-21261 processors

-D__ADSP21262__=1
-D__2126x__=1

Present when running easm21K -proc ADSP-21262
with ADSP-21262 processors
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-25

Assembler Guide
Table 1-5 provides the set of feature macros for TigerSHARC processors.

-D__ADSP21266__=1
-D__2126x__=1

Present when running easm21K -proc ADSP-21266
with ADSP-21266 processors

-D__ADSP21267__=1
-D__2126x__=1

Present when running easm21K -proc ADSP-21267
with ADSP-21267 processors

-D__ADSP21363__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-21363
with ADSP-21363 processors

-D__ADSP21364__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-21364
with ADSP-21364 processors

-D__ADSP21365__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-21365
with ADSP-21365 processors

-D__ADSP21366__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-21366
with ADSP-21366 processors

-D__ADSP21367__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-21367
with ADSP-21367 processors

-D__ADSP21368__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-21368
with ADSP-21368 processors

-D__ADSP21369__=1
-D__2136x__=1

Present when running easm21K -proc ADSP-21369
with ADSP-21369 processors

Table 1-5. Feature Macros for TigerSHARC Processors

-D_LANGUAGE_ASM =1 Always present

-D__ADSPTS__ =1 Always present

-D__ADSPTS101__ =1 Present when running easmts -proc ADSP-TS101
with ADSP-TS101 processor

-D__ADSPTS201__ =1 Present when running easmts -proc ADSP-TS201
with ADSP-TS201 processor

-D__ADSPTS202__ =1 Present when running easmts -proc ADSP-TS202
with ADSP-TS202 processor

Table 1-4. Feature Macros for SHARC Processors (Cont’d)
1-26 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
Table 1-6 provides the set of feature macros for Blackfin processors.

-D__ADSPTS203__ =1 Present when running easmts -proc ADSP-TS203
with ADSP-TS203 processor

-D__ADSPTS20x__ =1 Present when running easmts -proc ADSP-TS201 with
ADSP-TS201 processor, easmts -proc ADSP-TS202 with
ADSP-TS202 processor, or easmts -proc ADSP-TS203 with
ADSP-TS203 processor.

Table 1-6. Feature Macros for Blackfin Processors

-D_LANGUAGE_ASM=1 Always present

-D__ADSPBLACKFIN__ =1 Always present

-D__ADSPBF531__=1 Present when running easmblkfn -proc ADSP-BF531
with ADSP-BF531 processor.

-D__ADSPBF532__=1
-D__ADSP21532__=1

Present when running easmblkfn -proc ADSP-BF532
with ADSP-BF532 processor.

-D__ADSPBF533__=1
-D__ADSP21533__=1

Present when running easmblkfn -proc ADSP-BF533
with ADSP-BF533 processor.

-D__ADSPBF535__=1
-D__ADSP21535__=1

Present when running easmblkfn -proc ADSP-BF535
with ADSP-BF535 processor.

-D__ADSPBF536__=1
-D__ADSP21536__=1

Present when running easmblkfn -proc ADSP-BF536
with ADSP-BF536 processor.

-D__ADSPBF537__=1
-D__ADSP21537__=1

Present when running easmblkfn -proc ADSP-BF537
with ADSP-BF537 processor.

-D__ADSPBF538__=1
-D__ADSP21538__=1

Present when running easmblkfn -proc ADSP-BF538
with ADSP-BF538 processor.

-D__ADSPBF539__=1
-D__ADSP21539__=1

Present when running easmblkfn -proc ADSP-BF539
with ADSP-BF539 processor.

-D__ADSPBF561__=1 Present when running easmblkfn -proc ADSP-BF561
with ADSP-BF561 processor.

Table 1-5. Feature Macros for TigerSHARC Processors (Cont’d)
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-27

Assembler Guide
For the .IMPORT headers, the assembler calls the compiler driver with the
appropriate processor option and the compiler sets the machine constants
accordingly (and defines -D_LANGUAGE_C=1). This macro is present when
used for C compiler calls to specify headers. It replaces -D_LANGUAGE_ASM.

For example,

easm21k -proc -adsp-21262 assembly --> cc21K -21262
easmts -proc -ADSP-TS101 assembly --> ccts -TS101
easmblkfn -ADSP-BF535 assembly --> ccblkfn -BF535

Use the -verbose option to verify what macro is default-defined.
Refer to Chapter 1 in the VisualDSP++ 4.0 C/C++ Compiler and
Library Manual of the appropriate target processors for more
information.

Make Dependencies
The assembler can generate “make dependencies” for a file to allow the
VisualDSP++ and other makefile-based build environments to determine
when to rebuild an object file due to changes in the input files. The assem-
bler source file and any files mentioned in the #include commands,
.IMPORT directives, or buffer initializations (in .VAR and .STRUCT directives)
constitute the “make dependencies” for an object file.

When VisualDSP++ requests make dependencies for the assembly, the
assembler produces the dependencies from buffer initializations. The
assembler also invokes the preprocessor to determine the make depen-
dency from #include commands, and the compiler to determine the make
dependencies from the .IMPORT headers.

-D__ADSPBF566__=1 Present when running easmblkfn -proc ADSP-BF566
with ADSP-BF566 processor.

-D__AD6532__=1 Present when running easmblkfn -proc AD6532
with AD6532 processor.

Table 1-6. Feature Macros for Blackfin Processors (Cont’d)
1-28 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
The following SHARC code example shows make dependencies for
...\Block_Based_Fir\fir_blk_test.asm.

easm21K -proc ADSP-21160 -M -Mt fir_blk_file.MD fir_blk_file.asm

// dependency from the assembler
// These are the make dependency results in file fir_blk_test.MD

// dependencies from the assembler preprocessor PP for
// the #include headers and assembler .VAR dat file
"fir_blk_test.doj": ".\fir_blk_test.asm"
"fir_blk_test.doj":

"C:\Program Files\Analog Devices\VisualDSP 4.0\
211xx\include\def21160.h"

"fir_blk_test.doj": "fircoeffs.dat"
"fir_blk_test.doj": "input.dat"

The original source is fir_blk_test.asm.

...
#include "def21160.h"
...

/* DM data */
.section/dm seg_dmda;
.ALIGN 2;
.VAR dline[TAPS+1]; /* delay line compensate for circular

buffer, see comments in block_fir.asm */
.ALIGN 2;
.VAR input[N] = "input.dat"; /* array of samples */

/* PM data */
.section/dm seg_pmda;
.ALIGN 2;
.VAR coeffs[TAPS] = "fircoeffs.dat";
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-29

Assembler Guide
Reading a Listing File
A listing file (.LST) is an optional output text file that lists the results of
the assembly process. Listing files provide the following information:

• Address – The first column contains the offset from the
.SECTION’s base address.

• Opcode – The second column contains the hexadecimal opcode
that the assembler generates for the line of assembly source.

• Line – The third column contains the line number in the assembly
source file.

• Assembly Source – The fourth column contains the assembly
source line from the file.

The assembler listing file provides information about the imported C data
structures. It tells which imports were used within the program, followed
by a more detailed section. It shows the name, total size, and layout with
offset for the members. The information appears at the end of the listing.
You must specify the -l listname option (as shown on page 1-125) to get
a listing file.

Statistical Profiling for Assembly Functions
Use the following steps to enable the Statistical Profiling in assembler
sources.

1. When using the VisualDSP++ IDDE, use the Assemble option
from the Project Options dialog box (Figure 1-8) to select and/or
set assembler functional options.

2. Select Assemble - Generate Debug Information.
1-30 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
3. Mark ending function boundaries with .end labels in the assembler
source. For example:

.SECTION program;

.GLOBAL funk1;
funk1:

...
rts;

funk1.end:

.GLOBAL funk2;
funk2:

...
rts;

funk2.end:

If you have global functions without ending labels, the assembler
provides warnings when debug information is generated.

.GLOBAL funk3;
funk3:

...
rts;

[Warning ea1121] "test.asm":14 funk3: -g assembly with
global function without ending label. Use 'funk3.end' or
'funk3.END' to mark the ending boundary of the function for
debugging information for automated statistical profiling
of assembly functions.

4. Add ending labels or selectively disable the warning by adding the
-W1121 option to the Assembler Additional Options field in the
Assembly tab (refer to “WARNING ea1121: Missing End Labels”
on page 1-131 for more information).

5. Select Statistical Profiling - New Profile or Linear Profiling -New
Profile options as appropriate. Assembler functions automatically
appear in the profiling window along with C functions. Click on
the function name to bring up the source containing the function
definition.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-31

Assembler Syntax Reference
Assembler Syntax Reference
When you develop a source program in assembly language, include pre-
processor commands and assembler directives to control the program’s
processing and assembly. You must follow the assembler rules and conven-
tions of syntax to define symbols (identifiers) and expressions, and to use
different numeric and comment formats.

Software developers who write assembly programs should be familiar with:

• “Assembler Keywords and Symbols” on page 1-33

• “Assembler Expressions” on page 1-46

• “Assembler Operators” on page 1-47

• “Numeric Formats” on page 1-51

• “Comment Conventions” on page 1-54

• “Conditional Assembly Directives” on page 1-54

• “C Struct Support in Assembly Built-In Functions” on page 1-57

• “Struct References” on page 1-58

• “Assembler Directives” on page 1-61
1-32 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
Assembler Keywords and Symbols
The assembler supports predefined keywords that include register and bit-
field names, assembly instructions, and assembler directives. The
following tables list the assembler keywords for supported processors.
Although the keywords in the listings appear in uppercase, the keywords
are case insensitive in the assembler’s syntax. For example, the assembler
does not differentiate between “MAX” and “max”.

Table 1-7 lists the assembler keywords for SHARC processors.

Table 1-7. SHARC Processor Assembler Keywords

__ADI__ __DATE__ __FILE__ __LINE__ __STDC__

__TIME__

.ALIGN .ELIF .ELSE .ENDIF .EXTERN

.FILE .GLOBAL .IF .IMPORT .LEFTMARGIN

.LIST .LIST_DATA .LIST_DATFILE .LIST_DEFTAB .LIST_LOCTAB

.LIST_WRAPDATA .NEWPAGE .NOLIST_DATA .NOLIST_DATFILE .NOLIST_WRAPDATA

.PAGELENGTH .PAGEWIDTH .PRECISION .ROUND_MINUS .ROUND_NEAREST

.ROUND_PLUS .ROUND_ZERO .PREVIOUS .SECTION .STRUCT

.VAR .WEAK

ABS ACS ACT ADDRESS AND

ASHIFT ASTAT AV

B0 B1 B2 B3 B4

B5 B6 B7 B8 B9

B10 B11 B12 B13 B14

B15 BB BCLR BF BIT
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-33

Assembler Syntax Reference
BITREV BM BSET BTGL BTSTS

BY

CA CACHE CALL CH CI

CJUMP CL CLIP COMP COPYSIGN

COS CURLCNTR

DADDR DB DEC DEF DIM

DMA1E DMA1S DMA2E DMA2S DMADR

DMABANK1 DMABANK2 DMABANK3 DMAWAIT DO

DOVL

EB ECE EF ELSE EMUCLK

EMUCLK2 EMUIDLE EMUN ENDEF EOS

EQ EX EXP EXP2

F0 F1 F2 F3 F4

F5 F6 F7 F8 F9

F10 F11 F12 F13 F14

F15 FADDR FDEP FEXT FILE

FIX FLAGO_IN FLAG1_IN FLAG2_IN FLAG3_IN

FLOAT FLUSH FMERG FOREVER FPACK

FRACTIONAL FTA FTB FTC FUNPACK

GCC_COMPILED GE GT

I0 I1 I2 I3 I4

I5 I6 I7 I8 I9

I10 I11 I12 I13 I14

I15 IDLEI15 IDLE16 IF IMASK

IMASKP INC IRPTL

JUMP

L0 L1 L2 L3 L4

Table 1-7. SHARC Processor Assembler Keywords (Cont’d)
1-34 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
L5 L6 L7 L8 L9

L10 L11 L12 L13 L14

L15 LA LADDR LCE LCNTR

LE LADDR LCE LCNTR LE

L15 LA LADDR LCE LCNTR

LE LEFTO LEFTZ LENGTH

LINE LN LOAD LOG2 LOGB

LOOP LR LSHIFT LT

M0 M1 M2 M3 M4

M5 M6 M7 M8 M9

M10 M11 M12 M13 M14

M15 MANT MAX MBM MIN

MOD MODE1 MODE2 MODIFY MROB

MROF MR1B MR1F MR2B MR2F

MRB MRF MS MV MROB

MROF

NE NOFO NOFZ NOP NOPSPECIAL

NOT NU

OFFSETOF OR

P20 P32 P40 PACK PAGE

PC PCSTK PCSTKP PM PMADR

PMBANK1 PMDAE PMDAS POP POVLO

POVL1 PSA1E PSA1S PSA2E PSA3E

PSA3S PSA4E PSA4S PUSH PX

PX1 PX2

R0 R1 R2 R3 R4

Table 1-7. SHARC Processor Assembler Keywords (Cont’d)
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-35

Assembler Syntax Reference
RF5 R6 R7 R8 R9

R10 R11 R12 R13 R14

R15 READ RECIPS RFRAME RND

ROT RS RSQRTS RTI RTS

SCALB SCL SE SET SF

SIN SIZE SIZEOF SQR SR

SSF SSFR SSI SSIR ST

STEP STKY STRUCT STS SUF

SUFR SV SZ

TAG TCOUNT TF TGL TPERIOD

TRUE TRUNC TST TYPE TRAP

UF UI UNPACK UNTIL UR

USF USFR USI USIR USTAT1

USTAT2 UUF UUFR UUIR UUIR

VAL

WITH

XOR

Table 1-7. SHARC Processor Assembler Keywords (Cont’d)
1-36 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
Table 1-8 lists the assembler keywords for TigerSHARC processors.

Table 1-8. TigerSHARC Processor Assembler Keywords

__ADI__ __DATE__ __FILE__ __LINE__ __STDC__

__TIME__

.ALIGN .ALIGN_CODE .ELIF .ELSE .ENDIF

.EXTERN .FILE .GLOBAL .IF .IMPORT

.LEFTMARGIN .LIST .LIST_DATA .LIST_DATFILE .LIST_DEFTAB

.LIST_LOCTAB .LIST_WRAPDATA .NEWPAGE .NOLIST_DATA .NOLIST_DATFILE

.NOLIST_WRAPDATA .NEWPAGE .NOLIST_DATA .NOLIST_DATFILE .NOLIST_WRAPDATA

.PAGELENGTH .PAGEWIDTH .PREVIOUS .SECTION .SEPARATE_MEM_
SEGMENTS

.STRUCT .VAR .WEAK

ABS ACS ADDRESS AND ASHIFT

BCLR BFOINC BFOTMP BITEST BITFIFO

BKFPT BR BSET BTBDIS BTBELOCK

BTBEN BTBLOCK BTBINV BTGL BY

C CALL CB CJMP CJMP_CALL

CI CLIP COMP COMPACT COPYSIGN

DAB DEC DESPREAD D0

ELSE EMUTRAP EXP EXPAND EXTD

FCOMP FDEP FEXT FIX FLOAT

FTEST0 FTEST1

GETBITS

IDLE INC

JC JUMP

KC
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-37

Assembler Syntax Reference
LD0 LD1 LENGTH LIBSIM_CALL LOGB

LP LSHIFT LSHIFTR

MANT MASK MAX MERGE MIN

NEWPAGE NOT NOP NP

OFFSETOF ONES OR

PASS PERMUTE PRECISION PUTBITS

RDS RECIPS RESET RETI ROT

ROTL ROTR ROUND RSQRTS RTI

SCALB SDAB SE SECTION SFO

SF1 SNGL SIZE SIZEOF STRUCT

SUM

TMAX TRAP TYPEVAR

VMIN VMAX

XCORRS XOR XSDAB

YDAB YSDAB

// JK Register Group

J0 through J31

K0 through K31

JB0 JB1 JB2 JB3

KB0 KB1 KB2 KB3

JL0 JL1 JL2 JL3

KL0 KL1 KL2 KL3

// RF Register Group

FR0 through FR31

MR3:0 MR3:2 MR1:0

MR0 MR1 MR2 MR3 MR4

PR0 PR1 PR1:0

Table 1-8. TigerSHARC Processor Assembler Keywords (Cont’d)
1-38 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
R0 through R31

XSTAT YSTAT XYSTAT

XR0 through XR31

YR0 through YR31

// Accelerator Register Group

TR0 through TR31

THR0 THR1 THR2 THR3

// EP Register Group

BMAX BMAXC BUSLK FLGPIN FLGPINCL

FLGPINST SDRCON SYSCON SYSCONCL SYSCONST

SYSCTL SYSTAT SYSTATCL

// Misc. Register Group

AUTODMA0 AUTODMA1

BTBCMD BTBDATA

BTB0TG0 through BTB0TG31

BTB1TG0 through BTB1TG31

BTB2TG0 through BTB2TG31

BTB3TG0 through BTB3TG31

BTB0TR0 through BTB0TR31

BTB1TR0 through BTB1TR31

BTB2TR0 through BTB2TR31

BTB3TR0 through BTB3TR31

BTBLRU0 through BTBLRU31

CACMD0 CACMD2 CACMD4 CACMD8 CACMD10

CACMDALL

CADATA0 CADATA2 CADATA4 CADATA8 CADATA10

CADATAALL

Table 1-8. TigerSHARC Processor Assembler Keywords (Cont’d)
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-39

Assembler Syntax Reference
CASTAT0 CASTAT2 CASTAT4 CASTAT8 CASTAT10

CASTATALL

CCAIR0 CCAIR2 CCAIR4 CCAIR8 CCAIR10

CCAIRALL

CCNT0 CCNT1 CJMP CMCTL

DBGE DC4 through DC13

DCD0 DCD1 DCD2 DCD3 DCNT

DCNTCL DCNTST

DCS0 DCS1 DCS2 DCS3

DSTAT DSTATC

EMUCTL EMUDAT EMUIR EMUSTAT

IDCODE ILATCLH ILATCLL ILATH ILATL

ILATSTH ILATSTL IMASKH IMASKL INSTAT

INTEN INTCTL IVBUSLK IVDBG IVHW

IVDMA0 through IVDMA13

IVIRQ0 IVIRQ1 IVIRQ2 IVIRQ3 IVLINK0

IVLINK1 IVLINK2 IVLINK3 IVSW IVTIMER0HP

IVTIMER0LP IVTIMER1HP IVTIMER1LP

LBUFRX0 LBUFRX1 LBUFRX2 LBUFRX3

LBUFTX0 LBUFTX1 LBUFTX2 LBUFTX3

LC0 LC1 KB2 KB3

LCTL0 LCTL1 LCTL2 LCTL3

LRCTL0 LRCTL1 LRCTL2 LRCTL3

LRSTAT0 LRSTAT1 LRSTAT2 LRSTAT3

LRSTATC0 LRSTATC1 LRSTATC2 LRSTATC3

LSTAT0 LSTAT1 LSTAT2 LSTAT3

LSTATC0 LSTATC1 LSTATC2 LSTATC3

Table 1-8. TigerSHARC Processor Assembler Keywords (Cont’d)
1-40 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
LTCTL0 LTCTL1 LTCTL2 LTCTL3

LTSTAT0 LTSTAT1 LTSTAT2 LTSTAT3

LTSTATC0 LTSTATC1 LTSTATC2 LTSTATC3

MISR0 MISR1 MISR2 MISRCTL

RETI RETIB RETS RTI

OSPID

PMASKH PMASKL PRFM PRFCNT

SERIAL_H SERIAL_L SFREG SQCTL SQCTLST

SQCTLCL SQSTAT

TESTMODES TIMER0L TIMER1L TIMER0H TIMER1H

TMRIN0L TMRIN0H TMRIN1L TMRIN1H TRCB

TRCBMASK TRCBPTR TRCBVAL

VIRPT

WP0CTL WP1CTL WP2CTL WP0STAT WP1STAT

WP2STAT W0H W0L W1H W1L

W2H W2L

// Conditions which may be prefixed with X, Y, XY, NX, NY, XY

AEQ ALE ALT MEQ MLE

MLT SEQ SF1 SF0 SLT

// Conditions which may be prefixed with J, K, NJ, NK

EQ LE LT CBQ CB1

// Conditions which may be prefixed with N

ISF0 ISF1 LC0E LC1E BM

FLAG0_IN FLAG1_IN FLAG2_IN FLAG3_IN

Table 1-8. TigerSHARC Processor Assembler Keywords (Cont’d)
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-41

Assembler Syntax Reference
Table 1-9 lists the assembler keywords for Blackfin processors.

Table 1-9. Blackfin Processor Assembler Keywords

.ALIGN .ASCII .ASM_ASSERT .ASSERT .BYTE

.BYTE2 .BYTE4 .ELSE .ELIF .ENDIF

.EXTERN .FILE .GLOBAL .IF .INC/BINARY

.IMPORT .LEFTMARGIN .LIST .LIST_DATA .LIST_DATFILE

.LIST_DEFTAB .LIST_LOCTAB .LIST_WRAPDATA .NEWPAGE .NOLIST

.NOLIST_DATA .NOLIST_DATFILE .NOLIST_WRAPDATA .PAGELENGTH .PAGEWIDTH

.PREVIOUS .SECTION .STRUCT .TYPE .VAR

.WEAK

A0 A1 ABORT ABS AC

ALIGN8 ALIGN16 ALIGN24 AMNOP AN

AND ASHIFT ASL ASR ASSIGN

ASTAT AV0 AV1 AZ

B B0 B1 B2 B3

BANG BAR BITCLR BITMUX BITPOS

BITSET BITTGL BITTST BIT_XOR_AC BP

BREV BRF BRT BY BYTEOP1P

BYTEOP16M BYTEOP1NS BYTEOP16P BYTEOP2M BYTEOP2P

BYTEOP3P BYTEPACK BYTEUNPACK BXOR BXORSHIFT

CALL CARET CC CLI CLIP

CO CODE COLON COMMA CSYNC

DATA DBG DBGA DBGAH DBGAL

DBGCMPLX DBGHALT DEPOSIT DISALGNEXCPT DIVSDEPOSIT

DOZE DIVQ DIVS DOT EMUCAUSE

EMUEXCPT EXCAUSE EXCPT EXPADJ EXTRACT
1-42 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
FEXT FEXTSX FLUSH FLUSHINV FP

FU GE GF GT

H HI HLT HWERRCAUSE

I0 I1 I2 I3 IDLE

IDLE_REQ IFLUSH IH INTRP IS

ISS2 IU JUMP JUMP.L JUMP.S

L LB0 LB1 LC0 LC1

LE LENGTH LINK LJUMP LMAX

LMIN LO LOOP LOOP_BEGIN LOOP_END

LPAREN LSETUP LSHIFT LT LT0

LT1 LZ

M M0 M1 M2 M3

MAX MIN MINUS MNOP MUNOP

NEG NOP NOT NS

ONES OR OUTC

P0 P1 P2 P3 P4

P5 PACK PC PRNT PERCENT

PLUS PREFETCH

R R0 R1 R2 R3

R32 R4 R5 R6 R7

RAISE RBRACE RBRACK RETI RETN

RETS RETX RND RND12 RND20

RNDH RNDL ROL ROR ROT

ROT_L_AC ROT_R_AC RPAREN RSDL RTE

RTI RTN RTS RTX R1_COLON0

S S2RND SAA SAA1H SAA1L

SAA2H SAA2L SAA3H SAA3L SAT

Table 1-9. Blackfin Processor Assembler Keywords (Cont’d)
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-43

Assembler Syntax Reference
Extend these sets of keywords with symbols that declare sections, vari-
ables, constants, and address labels. When defining symbols in assembly
source code, follow these conventions:

• Define symbols that are unique within the file in which they are
declared.

If you use a symbol in more than one file, use the .GLOBAL assembly
directive to export the symbol from the file in which it is defined.
Then use the .EXTERN assembly directive to import the symbol into
other files.

• Begin symbols with alphabetic characters.

Symbols can use alphabetic characters (A—Z and a—z), digits (0—9),
and special characters $ and _ (dollar sign and underscore) as well
as . (dot).

Symbols are case sensitive; so input_addr and INPUT_ADDR define
unique variables.

SCO SEARCH SHT_TYPE SIGN SIGNBITS

SLASH SLEEP SKPF SKPT SP

SS SSF SSF_RND_HI SSF_TRUNC SSF_TRUNC_HI

SSF_RND SSF_TRUNC SSYN STI STRUCT

STT_TYPE SU SYSCFG

T TESTSET TFU TH TL

TST UNLINK UNLNK UNRAISE UU

V VIT_MAX

W W32 WEAK

X XB XH XOR Z

Table 1-9. Blackfin Processor Assembler Keywords (Cont’d)
1-44 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
The dot, point, or period, ‘.’ as the first character of a symbol trig-
gers special behavior in the VisualDSP++ environment. A symbol
with a ‘.’ as the first character cannot have a digit as the second
character. Such symbols will not appear in the symbol table accessi-
ble in the debugger. A symbol name in which the first two
characters are dots will not appear even in the symbol table of the
object.

The compiler and run times prepend “_” to avoid using symbols in
the user name space that begin with an alphabetic character.

• Do not use a reserved keyword to define a symbol.

• Match source and LDF sections’ symbols.

Ensure that .SECTION name symbols do not conflict with the
linker’s keywords in the .LDF file. The linker uses sections’ name
symbols to place code and data in processor’s memory. For more
details, see the VisualDSP++ 4.0 Linker and Utilities Manual .

Ensure that .SECTION name symbols do not begin with the “.”
(dot).

• Terminate the definition of address label symbols with a colon (:).

• The reserved word list for processors includes some keywords with
commonly used spellings; therefore, ensure correct syntax spelling.

Address label symbols may appear at the beginning of an instruction line
or stand alone on the preceding line.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-45

Assembler Syntax Reference
The following disassociated lines of code demonstrate symbol usage.

.SECTION/DM seg_dmda;

.VAR xoperand; // xoperand is a variable

.VAR input_array[10]; // input_array is a 10 element
// data buffer

.SECTION/PM seg_pmda;
 sub_routine_1: // sub_routine_1 is a label
.SECTION/PM kernel; // kernel is a section

Assembler Expressions
The assembler can evaluate simple expressions in source code. The assem-
bler supports two types of expressions: constant and symbolic.

Constant Expressions
A constant expression is acceptable where a numeric value is expected in
an assembly instruction or in a preprocessor command. Constant expres-
sions contain an arithmetic or logical operation on two or more numeric
constants. For example,

2.9e-5 + 1.29

(128 - 48) / 3

0x55&0x0f

7.6r – 0.8r

For information about fraction type support, refer to “Fractional Type
Support” on page 1-51.

Symbolic Expressions
Symbolic expressions contain symbols, whose values may not be known
until link time. For example,

data/8

(data_buffer1 + data_buffer2) & 0xF

strtup + 2

data_buffer1 + LENGTH(data_buffer2)*2
1-46 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
Symbols in this type of expression are data variables, data buffers, and pro-
gram labels. In the first three examples above, the symbol name represents
the address of the symbol. The fourth combines that meaning of a symbol
with a use of the length operator (see Table 1-11).

Assembler Operators
Table 1-10 lists the assembler’s numeric and bitwise operators used in
constant expressions and address expressions. These operators are listed in
group order from highest to lowest precedence. Operators with highest
precedence are evaluated first. When two operators have the same prece-
dence, the assembler evaluates the left-most operator first. Relational
operators are only supported in relational expressions in conditional
assembly, as described in “Conditional Assembly Directives” on
page 1-54.

Table 1-10. Operator Precedence

Operator Usage Description Designation

(expression) expression in parentheses evaluates first

~
-

Ones complement
Unary minus

Tilde
Minus

*
/
%

Multiply
Divide
Modulus

Asterisk
Slash
Percentage

+
-

Addition
Subtraction

Plus
Minus

<<
>>

Shift left
Shift right

& Bitwise AND (preprocessor only)

| Bitwise inclusive OR

^ Bitwise exclusive OR (preprocessor only)

&& Logical AND

|| Logical OR
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-47

Assembler Syntax Reference
The assembler also supports special operators. Table 1-11 lists and
describes these operators used in constant and address expressions.

The “address of” and “length of” operators can be used with external sym-
bols—apply it to symbols that are defined in other sections as .GLOBAL
symbols.

Blackfin Processor Example
The following code example demonstrates how the Blackfin assembler
operators are used to load the length and address information into
registers.

#define n 20
...

.SECTION data1; // data section

.VAR real_data [n]; // n=number of input sample

.SECTION program; // code section
p0.l = real_data;
p0.h = real_data;
p1=LENGTH(real_data); // buffer's length
LOOP loop1 lc0=p1;
LOOP_BEGIN loop1;

Table 1-11. Special Assembler Operators

Operator Usage Description

ADDRESS(symbol) Address of symbol
Note: Used with SHARC and TigerSHARC assemblers only.

BITPOS(constant) Bit position (Blackfin processors ONLY)

HI(expression)
LO(expression)

Extracts the most significant 16 bits of expression.
Extracts the least significant 16 bits of expression.

Note: Used with the Blackfin assembler ONLY where HI/LO
replaces the ADRRESS() operator. The expression in the “HI”
and “LO” operators can be either symbolic or constant.

LENGTH(symbol) Length of symbol in number of elements (in a buffer/array)

symbol Address pointer to symbol
1-48 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
R0=[p0++]; // get next sample
...
LOOP_END loop1;

This code fragment initializes p0 and p1 to the base address and length,
respectively, of the buffer real_data. The loop is executed 20 times.

The BITPOS() operator takes a bit constant (with one bit set) and returns
the position of the bit. Therefore, bitpos(0x10) would return 4 and
bitpos(0x80) would return 7. For example,

#define DLAB 0x80
#define EPS 0x10
r0 = DLAB | EPS (z);
cc = bitset (r0, BITPOS(DLAB));

TigerSHARC Processor Example
The following example demonstrates how the assembler operators are used
to load the length and address information into registers (when setting up
circular buffers in TigerSHARC processors).

.SECTION data1; // Data segment

.VAR real_data[n]; // n = number of input samples
…

.SECTION program; // Code segment
// Load the base address of the
// circular buffer:

JB3 = real_data;;
// Load the index:

J3=real_data;;
// Load the circular buffer length:

JL3 = LENGTH(real_data);;
// Set loop counter 0 with buffer length:

LC0 = JL3;;
start:
XR0 = CB [J3 += 1];; // Read data from circular buffer
if NLC0E, jump start;;
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-49

Assembler Syntax Reference
This code fragment initializes JB3 and JL3 to the base address and length,
respectively, of the circular buffer real_data. The buffer length value con-
tained in JL3 determines when addressing wraps around the top of the
buffer. For further information on circular buffers, refer to the hardware
reference manual of the target processor.

SHARC Processor Example
The following code example determines the base address and length of the
circular buffer real_data. The buffer’s length value (contained in L5)
determines when addressing wraps around to the top of the buffer (when
setting up circular buffers in SHARC processors). For further information
on circular buffers, refer to the hardware reference manual of the target
processor.

.SECTION/DM seg_dmda; // data segment

.VAR real_data[n]; // n=number of input samples
…

.SECTION/PM seg_pmco; // code segment
B5=real_data; // buffer base address

// I5 loads automatically
L5=length(real_data); // buffer’s length
M6=1; // post-modify I5 by 1
LCNTR=length(real_data);
,DO loop UNTIL LCE;

// loop counter=buffer’s length
F0=DM(I5,M6); // get next sample

…
loop: …

Although the SHARC assembler accepts the source code written
with the legacy @ operator, it is recommend to use LENGTH() in
place of @.
1-50 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
Numeric Formats
Depending on the processor architectures, the assemblers support binary,
decimal, hexadecimal, floating-point, and fractional numeric formats
(bases) within expressions and assembly instructions. Table 1-12 describes
the conventions of notation the assembler uses to distinguish between
numeric formats.

Due to the support for b# and B# binary notation, the preprocessor
stringization functionality has been turned off by default to avoid
possible undesired stringization. For more information, refer to “#
(Argument)” on page 2-32 and the preprocessor’s “-stringize”
command-line switch (on page 2-45), and to the assembler’s
“-flags-pp -opt1 [,-opt2...]” command-line switch (on page 1-124).

Fractional Type Support

Fractional (fract) constants are specially marked floating-point constants
to be represented in fixed-point format. A fract constant uses the float-
ing-point representation with a trailing “r”, where r stands for fract.

The legal range is [–1…1). This means the values must be greater than or
equal –1 and less than 1. Fracts are represented as signed values.

Table 1-12. Numeric Formats

Convention Description

0xnumber “0x” prefix indicates a hexadecimal number

B#number
b#number

 “B#” or “b#” prefix indicates a binary number

number.number[e {+/-} number] Entry for floating-point number

number No prefix and no decimal point indicates a decimal number

numberr “r” suffix indicates a fractional number
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-51

Assembler Syntax Reference
For example,

.VAR myFracts[] = {0.5r, -0.5e-4r, -0.25e-3r, 0.875r};
/* Constants are examples of legal fracts */

.VAR OutOfRangeFract = 1.5r;
/* [Error ...] Fract constant '1.5r' is out of range.
Fract constants must be greater than or equal to -1 and
less than 1. */

In Blackfin processors, fract 1.15 is a default. Use a /R32 qualifier
(in .BYTE4/R32 or .VAR/R32) to support 32-bit initialization for use
with 1.31 fracts.

1.31 Fracts

Fracts supported by the Analog Devices’ processors use 1.31 format,
meaning a sign bit and “31 bits of fraction”. This is –1 to +1–2**31. For
example, 1.31 maps the constant 0.5r to 2**31.

The conversion formula used by processors to convert from the
floating-point to fixed-point format uses a scale factor of 31.

For example,

.VAR myFract = 0.5r;

// Fract output for 0.5r is 0x4000 0000
// sign bit + 31 bits
// 0100 0000 0000 0000 0000 0000 0000 0000
// 4 0 0 0 0 0 0 0 = 0x4000 0000 = .5r

.VAR myFract = -1.0r;
// Fract output for -1.0r is 0x8000 0000
// sign bit + 31 bits
// 1000 0000 0000 0000 0000 0000 0000 0000
// 8 0 0 0 0 0 0 0 = 0x8000 0000 = -1.0r

.VAR myFract = -1.72471041E-03r;
// Fract output for -1.72471041E-03 is 0xFFC77C15
// sign bit + 31 bits
// 1111 1111 1100 0111 0111 1100 0001 0101
// F F C 7 7 C 1 5
1-52 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
1.0r Special Case

1.0r is out-of-the-range fract. Specify 0x7FFF FFFF for the closest
approximation of 1.0r within the 1.31 representation.

Fractional Arithmetic

The assembler provides support for arithmetic expressions using opera-
tions on fractional constants, consistent with the support for other
numeric types in constant expressions, as described in “Assembler Expres-
sions” on page 1-46.

The internal (intermediate) representation for expression evaluation is a
double floating-point value. Fract range checking is deferred until the
expression is evaluated. For example,

#define fromSomewhereElse 0.875r
.SECTION/data1;
.VAR localOne = fromSomewhereElse + 0.005r;

// Result .88r is within the legal range
.VAR xyz = 1.5r -0.9r;

// Result .6r is within the legal range
.VAR abc = 1.5r; // Error: 1.5r out of range

Mixed Type Arithmetic

The assembler does not support arithmetic between fracts and integers.
For example,

.SECTION data1;

.VAR myFract = 1 - 0.5r;
[Error ea1998] "fract.asm":2 Assembler Error: Illegal
mixing of types in expression.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-53

Assembler Syntax Reference
Comment Conventions
The assemblers support C- and C++ -style formats for inserting com-
ments in assembly sources. The assemblers do not support nested
comments. Table 1-13 lists and describes assembler comment
conventions.

Conditional Assembly Directives
Conditional assembly directives are used for evaluation of assembly-time
constants using relational expressions. The expressions may include rela-
tional and logical operations. In addition to integer arithmetic, the
operands may be the C structs in assembly built-in functions SIZEOF()
and OFFSETOF() that return integers.

The conditional assembly directives are:

• .IF constant-relational-expression;

• .ELIF constant-relational-expression;

• .ELSE;

• .ENDIF;

All conditional assembly blocks begin with an .IF directive and end with
an .ENDIF directive. Table 1-14 shows examples of conditional directives.

Optionally, any number of .ELIF and a final .ELSE directive may appear
within the .IF and .ENDIF. The conditional directives are each terminated
with a semi-colon “;” just like all existing assembler directives. Condi-

Table 1-13. Comment Conventions

Convention Description

/* comment */ A “/* */” string encloses a multiple-line comment

// comment A pair of slashes “//” begin a single-line comment
1-54 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
tional directives do not have to appear alone on a line. These directives are
in addition to the C-style preprocessing directives #if, #elif, #else, and
#endif.

The .IF, .ELSE, .ELIF and .ENDIF directives (in any case) are
reserved keywords.

The .IF conditional assembly directives must be used to query about C
structs in assembly using the SIZEOF() and/or OFFSETOF() built-in func-
tions. These built-ins are evaluated at assembly time, so they cannot
appear in expressions in the #if preprocessor directives.

In addition, the SIZEOF() and OFFSETOF() built-in functions (see
“C Struct Support in Assembly Built-In Functions” on page 1-57) can be
used in relational expressions. Different code sequences can be included
based on the result of the expression.

For example, a SIZEOF(struct/typedef/C base type) is permitted.

Table 1-14. Relational Operators for Conditional Assembly

Relational Operators Conditional Directive Examples

not ! .if !0;

greater than > .if (sizeof(myStruct) > 16);

greater than equal >= .if (sizeof(myStruct) >= 16);

less than < .if (sizeof(myStruct) < 16);

less than equal <= .if (sizeof(myStruct) <= 16);

equality == .if (8 == sizeof(myStruct));

not equal != .if (8 != sizeof(myStruct));

logical or || .if (2 !=4) || (5 == 5);

logical and && .if (sizeof(char) == 2 && sizeof(int) == 4);
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-55

Assembler Syntax Reference
The assembler supports nested conditional directives. The outer condi-
tional result propagates to the inner condition, just as it does in C
preprocessing.

Assembler directives are distinct from preprocessor directives:

• The # directives are evaluated during preprocessing by the prepro-
cessor. Therefore, preprocessor’s #if directives cannot use the
assembler built-ins (see “C Struct Support in Assembly Built-In
Functions”).

• The conditional assembly directives are processed by the assembler
in a later pass. Therefore, you are able to write a relational or logi-
cal expression whose value depends on the value of a #define.
For example,

.IF tryit == 2;
<some code>
.ELIF tryit >= 3;
<some more code>
.ELSE;
<some more code>
.ENDIF;

If you have “#define tryit 2”, then the code <some code> will be
assembled, <some more code> will not be.

• There are no parallel assembler directives for C-style directives
#define, #include, #ifdef, #if defined(name), #ifndef, and so
on.
1-56 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
C Struct Support in Assembly Built-In Functions
The assemblers support built-in functions that enable you to pass infor-
mation obtained from the imported C struct layouts. The assemblers
currently support two built-in functions: OFFSETOF() and SIZEOF().

OFFSETOF() Built-In Function

The OFFSETOF() built-in function is used to calculate the offset of a speci-
fied member from the beginning of its parent data structure.

OFFSETOF(struct/typedef, memberName)

where:

struct/typedef – struct VAR or a typedef can be supplied as the
first argument

memberName – a member name within the struct or typedef (sec-
ond argument)

For SHARC and TigerSHARC processors, OFFSETOF() units are in
words. For Blackfin processors, OFFSETOF() units are in bytes.

SIZEOF() Built-In Function

The SIZEOF() built-in function returns the amount of storage associated
with an imported C struct or data member. It provides functionality simi-
lar to its C counterpart.

SIZEOF(struct/typedef/C base type);

where:

SIZEOF() built-in function takes a symbolic reference as its single
argument. A symbolic reference is a name followed by none or sev-
eral qualifiers to members.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-57

Assembler Syntax Reference
The SIZEOF() built-in function gives the amount of storage associ-
ated with:

• An aggregate type (structure)

• A C base type (int, char, and so on)

• A member of a structure (any type)

For example (Blackfin processor code),

.IMPORT "Celebrity.h";

.EXTERN STRUCT Celebrity StNick;
l3 = SIZEOF(Celebrity); // typedef
l3 = SIZEOF(StNick); // struct var of typedef Celebrity
l3 = SIZEOF(char); // C built-in type
l3 = SIZEOF(StNick->Town); // member of a struct var
l3 = SIZEOF(Celebrity->Town); // member of a struct typedef

The SIZEOF() built-in function returns the size in the units appro-
priate for its processor. For SHARC and TigerSHARC processors,
units are in words. For Blackfin processors, units are in bytes.

When applied to a structure type or variable, SIZEOF() returns the actual
size, which may include padding bytes inserted for alignment. When
applied to a statically dimensioned array, SIZEOF() returns the size of the
entire array.

Struct References
A reference to a struct VAR provides an absolute address. For a fully qual-
ified reference to a member, the address is offset to the correct location
within the struct. The assembler syntax for struct references is “->”.

For example,

myStruct->Member5
1-58 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
references the address of Member5 located within myStruct. If the struct
layout changes, there is no need to change the reference. The assembler
recalculates the offset when the source is reassembled with the updated
header.

Nested struct references are supported. For example,

myStruct->nestedRef->AnotherMember

Unlike struct members in C, struct members in the assembler are
always referenced with “->” (and not “.”) because “.” is a legal char-
acter in identifiers in assembly and not available as a struct
reference.

References within nested structures are permitted. A nested struct defini-
tion can be provided in a single reference in assembly code while a nested
struct via a pointer type requires more than one instruction. Make use of
the OFFSETOF() built-in to avoid hard-coded offsets that could become
invalid if the struct layout changes in the future.

Following are two nested struct examples for .IMPORT "CHeaderFile.h".

Example 1: Nested Reference Within the Struct Definition with
Appropriate C Declarations

C Code

struct Location {
char Town[16];
char State[16];

};

struct myStructTag {
int field1;
struct Location NestedOne;

};
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-59

Assembler Syntax Reference
Assembly Code (for Blackfin processors)

.EXTERN STRUCT myStructTag _myStruct;

P3.l = _myStruct->NestedOne->State;
P3.h = _myStruct->NestedOne->State;

Example 2: Nested Reference When Nested via a Pointer with
Appropriate C Declarations

When nested via a pointer myStructTagWithPtr, which has pNestedOne,
uses pointer register offset instructions.

C Code

// from C header
struct Location {

char Town[16];
char State[16];

};

struct myStructTagWithPtr {
int field1;
struct Location *pNestedOne;

};

Assembly Code (for Blackfin processors)

// in assembly file
.EXTERN STRUCT myStructTagWithPtr _myStructWithPtr;

P1.l = _myStructWithPtr->pNestedOne;
P1.h = _myStructWithPtr->pNestedOne;
P0 = [P1 + OFFSETOF(Location,State)];
1-60 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
Assembler Directives
Directives in an assembly source file control the assembly process. Unlike
assembly instructions, directives do not produce opcodes during assembly.
Use the following general syntax for assembler directives

.directive [/qualifiers |arguments];

Each assembler directive starts with a period (.) and ends with a semico-
lon (;). Some directives take qualifiers and arguments. A directive’s
qualifier immediately follows the directive and is separated by a slash (/);
arguments follow qualifiers. Assembler directives can be uppercase or low-
ercase; uppercase distinguishes directives from other symbols in your
source code.

Table 1-15 lists all currently supported assembler directives. A description
of each directive appears in the following sections.

Table 1-15. Assembler Directive Summary

Directive Description

.ALIGN
(see on page 1-65)

Specifies an alignment requirement for data or code

.ALIGN_CODE
(see on page 1-67)

Specifies an alignment requirement for code.
NOTE: TigerSHARC processors ONLY.

.BYTE| .BYTE2| .BYTE4
(see on page 1-69)

Defines and initializes one-, two-, and four-byte data objects,
respectively.
NOTE: Blackfin processors ONLY.

.ELSE
(see on page 1-54)

Conditional assembly directive

.ENDIF
(see on page 1-54)

Conditional assembly directive

.ENDSEG
(see on page 1-102)

Legacy directive. Marks the end of a section.
Used with legacy directive .SEGMENT that begins a section.
NOTE: SHARC processors ONLY.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-61

Assembler Syntax Reference
.EXTERN
(see on page 1-72)

Allows reference to a global symbol

.EXTERN STRUCT
(see on page 1-73)

Allows reference to a global symbol (struct) that was defined
in another file

.FILE
(see on page 1-75)

Overrides filename given on the command line. Used by C
compiler

.GLOBAL
(see on page 1-76)

Changes a symbol’s scope from local to global

.IF
(see on page 1-54)

Conditional assembly directive

.IMPORT
(see on page 1-78)

Provides the assembler with the structure layout (C struct)
information

.INC/BINARY
(see on page 1-80)

Includes the content of file at the current location.
NOTE: Blackfin processors ONLY

.LEFTMARGIN
(see on page 1-81)

Defines the width of the left margin of a listing

.LIST
(see on page 1-82)

Starts listing of source lines

.LIST_DATA
(see on page 1-83)

Starts listing of data opcodes

.LIST_DATFILE
(see on page 1-84)

Starts listing of data initialization files

.LIST_DEFTAB
(see on page 1-85)

Sets the default tab width for listings

.LIST_LOCTAB
(see on page 1-86)

Sets the local tab width for listings

.LIST_WRAPDATA
(see on page 1-87)

Starts wrapping opcodes that don’t fit listing column

.NEWPAGE
(see on page 1-88)

Inserts a page break in a listing

Table 1-15. Assembler Directive Summary (Cont’d)

Directive Description
1-62 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.NOLIST
(see on page 1-82)

Stops listing of source lines

.NOLIST_DATA
(see on page 1-83)

Stops listing of data opcodes

.NOLIST_DATFILE
(see on page 1-84)

Stops listing of data initialization files

.NOLIST_WRAPDATA
(see on page 1-87)

Stops wrapping opcodes that don't fit listing column

.PAGELENGTH
(see on page 1-89)

Defines the length of a listing page

.PAGEWIDTH
(see on page 1-90)

Defines the width of a listing page

.PORT
(see on page 1-91)

Legacy directive. Declares a memory-mapped I/O port.
NOTE: SHARC processors ONLY.

.PRECISION
(see on page 1-92)

Defines the number of significant bits in a floating-point value.
NOTE: SHARC processors ONLY.

.PREVIOUS
(see on page 1-93)

Reverts to a previously described .SECTION

.ROUND_NEAREST
(see on page 1-95)

Specifies the Round-to-Nearest mode.
NOTE: SHARC processors ONLY.

.ROUND_MINUS
(see on page 1-95)

Specifies the Round-to-Negative Infinity mode.
NOTE: SHARC processors ONLY.

.ROUND_PLUS
(see on page 1-95)

Specifies the Round-to-Positive Infinity mode.
NOTE: SHARC processors ONLY.

.ROUND_ZERO
(see on page 1-95)

Specifies the Round-to-Zero mode.
NOTE: SHARC processors ONLY.

.SECTION
(see on page 1-97)

Marks the beginning of a section

.SEGMENT
(see on page 1-102)

Legacy directive. Replaced with the .SECTION directive.
NOTE: SHARC processors ONLY.

Table 1-15. Assembler Directive Summary (Cont’d)

Directive Description
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-63

Assembler Syntax Reference
.SEPARATE_MEM_SEGMENTS
(see on page 1-102)

Specifies two buffers that should be placed into different
memory segments by the linker.
NOTE: TigerSHARC processors ONLY.

.STRUCT
(see on page 1-103)

Defines and initializes data objects based on C typedefs from
.IMPORT C header files

.TYPE
(see on page 1-106)

Changes the default data type of a symbol;
used by C compiler

.VAR
(see on page 1-107)

Defines and initializes 32-bit data objects

.WEAK
(see on page 1-112)

Creates a weak definition or reference

Table 1-15. Assembler Directive Summary (Cont’d)

Directive Description
1-64 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.ALIGN, Specify an Address Alignment

The .ALIGN directive forces the address alignment of an instruction or
data item. Use it to ensure section alignments in the .LDF file. You may
use .ALIGN to ensure the alignment of the first element of a section, there-
fore providing the alignment of the object section (“INPUT SECTION” to the
linker). You may also use the INPUT_SECTION_ALIGN(#number) linker com-
mand in the .LDF file to force all the following input sections to the
specified alignment.

Refer to the VisualDSP++ 4.0 Linker and Utilities Manual for more infor-
mation on section alignment.

Syntax:

.ALIGN expression;

where

expression – evaluates to an integer. It specifies an alignment
requirement; its value must be a power of 2. When aligning a data
item or instruction, the assembler adjusts the address of the current
location counter to the next address that can be divided by the
value of expression, with no remainder. The expression set to 0 or
1 signifies no address alignment requirement.

In the absence of the .ALIGN directive, the default address align-
ment is 1.

Example

…
.ALIGN 1; // no alignment requirement
…
.SECTION data1;
.ALIGN 2;
.VAR single;
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-65

Assembler Syntax Reference
/* aligns the data item on the word boundary,
at the location with the address value that can be
evenly divided by 2 */

.ALIGN 4;

.VAR samples1[100]=”data1.dat”;
/* aligns the first data item on the double-word
boundary, at the location with the address value
that can be evenly divided by 4;
advances other data items consecutively */

The Blackfin assembler uses .BYTE instead of .VAR.
1-66 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.ALIGN_CODE, Specify an Address Alignment

Used with TigerSHARC processors ONLY.

The .ALIGN_CODE directive forces the address alignment of an instruction
within the .SECTION it is used. It is similar to the .ALIGN directive, but
whereas .ALIGN causes the code to be padded with 0s, .ALIGN_CODE pads
with NOPs. The .ALIGN_CODE directive is used when aligning
instructions.

Refer to Chapter 2 “Linker” in the VisualDSP++ 4.0 Linker and Utilities
Manual for more information on section alignment.

Syntax:

.ALIGN_CODE expression;

where

expression – evaluates to an integer. It specifies an alignment
requirement; its value must be a power of 2. In TigerSHARC pro-
cessors, the expression value is usually 4. When aligning a data
item or instruction, the assembler adjusts the address of the current
location counter to the next address that is divisible by the value of
the expression. The expression set to 0 or 1 signifies no address
alignment requirement.

In the absence of the .ALIGN_CODE directive, the default address
alignment is 1.

Example

.ALIGN_CODE 0; /* no alignment requirement */
…
.ALIGN_CODE 1; /* no alignment requirement */

…
.SECTION program;
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-67

Assembler Syntax Reference
.ALIGN_CODE 4;
JUMP LABEL;;

/* Jump instruction aligned to four word boundary.
If necessary, padding will be done with NOPs */
1-68 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.BYTE, Declare a Byte Data Variable or Buffer

Used with Blackfin processors ONLY.

The .BYTE, .BYTE2, and .BYTE4 directives declare and optionally initialize
one-, two-, or four-byte data objects. Note that the .BYTE4 directive per-
forms the same function as the .VAR directive.

Syntax:

When declaring and/or initializing memory variables or buffer elements,
use one of these forms:

.BYTE varName1[,varName2,…];

.BYTE = initExpression1, initExpression2,…;

.BYTE varName1,varName2,... = initExpression1, initExpression2,…;

.BYTE bufferName[] = initExpression1, initExpression2,…;

.BYTE bufferName[] = “fileName";

.BYTE bufferName[length] = ” fileName“;

.BYTE bufferName1[length] [,bufferName2[length],…];

.BYTE bufferName[length] = initExpression1, initExpression2,…;

where

• varName – user-defined symbols that name variables

• bufferName – user-defined symbols that name buffers

• fileName – indicates that the elements of a buffer get their initial
values from the fileName data file. The <fileName> parameter can
consist of the actual name and path specification for the data file. If
the initialization file is in current directory of your operating sys-
tem, only the filename need be given inside double quotes.

If the file name is not found in the current directory, rhe aasembler
will look in the directories in the processor include path. You may
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-69

Assembler Syntax Reference
use the -I switch (see on page 1-124) to add an directory to the
processor include path.

Initializing from files is useful for loading buffers with data, such as
filter coefficients or FFT phase rotation factors that are generated
by other programs. The assembler determines how the values are
stored in memory when it reads the data files.

• Ellipsis (…) – represents a comma-delimited list of parameters.

• initExpressions parameters – set initial values for variables and
buffer elements.

The optional [length] parameter defines the length of the associ-
ated buffer in words. The number of initialization elements defines
length of an implicit-size buffer. The brackets [] that enclose the
optional [length] are required. For more information, see the fol-
lowing .BYTE examples.

Use a /R32 qualifier (.BYTE4/R32) to support 32-bit initialization
for use with 1.31 fracts (see on page 1-51).

The following lines of code demonstrate .BYTE directives:

.BYTE = 5, 6, 7;
// initialize three 8-bit memory locations

.BYTE samples[] = 123, 124, 125, 126, 127;
// declare an implicit-length buffer and initialize it
// with five 1-byte constants

.BYTE4 points[] = 1.01r, 1.02r, 1.03r;
// declare and initialize an implicit-length buffer
// and initialize it with three 4-byte fract constants

.BYTE2 Ins, Outs, Remains;
// declare three 2-byte variables zero-initialized by default

.BYTE4 demo_codes[100] = "inits.dat";
// declare a 100-location buffer and initialize it
// with the contents of the inits.dat file;
1-70 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.BYTE2 taps=100;
// declare a 2-byte variable and initialize it to 100

.BYTE twiddles[10] = "phase.dat";
// declare a 10-location buffer and load the buffer
// with contents of the phase.dat file

.BYTE4/R32 Fract_Byte4_R32[] = "fr32FormatFract.dat";

When declaring or initializing variables with .BYTE, take under consider-
ation constraints applied to the .VAR directive. The .VAR directive allocates
and optionally initializes 32-bit data objects. For information about the
.VAR directive, refer to information on page 1-107.

ASCII String Initialization Support

The assembler supports ASCII string initialization. This allows the full use
of the ASCII character set, including digits and special characters. The
characters are stored in the upper byte of 32-bit words. The LSBs are
cleared. The assembler also accepts ASCII characters within comments

In Blackfin processors, ASCII initialization can be provided with .BYTE,
.BYTE2 or .VAR directives. The most likely use is the .BYTE directive where
each char is represented by one byte versus a .VAR directive where each
char needs four bytes.

String initialization takes one of the following forms:

.BYTE symbolString[length] = ‘initString’, 0;

.BYTE symbolString [] = ’initString’, 0;

Note that the number of initialization characters defines the optional
length of a string (implicit-size initialization).

Example:

.BYTE k[13] = ‘Hello world!’, 0;

.BYTE k[] = ‘Hello world!’, 0;

The trailing zero character is optional. It simulates ANSI-C string
representation.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-71

Assembler Syntax Reference
.EXTERN, Refer to a Globally Available Symbol

The .EXTERN directive allows a code module to reference global data struc-
tures, symbols, and so on. that are declared as .GLOBAL in other files. For
additional information, see the .GLOBAL directive on page 1-76.

Syntax:

.EXTERN symbolName1[, symbolName2, …];

where

symbolName – the name of a global symbol to import. A single
.EXTERN directive can reference any number of symbols on one line,
separated by commas.

Example:

.EXTERN coeffs;

// This code declares an external symbol to reference

// the global symbol coeffs declared in the example code
// in the .GLOBAL directive description.
1-72 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.EXTERN STRUCT, Refer to a Struct Defined Elsewhere

The .EXTERN STRUCT directive allows a code module to reference a struct
that was defined in another file. Code in the assembly file can then refer-
ence the data members by name, just as if they were declared locally.

Syntax:

.EXTERN STRUCT typedef structvarName ;

where

typedef – the type definition for a struct VAR

structvarName – a struct VAR name

The .EXTERN STRUCT directive specifies a struct symbol name that was
declared in another file. The naming conventions are the same for structs
as for variables and arrays:

• If a struct was declared in a C file, refer to it with a leading _.

• If a struct was declared in an .asm file, use the name “as is”, no
leading underscore (_) is necessary.

The .EXTERN STRUCT directive optionally accepts a list, such as

.EXTERN STRUCT typedef structvarName [,STRUCT typedef structvarName ...]

The key to the assembler knowing the layout is the .IMPORT directive and
the .EXTERN STRUCT directive associating the typedef with the struct VAR.
To reference a data structure that was declared in another file, use the
.IMPORT directive with the .EXTERN directive. This mechanism can be used
for structures defined in assembly source files as well as in C files
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-73

Assembler Syntax Reference
The .EXTERN directive supports variables in the assembler. If the program
does reference struct members, .EXTERN STRUCT must be used because the
assembler must consult the struct layout to calculate the offset of the
struct members. If the program does not reference struct members, you
can use .EXTERN for struct VARs.

Example (SHARC code):

.IMPORT "MyCelebrities.h";

// 'Celebrity' is the typedef for struct var 'StNick'

// .EXTERN means that '_StNick' is referenced within this

// file, but not locally defined. This example assumes StNick

// was declared in a C file and it must be referenced with

// a leading underscore.

.EXTERN STRUCT Celebrity _StNick;

// 'isSeniorCitizen' is one of the members of the 'Celebrity'

// type

.SECTION/PM seg_pmco;

I0 = _StNick->isSeniorCitizen;
1-74 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.FILE, Override the Name of a Source File

The .FILE directive overrides the name of the source file. This directive
may appear in the C/C++ compiler-generated assembly source file (.S).
The .FILE directive is used to ensure that the debugger has the correct file
name for the source file that had generated the object file.

Syntax:

.FILE “filename.ext”;

where

filename – the name of the source file to associate with the object
file. The argument is enclosed in double quotes.

Example:

.FILE “vect.c”; // the argument may be a *.c file

.SECTION data1;

…

…

VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-75

Assembler Syntax Reference
.GLOBAL, Make a Symbol Globally Available

The .GLOBAL directive changes the scope of a symbol from local to global,
making the symbol available for reference in object files that are linked to
the current one.

By default, a symbol has local binding, meaning the linker can resolve ref-
erences to it only from the local file, that is, the same file in which it is
defined. It is visible only in the file in which it is declared. Local symbols
in different files can have the same name, and the linker considers them to
be independent entities. Global symbols are visible from other files; all ref-
erences from other files to an external symbol by the same name will
resolve to the same address and value, corresponding to the single global
definition of the symbol.

You change the default scope with the .GLOBAL directive. Once the symbol
is declared global, other files may refer to it with .EXTERN. For more infor-
mation, refer to the .EXTERN directive on page 1-72. Note that .GLOBAL (or
.WEAK) scope is required for symbols that appear in the RESOLVE commands
in the .LDF file.

Syntax:

.GLOBAL symbolName1[, symbolName2,…];

where

symbolName – the name of a global symbol. A single .GLOBAL direc-
tive may define the global scope of any number of symbols on one
line, separated by commas.

Example (SHARC and TigerSHARC code):

.VAR coeffs[10]; // declares a buffer

.VAR taps=100; // declares a variable

.GLOBAL coeffs, taps; // makes the buffer and the variable
// visible to other files
1-76 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
Example (Blackfin code):

.BYTE coeffs[10]; // declares a buffer

.BYTE4 taps=100; // declares a variable

.GLOBAL coeffs, taps; // makes the buffer and the variable
// visible to other files
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-77

Assembler Syntax Reference
.IMPORT, Provide Structure Layout Information

The .IMPORT directive makes struct layouts visible inside an assembler pro-
gram. The .IMPORT directive provides the assembler with the following
structure layout information:

• The names of typedefs and structs available

• The name of each data member

• The sequence and offset of the data members

• Information as provided by the C compiler for the size of C base
types (alternatively, for the SIZEOF() C base types).

Syntax:

.IMPORT “headerfilename1” [“headerfilename2” …];

where

headerfilename – one or more comma-separated C header files
enclosed in double quotes.

The .IMPORT directive does not allocate space for a variable of this type
that requires the .STRUCT directive (see on page 1-103).

The assembler takes advantage of knowing the struct layouts. The assem-
bly programmer may reference struct data members by name in assembler
source, as one would do in C. The assembler calculates the offsets within
the structure based on the size and sequence of the data members.

If the structure layout changes, the assembly code need not change. It just
needs to get the new layout from the header file, via the compiler. The
make dependencies track the .IMPORT header files and know when a
rebuild is needed. Use the -flags-compiler assembler switch option
(on page 1-122) to pass options to the C compiler for the .IMPORT header
file compilations.
1-78 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
The .IMPORT directive with one or more .EXTERN directives allows code in
the module to refer to a struct variable that was declared and initialized
elsewhere. The C struct can either be declared in C-compiled code or
another assembly file.

The .IMPORT directive with one or more .STRUCT directives declares and
initializes variables of that structure type within the assembler section in
which it appears.

For more information, refer to the .EXTERN directive on page 1-72 and the
.STRUCT directive on page 1-103.

Example:

.IMPORT "CHeaderFile.h";

.IMPORT "ACME_IIir.h","ACME_IFir.h";

.SECTION program;

// ... code that uses CHeaderFile, ACME_IIir, and

// ACME_IFir C structs
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-79

Assembler Syntax Reference
.INC/BINARY, Include Contents of a File

Used with Blackfin processors ONLY.

The .INC/BINARY directive includes the content of file at the current loca-
tion. You can control the search paths used via the -i command-line
switch (on page 1-124).

Syntax:

.INC/BINARY [symbol =] "filename" [skip,[count]] ;

.INC/BINARY [symbol[] =] "filename" [skip,[count]];

where

symbol – the name of a symbol to associate with the data being
included from the file

filename – the name of the file to include. The argument is
enclosed in double quotes.

The skip argument skips a number of bytes from the start of the
file.

The count argument indicates the maximum number of bytes to
read.

Example:

.SECTION data1;

.VAR jim;

.INC/BINARY sym[] = "bert",10,6;

.VAR fred;
1-80 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.LEFTMARGIN, Set the Margin Width of a Listing File

The .LEFTMARGIN directive sets the margin width of a listing page. It spec-
ifies the number of empty spaces at the left margin of the listing file
(.LST), which the assembler produces when you use the -l switch. In the
absence of the .LEFTMARGIN directive, the assembler leaves no empty spaces
for the left margin.

The assembler checks the .LEFTMARGIN and .PAGEWIDTH values against one
another. If the specified values do not allow enough room for a properly
formatted listing page, the assembler issues a warning and adjusts the
directive that was specified last to allow an acceptable line width.

Syntax:

.LEFTMARGIN expression;

where

expression – evaluates to an integer from 0 to 100. Default is 0.
Therefore, the minimum left margin value is 0 and maximum left
margin value is 100. To change the default setting for the entire
listing, place the .LEFTMARGIN directive at the beginning of your
assembly source file.

Example:

.LEFTMARGIN 9; /* the listing line begins at column 10. */

You can set the margin width only once per source file. If the
assembler encounters multiple occurrences of the .LEFTMARGIN
directive, it ignores all of them except the last directive.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-81

Assembler Syntax Reference
.LIST/.NOLIST, Listing Source Lines and Opcodes

The .LIST/.NOLIST directives (on by default) turn on and off the listing of
source lines and opcodes.

If .NOLIST is in effect, no lines in the current source, or any nested source,
are listed until a .LISTdirective is encountered in the same source, at the
same nesting level. The ..NOLIST directive operates on the next source line,
so that the line containing a .NOLIST appears in the listing and accounts
for the missing lines.

The .LIST/.NOLIST directives do not take any qualifiers or arguments.

Syntax:

.LIST;

.NOLIST;

These directives can appear multiple times anywhere in a source file, and
their effect depends on their location in the source file.
1-82 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.LIST_DATA/.NOLIST_DATA, Listing Data Opcodes

The .LIST_DATA/.NOLIST_DATA directives (off by default) turn the listing
of data opcodes on or off. If .NOLIST_DATA is in effect, opcodes corre-
sponding to variable declarations will not be shown in the opcode column.
Nested source files inherit the current setting of this directive pair, but a
change to the setting made in a nested source file will not affect the parent
source file.

The .LIST_DATA/.NOLIST_DATA directives do not take any qualifiers or
arguments.

Syntax:

.LIST_DATA;

.NOLIST_DATA;

These directives can appear multiple times anywhere in a source file, and
their effect depends on their location in the source file.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-83

Assembler Syntax Reference
.LIST_DATFILE/.NOLIST_DATFILE, Listing Data Initialization Files

The .LIST_DATFILE/.NOLIST_DATFILE directives (off by default) turn the
listing of data initialization files on or off. Nested source files inherit the
current setting of this directive pair, but a change to the setting made in a
nested source file will not affect the parent source file.

The .LIST_DATFILE/.NOLIST_DATFILE directives do not take any qualifiers
or arguments.

Syntax:

.LIST_DATFILE;

.NOLIST_DATFILE;

These directives can appear multiple times anywhere in a source file, and
their effect depends on their location in the source file. They are used in
assembly source files, but not in data initialization files.
1-84 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.LIST_DEFTAB, Set the Default Tab Width for Listings

Tab characters in source files are expanded to blanks in listing files under
the control of two internal assembler parameters that set the tab expansion
width. The default tab width is normally in control, but it can be overrid-
den if the local tab width is explicitly set with a directive.

The .LIST_DEFTAB directive sets the default tab width while the
.LIST_LOCTAB directive sets the local tab width (see on page 1-86).

Both the default tab width and the local tab width can be changed any
number of times via the .LIST_DEFTAB and .LIST_LOCTAB directives. The
default tab width is inherited by nested source files, but the local tab
width only affects the current source file.

Syntax:

.LIST_DEFTAB expression;

where

expression – evaluates to an integer greater than or equal to 0.
In the absence of a .LIST_DEFTAB directive, the default tab width
defaults to 4. A value of 0 sets the default tab width.

Example:

// Tabs here are expanded to the default of 4 columns
.LIST_DEFTAB 8;

// Tabs here are expanded to 8 columns
.LIST_LOCTAB 2;

// Tabs here are expanded to 2 columns
// But tabs in "include_1.h" will be expanded to 8 columns

#include "include_1.h"
.LIST_DEFTAB 4;

// Tabs here are still expanded to 2 columns
// But tabs in "include_2.h" will be expanded to 4 columns

#include "include_2.h"
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-85

Assembler Syntax Reference
.LIST_LOCTAB, Set the Local Tab Width for Listings

Tab characters in source files are expanded to blanks in listing files under
the control of two internal assembler parameters that set the tab expansion
width. The default tab width is normally in control, but it can be overrid-
den if the local tab width is explicitly set with a directive.

The .LIST_LOCTAB directive sets the local tab width, and the .LIST_DEFTAB
directive sets the default tab width (see on page 1-85).

Both the default tab width and the local tab width can be changed any
number of times via the .LIST_DEFTAB and .LIST_LOCTAB directives. The
default tab width is inherited by nested source files, but the local tab
width only affects the current source file.

Syntax:

.LIST_LOCTAB expression;

where

expression – evaluates to an integer greater than or equal to 0.
A value of 0 sets the local tab width to the current setting of the
default tab width.

In the absence of a .LIST_LOCTAB directive, the local tab width defaults to
the current setting for the default tab width.

Example: See the .LIST_DEFTAB example on page 1-85.
1-86 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.LIST_WRAPDATA/.NOLIST_WRAPDATA

The .LIST_WRAPDATA/.NOLIST_WRAPDATA directives control the listing of
opcodes that are too big to fit in the opcode column. By default, the
.NOLIST_WRAPDATA directive is in effect.

This directive pair applies to any opcode that does not fit, but in practice,
such a value almost always is the data (alignment directives can also result
in large opcodes).

• If .LIST_WRAPDATA is in effect, the opcode value is wrapped so that
it fits in the opcode column (resulting in multiple listing lines).

• If .NOLIST_WRAPDATA is in effect, the printout is what fits in the
opcode column.

Nested source files inherit the current setting of this directive pair, but a
change to the setting made in a nested source file does not affect the par-
ent source file.

The .LIST_WRAPDATA/.NOLIST_WRAPDATA directives do not take any qualifi-
ers or arguments.

Syntax:

.LIST_WRAPDATA;

.NOLIST_WRAPDATA;

These directives can appear multiple times anywhere in a source file, and
their effect depends on their location in the source file.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-87

Assembler Syntax Reference
.NEWPAGE, Insert a Page Break in a Listing File

The .NEWPAGE directive inserts a page break in the printed listing file
(.LST), which the assembler produces when you use the -l switch
(on page 1-125). The assembler inserts a page break at the location of the
.NEWPAGE directive.

The .NEWPAGE directive does not take any qualifiers or arguments.

Syntax:

.NEWPAGE;

This directive may appear anywhere in your source file. In the absence of
the .NEWPAGE directive, the assembler generates no page breaks in the file.
1-88 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.PAGELENGTH, Set the Page Length of a Listing File

The .PAGELENGTH directive controls the page length of the listing file pro-
duced by the assembler when you use the -l switch (on page 1-125)

Syntax:

.PAGELENGTH expression;

where

expression – evaluates to an integer 0 or greater.
It specifies the number of text lines per printed page. The default
page length is 0, which means the listing has no page breaks.

To format the entire listing, place the .PAGELENGTH directive at the begin-
ning of your assembly source file. If a page length value greater than 0 is
too small to allow a properly formatted listing page, the assembler issues a
warning and uses its internal minimum page length (approximately 10
lines).

Example:

.PAGELENGTH 50; // starts a new page after printing 50 lines

You can set the page length only once per source file. If the assem-
bler encounters multiple occurrences of the directive, it ignores all
except the last directive.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-89

Assembler Syntax Reference
.PAGEWIDTH, Set the Page Width of a Listing File

The .PAGEWIDTH directive sets the page width of the listing file produced
by the assembler when you use the -l switch.

Syntax:

.PAGEWIDTH expression;

where

expression – evaluates to an integer.

Depending on setting of the .LEFTMARGIN directive, this integer should be
at least equal to:

LEFTMARGIN value plus 46 for Blackfin processors
LEFTMARGIN value plus 49 for TigerSHARC processors
LEFTMARGIN value plus about 66 for SHARC processors

You cannot set this integer to be less than 46, 49 or 66, respectively. There
is no upper limit. If LEFTMARGIN = 0 and the .PAGEWIDTH value is not speci-
fied, the actual page width is set to any number over 46, 49 or 66,
respectively.

To change the number of characters per line in the entire listing, place the
.PAGEWIDTH directive at the beginning of the assembly source file.

Example:

.PAGEWIDTH 72; // starts a new line after 72 characters
// are printed on one line, assuming

// the .LEFTMARGIN setting is 0.

You can set the page width only once per source file. If the assem-
bler encounters multiple occurrences of the directive, it ignores all
of them except the last directive.
1-90 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.PORT, Legacy Directive

Used with SHARC processors ONLY.

The .PORT legacy directive assigns port name symbols to I/O ports. Port
name symbols are global symbols; they correspond to memory-mapped
I/O ports defined in the Linker Description File (.LDF).

The .PORT directive uses the following syntax:

.PORT portName;

where:

portName – a globally available port symbol.

Example:

.PORT p1; // declares I/O port p1

.PORT p2; // declares I/O port p2

To declare a port using the SHARC assembler syntax, use the .VAR direc-
tive (for port-identifying symbols) and the Linker Description File (for
corresponding I/O sections). The linker resolves port symbols in the .LDF
file.

For more information on the Linker Description File, see the
VisualDSP++ 4.0 Linker and Utilities Manual .
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-91

Assembler Syntax Reference
.PRECISION, Select Floating-Point Precision

Used with SHARC processors ONLY.

The .PRECISION directive controls only how the assembler interprets
floating-point numeric values in constant declarations and variable initial-
izations. To configure the floating-point precision of the target processor
system, you must set up control registers of the chip using the instructions
that specific to the processor core.

Use one of the following options:

.PRECISION [=] 32;

.PRECISION [=] 40;

where:

The precision of 32 or 40 (default) specifies the number of signifi-
cant bits for floating-point data. The equal sign (=) following the
.PRECISION keyword is optional.

Example:

.PRECISION=32; /* Selects standard IEEE 32-bit
single-precision format; */

.PRECISION 40; /* Selects standard IEEE 40-bit format with

extended mantissa. This is the default
setting. */

The .PRECISION directive applies only to floating-point data.
Precision of fixed-point data is determined by the number of digits
specified. The .PRECISION directive applies to all floating-point
expressions in the file that follow it up to the next .PRECISION
directive.

The .ROUND_ directives (on page 1-95) specify how the assembler
converts a value of many significant bits to fit into the selected
precision.
1-92 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.PREVIOUS, Revert to the Previously Defined Section

The .PREVIOUS directive instructs the assembler to set the current section
in memory to the section described immediately before the current one.
The .PREVIOUS directive operates on a stack.

Syntax:

.PREVIOUS;

The following examples provide illegal and legal cases of the use of the
consecutive .PREVIOUS directives.

Example of Illegal Directive Use

.SECTION data1; // data

.SECTION code; // instructions

.PREVIOUS; // previous section ends, back to data1

.PREVIOUS; // no previous section to set to

Example of Legal Directive Use

#define MACRO1 \
.SECTION data2; \

.VAR vd = 4; \
.PREVIOUS;
.SECTION data1; // data

.VAR va = 1;
.SECTION program; // instructions

.VAR vb = 2;
 MACRO1 // invoke macro

.PREVIOUS; \
.VAR vc = 3;

evaluates as:

.SECTION data1; // data
.VAR va = 1;

.SECTION program; // instructions
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-93

Assembler Syntax Reference
.VAR vb = 2;
// Start MACRO1

.SECTION data2;

.VAR vd = 4;
.PREVIOUS; // end data2, section code

// End MACRO1
.PREVIOUS; // end program, start data1

.VAR vc = 3;
1-94 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.ROUND_, Select Floating-Point Rounding

Used with SHARC processors ONLY.

The .ROUND_ directives control how the assembler interprets literal
floating-point numeric data after .PRECISION is defined. The .PRECISION
directive determines the number of bits to be truncated to match the
number of significant bits (see on page 1-92).

The .ROUND_ directives determine only how the assembler handles the
floating-point values in constant declarations and variable initializations.
To configure the floating-point rounding modes of the target processor
system, you must set up control registers of the chip using the instructions
that specific to the processor core.

The .ROUND_ directives use the following syntax:

.ROUND_mode;

where:

The mode string specifies the rounding scheme used to fit a value in
the destination format. Use one of the following IEEE standard
modes:

.ROUND_NEAREST; (default)

.ROUND_PLUS;

.ROUND_MINUS;

.ROUND_ZERO;

In the following examples, the numbers with four decimal places are
reduced to three decimal places and are rounded accordingly.

.ROUND_NEAREST;
/* Selects Round-to-Nearest scheme; this is the default setting.

A 5 is added to the digit that follows the third
decimal digit (the least significant bit - LSB). The
result is truncated after the third decimal digit (LSB).
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-95

Assembler Syntax Reference
1.2581 rounds to 1.258
8.5996 rounds to 8.600
-5.3298 rounds to -5.329
-6.4974 rounds to -6.496
*/

.ROUND_ZERO;
/* Selects Round-to-Zero. The closer to zero value is taken.

The number is truncated after the third decimal digit (LSB)

1.2581 rounds to 1.258
8.5996 rounds to 8.599
-5.3298 rounds to -5.329
-6.4974 rounds to -6.497
*/

.ROUND_PLUS;
/* Selects Round-to-Positive Infinity. The number rounds

to the next larger.
For positive numbers, a 1 is added to the third decimal
digit (the least significant bit). Then the result is
truncated after the LSB.
For negative numbers, the mantissa is truncated after
the third decimal digit (LSB).

1.2581 rounds to 1.259
8.5996 rounds to 8.600
-5.3298 rounds to -5.329
-6.4974 rounds to -6.497
*/

.ROUND_MINUS;
/* Selects Round-to-Negative Infinity. The value

rounds to the next smaller.
For negative numbers, a 1 is subtracted from the
third decimal digit (the least significant bit).
Then the result is truncated after the LSB.
For positive numbers, the mantissa is truncated
after the third decimal digit (LSB).

1.2581 rounds to 1.258
8.5996 rounds to 8.599
-5.3298 rounds to -5.330
-6.4974 rounds to -6.498

 */
1-96 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.SECTION, Declare a Memory Section

The .SECTION directive marks the beginning of a logical section mirroring
an array of contiguous locations in your processor memory. Statements
between one .SECTION and the following .SECTION directive, or the
end-of-file instruction, comprise the content of the section.

TigerSHARC and Blackfin Syntax:

.SECTION/qualifier sectionName [sectionType];

SHARC Syntax:

.SECTION[/TYPE qualifier sectionName [sectionType];

All qualifiers are optional and more than one can be used.

TigerSHARC-Specific Qualifiers

The TigerSHARC-specific qualifier1, qualifier2... can be one of:

The double size qualifiers and char size qualifiers are used to ensure that
object files are consistent when linked together and with run-time librar-
ies. A section may have a double size qualifier and a char size qualifier. It
cannot have two double size qualifiers or two char size qualifiers. Sections
in the same file do not have to have the same type size qualifiers.

DOUBLE32 DOUBLE64 DOUBLEANY CHAR8 CHAR32 CHARANY

DOUBLEs are
represented as
32-bit types

DOUBLEs are
represented as
64-bit types

Section does
not include
code that
depends on
the size of
DOUBLE

CHARs are
represented as
8-bit types.
Shorts are
represented as
16-bit types.

CHARs are
represented as
32-bit types.
Shorts are
represented as
32-bit types.

Section does
not include
code that
depends on
the size of
CHAR.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-97

Assembler Syntax Reference
Note: Use of DOUBLEANY and CHARANY in a section implies that
doubles, char and shorts are not used in this section in any way
that would require consistency checking with any other section.

SHARC-Specific Keywords

For the SHARC assembler, the /type keyword specifies the size of a data
in the section. This data mapping should follow from the chip’s memory
architecture.The type must match the memory type of the input section
of the same name used by the .LDF file to place the section. One of the fol-
lowing types is required for each .SECTION directive:

Common .SECTION Qualifiers

The following are common syntax attributes used by all processor’s
assemblers.

• sectionName – section name symbol which is not limited in length
and is case-sensitive. Section names must match the corresponding
input section names used by the .LDF file to place the section. Use
the default .LDF file included in the ...\ldf subdirectory of the
VisualDSP++ installation directory, or write your own LDF.

Note: Some sections starting with “.” names have certain meaning
within the linker. Do not use the dot (.) as the initial character in
sectionName.

Memory/Section Type Description

PM Section contains instructions and possibly data, in 48-bit words.

DM Section contains data in 40-bit words.

DATA64 Section defines data in 64-bit words..
1-98 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
The assembler generates relocatable sections for the linker to fill in
the addresses of symbols at link time. The SHARC assembler
implicitly pre-fix the name of the section with the “.rela.” string
to form a relocatable section. For example, for the sections named
rela.seg_dmda and rela.seg_pmco, the relocation section are
.rela.rela.seg_dmda and .rela.rela.seg_pmco respectively. To
avoid ambiguity, ensure that your sections’ names do not begin
with “.rela.”.

• sectionType – an optional ELF section type identifier. The assem-
bler uses the default SHT_PROGBITS when this identifier is absent.
For example, .SECTION program SHT_DEBUGINFO;

Supported ELF section types are SHT_PROGBITS, SHT_DEBUGINFO,
and SHT_NULL. These sectionTypes are described in the ELF.h
header file, which is available from third-party software develop-
ment kits. For more information on the ELF file format, see the
VisualDSP++ 4.0 Linker and Utilities Manual .

SHARC Example:

/* Data section and program section declared below correspond
to the default LDF’s input sections. */

.SECTION/DM seg_dmda; // data section

...

.SECTION/PM seg_pmco; // program section

...

TigerSHARC Example:

/* Declared below memory sections correspond to the default
LDF’s input sections. */

.SECTION/char32 data1; // memory section to store data

.SECTION/char32 program; // memory section to store code

...
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-99

Assembler Syntax Reference
Blackfin Example:

/* Declared below memory sections correspond to the
default LDF’s input sections. */

.SECTION data1; // memory section

.SECTION program; // memory section

If you select an invalid qualifier or specify no qualifier, the assem-
bler exits with an error message.

Initialization Section Qualifiers

The .SECTION directive may identify “how/when/if” a section is initialized.
The initialization qualifiers, common for all supported assemblers, are:

• The /NO_INIT qualifier:
Section is “sized” to have enough space to contain all data elements
placed in this section. No data initialization is happening for this
memory section.

• The /ZERO_INIT qualifier:
Similar to NO_INIT, except that the memory space for this section is
initialized to zero at either “load” or “runtime”, if invoked with the
linker’s -meminit switch. If the (linker’s) -meminit switch is not
used, the memory is initialized at “load” time when the .DXE file is
loaded via VisualDSP++ IDDE, or boot-loaded by the boot kernel.
If the memory initializer is invoked, the C/C++ run-time library
(CRTL) processes embedded information to initialize the memory
space during the CRTL initialization process.

• The /RUNTIME_INIT qualifier:
If the memory initializer is not run, this qualifier has no effect. If
the memory initializer is invoked, the data for this section is set
during the CRTL initialization process.
1-100 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
For example,

.SECTION/NO_INIT seg_bss;

.VAR big[0x100000];

.SECTION/ZERO_INIT seg_bsz;

.VAR big[0x100000];

Initialized data in a /NO_INIT or /ZERO_INIT section is ignored. For exam-
ple, the assembler can generate a warning for the.VAR zz initialization.

.SECTION/NO_INIT seg_bss;

.VAR xx[1000];

.VAR zz = 25; // [Warning ea1141] "example.asm":3 'zz':
Data directive with assembly-time initializers found
in .SECTION 'seg_bss' with qualifier /NO_INIT.

Likewise, the assembler generates a warning for an explicit initialization to
0 in a ZERO_INIT section.

.SECTION/ZERO_INIT seg_bsz;

.VAR xx[1000];

.VAR zz =0;

The assembler calculates the size of NO_INIT and ZERO_INIT sections
exactly as for the standard SHT_PROGBITS sections. These sections, like the
sections with initialized data, have the SHF_ALLOC flag set. Alignment sec-
tions are produced for NO_INIT and ZERO_INIT sections.

For more information, see the VisualDSP++ 4.0 Linker and Utilities
Manual .

.SECTION Qualifier ELF SHT_* (Elf.h)
Section-Header-Type

ELF SHF_* (Elf.h)
Section-Header-Flags

.SECTION/NO_INIT SHT_NOBITS SHF_ALLOC

.SECTION/ZERO_INIT SHT_NOBITS SHF_ALLOC, SHF_INIT

.SECTION/RUNTIME_INIT SHT_PROGBITS SHF_ALLOC, SHF_INIT
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-101

Assembler Syntax Reference
.SEGMENT & .ENDSEG, Legacy Directives

Used with SHARC processors ONLY.

Releases of the ADSP-210xx DSP development software prior to
VisualDSP 4.1 used the .SEGMENT and .ENDSEG directives to define the
beginning and end of a section of contiguous memory addresses.

Although these directives have been replaced with the .SECTION directive,
the source code written with .SEGMENT/.ENDSEG legacy directives is
accepted by the ADSP-21xxx assembler.

.SEPARATE_MEM_SEGMENTS

Used with TigerSHARC processors ONLY.

The .SEPARATE_MEM_SEGMENTS directive allows you to specify two buffers
the linker could place into different memory segments.

Syntax:

.SECTION data1;

.VAR buf1;

.VAR buf2;

.EXTERN buf3;

.SEPARATE_MEM_SEGMENTS(buf1, buf2)

.SEPARATE_MEM_SEGMENTS(buf1, buf3)

You can also use the compiler’s separate_mem_segments pragma to per-
form the same function. For more information, refer to Chapter 2 of the
VisualDSP++ 4.0 Linker and Utilities Manual.
1-102 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.STRUCT, Create a Struct Variable

The .STRUCT directive allows you to define and initialize high-level data
objects within the assembly code. The .STRUCT directive creates a struct
variable using a C-style typedef as its guide from .IMPORT C header files.

Syntax:

.STRUCT typedef structName;

.STRUCT typedef structName = {};

.STRUCT typedef structName = { struct-member-initializers
[,struct-member-initializers...] };

.STRUCT typedef ArrayOfStructs [] =
{ struct-member-initializers
[,struct-member-initializers...] };

where

typedef – the type definition for a struct VAR

structName – a struct name

struct-member-initializers – per struct member initializers

then member2 is initialized to zero because no initializer was present for it.
If no initializers are present, the entire STRUCT is zero-initialized.

If data member names are present, the assembler validates that the assem-
bler and compiler are in agreement about these names. The initialization
of data struct members declared via the assembly .STRUCT directive is
processor-specific.

Example 1. Long-Form .STRUCT Directive

#define NTSC 1
// contains layouts for playback and capture_hdr

.IMPORT "comdat.h";

.STRUCT capture_hdr myLastCapture = {
captureInt = 0,
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-103

Assembler Syntax Reference
captureString = ‘InitialState’
};
.STRUCT myPlayback playback = {

theSize = 0,
ready = 1,
stat_debug = 0,
last_capture = myLastCapture,
watchdog = 0,
vidtype = NTSC

};

Example 2. Short-Form .STRUCT Directive

#define NTSC 1
// contains layouts for playback and capture_hdr

.IMPORT "comdat.h";

.STRUCT capture_hdr myLastCapture = { 0, ‘InitialState’ };

.STRUCT playback myPlayback = { 0, 1, 0, myLastCapture, 0, NTSC };

Example 3. Long-Form .STRUCT Directive to Initialize an Array

.STRUCT structWithArrays XXX = {
scalar = 5,
array1 = { 1,2,3,4,5 },
array2 = { "file1.dat" },
array3 = "WithBraces.dat" // must have { } within dat

};

In the short-form, nested braces can be used to perform partial initializa-
tions as in C. In Example 4 below, if the second member of the struct is an
array with more than four elements, the remaining elements is initialized
to zero.
1-104 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
Example 4. Short-Form .STRUCT Directive to Initialize an Array

.STRUCT structWithArrays XXX = { 5, { 1,2,3,4 }, 1, 2 };

Example 5. Initializing a Pointer

A struct may contain a pointer. Initialize pointers with symbolic
references.

.EXTERN outThere;

.VAR myString[] = 'abcde',0;

.STRUCT structWithPointer PPP = {
scalar = 5,
myPtr1 = myString,
myPtr2 = outThere

};

Example 6. Initializing a Nested Structure

A struct may contain a struct. Use fully qualified references to initialize
nested struct members. The struct name is implied.

For example, the reference “scalar” (“nestedOne->scalar” implied) and
“nested->scalar1” (“nestedOne->nested->scalar1” implied).

.STRUCT NestedStruct nestedOne = {
scalar = 10,
nested->scalar1 = 5,
nested->array = { 0x1000, 0x1010, 0x1020 }

};
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-105

Assembler Syntax Reference
.TYPE, Change Default Symbol Type

The .TYPE directive directs the assembler to change the default symbol
type of an object. This directive may appear in the compiler-generated
assembly source file (.S).

Syntax:

.TYPE symbolName, symbolType;

where

• symbolName – the name of the object to which the symbolType is
applied.

• symbolType – an ELF symbol type STT_*. Valid ELF symbol types
are listed in the ELF.h header file. By default, a label has an
STT_FUNC symbol type, and a variable or buffer name defined in a
storage directive has an STT_OBJECT symbol type.
1-106 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
.VAR, Declare a Data Variable or Buffer

The.VAR directive declares and optionally initializes variables and data
buffers. A variable uses a single memory location, and a data buffer uses an
array of memory locations.

When declaring or initializing variables:

• A .VAR directive may appear only within a section. The assembler
associates the variable with the memory type of the section in
which the .VAR appears.

• A single .VAR directive can declare any number of variables or buff-
ers, separated by commas, on one line.

Unless the absolute placement for a variable is specified with the
RESOLVE() command (from an .LDF file), the linker places variables
in consecutive memory locations. For example, .VAR d,f,k[50];
sequentially places symbols x, y and 50 elements of the buffer z in
the processor memory. Therefore, code example may look as:

.VAR d;

.VAR f;

.VAR k[50];

• The number of initializer values may not exceed the number of
variables or buffer locations that you declare.

• The .VAR directive may declare an implicit-size buffer by using
empty brackets []. The number of initialization elements defines
the length of the implicit-size buffer. For implicit-size buffer ini-
tialization, the elements may appear within curly brackets { }. At
runtime, the length operator can be used to determine the buffer
size. For example (SHARC code),

.SECTION/DM seg_dmda;
.VAR buffer [] = {1,2,3,4};
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-107

Assembler Syntax Reference
.SECTION/PM seg_pmco;
LO = LENGTH(buffer); // Returns 4

Syntax:

The .VAR directive takes one of the following forms:

.VAR varName1[,varName2,…];

.VAR = initExpression1, initExpression2,…;

.VAR varName1 = initexpression1 [,varName2 = initexpression2,…];

.VAR bufferName[] = {initExpression1, initExpression2,...};

.VAR bufferName[] = {"fileName"};

.VAR bufferName[length] = "fileName";

.VAR bufferName1[length] [,bufferName2[length],...];

.VAR bufferName[length] = initExpression1,initExpression2,…;

where:

• varName – user-defined symbols that identify variables

• bufferName – user-defined symbols that identify buffers

• fileName parameter – indicates that the elements of a buffer get
their initial values from the fileName data file. The <fileName> can
consist of the actual name and path specification for the data file. If
the initialization file is in the current directory of your operating
system, only the fileName need be given quotes.

Initializing from files is useful for loading buffers with data, such as
filter coefficients or FFT phase rotation factors that are generated
by other programs. The assembler determines how the values are
stored in memory when it reads the data files.

• Ellipsis (…) – a comma-delimited list of parameters

• [length] – optional parameter that defines the length (in words) of
the associated buffer. When length is not provided, the buffer size
is determined by the number of initializers.
1-108 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
• Brackets ([]) – enclosing the optional [length] is required. For
more information, see the following .VAR examples.

• initExpressions parameters – set initial values for variables and
buffer elements.

With Blackfin processors, the assembler uses a /R32 qualifier
(.VAR/R32) to support 32-bit initialization for use with 1.31 fracts
(see on page 1-51).

The following lines of code demonstrate some .VAR directives:

.VAR buf1=0x1234, buf2=0x5678, ...;
// Define two initialized buffers

.VAR 0x1234, 0x5678, ...;
// Define two initialized words

.VAR samples[] = {10, 11, 12, 13, 14};
// Declare and initialize an implicit-length buffer
// since there are five values; this has the same effect
// as samples[5].
// Initialization values for implicit-size buffer must be
// in curly brackets.

.VAR Ins, Outs, Remains;
// Declare three uninitialized variables

.VAR samples[100] = "inits.dat";
// Declare a 100-location buffer and initialize it
// with the contents of the inits.dat file;

.VAR taps=100;
// Declare a variable and initialize the variable
// to 100

.VAR twiddles[10] = "phase.dat";
// Declare a 10-location buffer and load the buffer
// with the contents of the phase.dat file

.VAR Fract_Var_R32[] = "fr32FormatFract.dat";
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-109

Assembler Syntax Reference
All Blackfin processor’s memory accesses should have proper align-
ment. This means that when loading or storing a N-byte value into
the processor, ensure that this value is aligned in memory by N
boundary, or a hardware exception would be generated.

Blackfin Code Example:

In the following example, the 4-byte variables y0, y1 and y2 would be mis-
aligned unless the .ALIGN 4; directive is placed before the .VAR y0; and
.VAR y2; statements.

.SECTION data1;

.ALIGN 4;

.VAR x0;

.VAR x1;

.BYTE b0;

.ALIGN 4; // aligns the following data item y0 on a word
// boundary; advances other data items
// consequently

.VAR y0;

.VAR y1;

.BYTE b1;

.ALIGN 4; // aligns the following data item y2 on a word
// boundary

.VAR y2;

.VAR and ASCII String Initialization Support

The assemblers support ASCII string initialization. This allows the full use
of the ASCII character set, including digits and special characters.

On SHARC and TigerSHARC processors, the characters are stored in the
upper byte of 32-bit words. The Least Signifcant Bits (LSBs) are cleared.

When using the 16-bit Blackfin processors, refer to the .BYTE directive
description on page 1-71 for more information.
1-110 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
String initialization takes one of the following forms:

.VAR symbolString[length] = ‘initString’, 0;

.VAR symbolString[] = {‘initString’, 0};

Note that the number of initialization characters defines length of a string
(and implicit-size initialization requires the use of curly brackets).

For example,

.VAR x[13] = ‘Hello world!’, 0;

.VAR x[] = {‘Hello world!’, 0};

The trailing zero character is optional. It simulates ANSI-C string
representation.

The assemblers also accept ASCII characters within comments. Please
note special characters handling:

.VAR s1[] = {'1st line',13,10,'2nd line',13,10,0};
// carriage return

.VAR s2[] = {'say:"hello"',13,10,0}; // quotation marks

.VAR s3[] = {'say:',39,'hello',39,13,10,0};
// simple quotation marks
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-111

Assembler Syntax Reference
.WEAK, Support a Weak Symbol Definition and Reference

The .WEAK directive supports weak binding for a symbol. Use this directive
where the symbol is defined, replacing the .GLOBAL directive to make a
weak definition and the .EXTERN directive to make a weak reference.

Syntax:

.WEAK symbol;

where:

symbol – the user-defined symbol

While the linker will generate an error if two objects define global symbols
with identical names, it will allow any number of instances of weak defini-
tions of a name. All will resolve to the first, or to a single, global definition
of a symbol.

One difference between .EXTERN and .WEAK references is that the linker
does not extract objects from archives to satisfy weak references. Such ref-
erences, left unresolved, have the value 0.

The .WEAK (or .GLOBAL scope) directive is required to make symbols
available for placement through RESOLVE commands in the .LDF
file.
1-112 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
Assembler Command-Line Reference
This section describes the assembler command-line interface and switch
set. It describes the assembler’s switches, which are accessible from the
operating system’s command line or from the VisualDSP++ environment.

This section contains:

• “Running the Assembler” on page 1-114

• “Assembler Command-Line Switch Descriptions” on page 1-116

Command-line switches control certain aspects of the assembly process,
including debugging information, listing, and preprocessing. Because the
assembler automatically runs the preprocessor as your program is assem-
bled (unless you use the -sp switch), the assembler’s command line can
receive input for the preprocessor program and direct its operation. For
more information on the preprocessor, see Chapter 2 “Preprocessor”.

When developing a DSP project, you may find it useful to modify
the assembler’s default options settings. The way you set the assem-
bler’s options depends on the environment used to run the DSP
development software.

See “Specifying Assembler Options in VisualDSP++” on
page 1-133 for more information.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-113

Assembler Command-Line Reference
Running the Assembler
To run the assembler from the command line, type the name of the appro-
priate assembler program followed by arguments in any order, and the
name of the assembly source file.

easm21K [-switch1 [-switch2 …]] sourceFile

easmts [-switch1 [-switch2 …]] sourceFile

easmblkfn [-switch1 [-switch2 …]] sourceFile

runs the assembler with

The name of the source file to assemble can be provided as:

• ShortFileName – a file name without quotes (no special characters)

• LongFileName – a quoted file name (may include spaces and other
special path name characters)

The assembler outputs a list of command-line options when run without
arguments (same as -h[elp]).

The assembler supports relative and absolute path names. When you spec-
ify an input or output file name as a parameter, follow these guidelines for
naming files:

• Include the drive letter and path string if the file is not in the cur-
rent project directory.

easm21K
easmts
easmblkfn

Name of the assembler program for SHARC, TigerSHARC, and Blackfin pro-
cessors, respectively.

-switch Switch (or switches) to process. The command-line interface offers many
optional switches that select operations and modes for the assembler and pre-
processor. Some assembler switches take a file name as a required parameter.

sourceFile Name of the source file to assemble.
1-114 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
• Enclose long file names in double quotation marks; for example,
“long file name”.

• Append the appropriate file name extension to each file.

Table 1-16 summarizes file extension conventions accepted by the
VisualDSP++ environment.

Assembler command-line switches are case-sensitive. For example, the fol-
lowing command line

easmblkfn -proc ADSP-BF535 -l pList.lst -Dmax=100 -v -o bin\p1.doj p1.asm

runs the assembler with

-proc ADSP-BF535 – specifies assembles instructions unique to
ADSP-BF535 processors.

-l pListing.lst – directs the assembler to output the listing file.

-Dmax=100 – defines the preprocessor macro max to be 100.

-v – displays verbose information on each phase of the assembly.

Table 1-16. File Name Extension Conventions

Extension File Description

.asm Assembly source file
Note: The assembler treats files with unrecognized (or not existing)
extensions as assembly source files.

.is Preprocessed assembly source file

.h Header file

.lst Listing file

.doj Assembled object file in ELF/DWARF-2 format

.dat Data initialization file
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-115

Assembler Command-Line Reference
-o bin\p1.doj – specifies the name and directory for the assembled
object file.

p1.asm – identifies the assembly source file to assemble.

Assembler Command-Line Switch Descriptions
This section describes the assembler command-line switches in ASCII col-
lation order. A summary of the assembler switches appears in Table 1-17.
Detailed description of each assembler switch starts on page 1-121.

Table 1-17. Assembler Command-Line Switch Summary

Switch Name Purpose

-align-branch-lines
(on page 1-119)

Align branch lines to avoid ADSP-TS101 processor
sequencer anomaly.
NOTE: TigerSHARC processors ONLY.

-char-size-8
(on page 1-119)

Adds /CHAR8 to .SECTIONs in the source file.
NOTE: TigerSHARC processors ONLY.

-char-size-32
(on page 1-119)

Adds /CHAR32 to .SECTIONs in the source file.
NOTE: TigerSHARC processors ONLY.

-char-size-any
(on page 1-120)

Adds /CHARANY to .SECTIONs in the source file.
NOTE: TigerSHARC processors ONLY.

-default-branch-np
(on page 1-120)

Make branch lines default to NP to avoid ADSP-TS101
processor sequencer anomaly.
NOTE: TigerSHARC processors ONLY.

-default-branch-p
(on page 1-120)

Make branch lines default to the Branch Target Buffer
(BTB). NOTE: TigerSHARC processors ONLY.

-Dmacro[=definition]
(on page 1-121)

Passes macro definition to the preprocessor.

-double-size-32
(on page 1-121)

Adds /DOUBLE32 to the .SECTIONs in the source file.
NOTE: TigerSHARC processors ONLY.

-double-size-64
(on page 1-121)

Adds /DOUBLE64 to the .SECTIONs in the source file.
NOTE: TigerSHARC processors ONLY.
1-116 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
-double-size-any
(on page 1-122)

Adds /DOUBLEANY to the .SECTIONs in the source file.
NOTE: TigerSHARC processors ONLY.

-flags-compiler -opt1...
(on page 1-122)

Passes each comma-separated option to the compiler.
(Used when compiling .IMPORT C header files.)

-flags-pp -opt1...
(on page 1-124)

Passes each comma-separated option to the preprocessor.

-g
(on page 1-124)

Generates debug information (DWARF-2 format).

–h[elp]
(on page 1-124)

Outputs a list of assembler switches.

-i|-I directory pathname
(on page 1-124)

Searches a directory for included files.

–l filename
(on page 1-125)

Outputs the named listing file.

–li filename
(on page 1-126)

Outputs the named listing file with #include files
expanded.

-M
(on page 1-126)

Generates make dependencies for #include and data files
only; does not assemble. For example, -M suppresses the
creation of an object file.

-MM
(on page 1-126)

Generates make dependencies for #include and data files.
Use -MM for make dependencies with assembly.

–Mo filename
(on page 1-127)

Writes make dependencies to the filename specified. The
-Mo option is for use with either the -M or -MM option. If
-Mo is not present, the default is <stdout> display.

–Mt filename
(on page 1-127)

Specifies the make dependencies target name. The -Mt
option is for use with either the -M or -MM option. If -Mt is
not present, the default is base name plus 'DOJ'.

-micaswarn
(on page 1-127)

Treats multi-issue conflicts as warnings.
NOTE: Blackfin processors ONLY.

Table 1-17. Assembler Command-Line Switch Summary (Cont’d)

Switch Name Purpose
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-117

Assembler Command-Line Reference
-no-source-dependency
(on page 1-127)

Suppresses output of the source filename in the depen-
dency output produced when "-M" or "-MM" has been
specified.

–o filename
(on page 1-128)

Outputs the named object [binary] file.

-pp
(on page 1-128)

Runs the preprocessor only; does not assemble.

-proc processor
(on page 1-128)

Specifies a target processor for which the assembler should
produce suitable code.

-save-temps
(on page 1-129)

Saves intermediate files

–si-revision version
(on page 1-129)

Specifies silicon revision of the specified processor.

-sp
(on page 1-130)

Assembles without preprocessing.

-stallcheck=(none|cond|all)
(on page 1-130)

Displays stall information:
• none - no messages
• cond - conditional stalls only (default)
• all - all stall information

NOTE: Blackfin processors ONLY.

-v[erbose]
(on page 1-130)

Displays information on each assembly phase.

–version
(on page 1-130)

Displays version information for the assembler and pre-
processor programs.

-w
(on page 1-131)

Disables all assembler-generated warnings.

-Wnumber[,number ...]
(on page 1-131)

Selectively disables warnings by one or more message
numbers. For example, -W1092 disables warning message
ea1092.

Table 1-17. Assembler Command-Line Switch Summary (Cont’d)

Switch Name Purpose
1-118 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
A description of each command-line switch includes information about
case-sensitivity, equivalent switches, switches overridden/contradicted by
the one described, and naming and spacing constraints on parameters.

-align-branch-lines

This switch is used with TigerSHARC processors ONLY.

The -align-branch-lines switch directs the assembler to align branch
instructions (JUMP, CALL, CJMP, CJMP_CALL, RETI, and RTI) on quad-word
boundaries by inserting NOP instructions prior to the branch instruction.
This may be done by adding NOPs in free slots in previous instruction
lines.

-char-size-8

The -char-size-8 switch directs the assembler to add /CHAR8 to
.SECTIONs in the source file that do not have char size qualifiers.
For .SECTIONs in the source file that already have a char size qualifier, this
option is ignored and a warning is produced. For more information, see
“.SECTION, Declare a Memory Section” on page 1-97.

This switch is used with TigerSHARC processors ONLY.

-char-size-32

The -char-size-32 switch directs the assembler to add /CHAR32 to
.SECTIONs in the source file that do not have char size qualifiers.
For .SECTIONs in the source file that already have a char size qualifier, this
option is ignored and a warning is produced. For more information, see
“.SECTION, Declare a Memory Section” on page 1-97.

This switch is used with TigerSHARC processors ONLY.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-119

Assembler Command-Line Reference
-char-size-any

The -char-size-any switch directs the assembler to add /CHARANY to
.SECTIONs in the source file that do not have char size qualifiers.
For .SECTIONs in the source file that already have a char size qualifier, this
option is ignored and a warning is produced. For more information, see
“.SECTION, Declare a Memory Section” on page 1-97.

This switch is used with TigerSHARC processors ONLY.

-default-branch-np

The -default-branch-np (branch lines default to NP) switch directs the
assembler to stop branch instructions (JUMP, CALL) from using the Branch
Target Buffer (BTB). This can be used to avoid a sequencer anomaly
present on the ADSP-TS101 processor only. It is still possible to make
branch instructions use the BTB when -default-branch-np is used by
adding the (P) instruction option; for example, JUMP lab1 (P);;.

This switch is used with TigerSHARC processors ONLY.

-default-branch-p

The -default-branch-p switch makes branch instructions (JUMP, CALL)
use the Branch Target Buffer (BTB). This is the default behavior. It is still
possible to make branch instructions not use the BTB when
-default-branch-p is used by adding the (NP) instruction option; for
example, JUMP labe1 (NP);;.

This switch is used with TigerSHARC processors ONLY.
1-120 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
-Dmacro[=definition]

The -D (define macro) switch directs the assembler to define a macro and
pass it to the preprocessor. See “Using Assembler Feature Macros” on
page 1-25 for the list of predefined macros. For example,

–Dinput // defines input as 1

–Dsamples=10 // defines samples as 10

–Dpoint=’Start’ // defines point as the string ‘Start’

-double-size-32

The -double-size-32 switch directs the assembler to add /DOUBLE32 to
.SECTIONs in the source file that do not have double size qualifiers. For
.SECTIONs in the source file that already have a double size qualifier, this
option is ignored and a warning is produced. For more information, see
“.SECTION, Declare a Memory Section” on page 1-97.

This switch is used with TigerSHARC processors ONLY.

-double-size-64

The -double-size-64 switch directs the assembler to add /DOUBLE64 to
.SECTIONs in the source file that do not have double size qualifiers. For
.SECTIONs in the source file that already have a double size qualifier, this
option is ignored and a warning is produced. For more information, see
“.SECTION, Declare a Memory Section” on page 1-97.

This switch is used with TigerSHARC processors ONLY.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-121

Assembler Command-Line Reference
-double-size-any

The -double-size-any switch directs the assembler to add /DOUBLEANY to
.SECTIONs in the source file that do not have double size qualifiers. For
.SECTIONs in the source file that already have a double size qualifier, this
option is ignored and a warning is produced. For more information, see
“.SECTION, Declare a Memory Section” on page 1-97.

This switch is used with TigerSHARC processors ONLY.

-flags-compiler

The -flags-compiler -opt1 [,-opt2...] switch passes each
comma-separated option to the C compiler. The switch takes a list of one
or more comma-separated compiler options that are passed on the com-
piler command line for compiling .IMPORT headers. The assembler calls
the compiler to process each header file in an .IMPORT directive. It calls the
compiler with the -debug-types option along with any -flags-compiler
options given on the assembler command line.

For example,

// file.asm has .IMPORT "myHeader.h";

easm21K -proc ADSP-21161 -flags-compiler -I\Path -I. file.asm

The rest of the assembly program, including its #include files, are pro-
cessed by the assembler preprocessor. The -flags-compiler switch
processes a list of one or more legal C compiler options, including -D and
-I options.

User-Specified Defines Options

The -D (defines) options on the assembler command line are passed to the
assembler preprocessor, but they are not passed to the compiler for
.IMPORT header processing. If you have #defines for the .IMPORT header
compilation, they must be explicitly specified with the -flags-compiler
switch.
1-122 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
For example,

// file.asm has .IMPORT "myHeader.h";

easm21k -proc ADSP-21161 -DaDef -flags-compiler -DbDef -DbDefTwo=2. file.asm

// -DaDef is not passed to the compiler

cc21k -proc ADSP-21161 -c -debug-types -DbDef -DbDefTwo=2 myHeader.h

See “Using Assembler Feature Macros” on page 1-25 for the list of
predefined macros, including default macros.

Include Options

The -I (include search path) options and -flags-compiler options are
passed to the C compiler for each .IMPORT header compilation. The com-
piler include path is always present automatically. Using the
-flags-compiler option, you can control the order the include directo-
ries are searched. The -flags-compiler switch attributes always take
precedence from the assembler’s -I options.

For example,

easm21K -proc ADSP-21161 -I\aPath -DaDef -flags-compiler -I\cPath,-I. file.asm

cc21k -proc ADSP-21161 -I\aPath -DaDef -flags-compiler -I\cPath,-I. myHeader.h

The .IMPORT C header files are preprocessed by the C compiler preproces-
sor. The struct headers are standard C headers and the standard C
compiler preprocessor is needed. The rest of the assembly program,
including its #include files, are processed by the assembler preprocessor.

Assembly programs are preprocessed using the pp preprocessor (the assem-
bler/linker preprocessor) as well as -I and -D options from the assembler
command line. However, the pp call does not receive the -flags-compiler
switch options.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-123

Assembler Command-Line Reference
 -flags-pp -opt1 [,-opt2...]

The -flags-pp switch passes each comma-separated option to the
preprocessor.

Use -flags-pp with caution. For example, if the pp legacy com-
ment syntax is enabled, the comment characters become
unavailable for non-comment syntax.

-g

The -g (generate debug information) switch directs the assembler to gen-
erate complete data type information for arrays, functions, and the C
structs. This switch also generates DWARF2 function information with
starting and ending ranges based on the myFunc: … myFunc.end: label
boundaries, as well as line number and symbol information in DWARF2
binary format, allowing you to debug the assembly source files.

When the assembler’s -g debugging is in effect, the assembler produces a
warning when it is unable to match a *.end label to a matching beginning
label. This feature can be disabled using the -Wnnnn switch (see
on page 1-131).

-h[elp]

The -h or -help switch directs the assembler to output to standard output
a list of command-line switches with a syntax summary.

-i|I directory

The -idirectory or -Idirectory (include directory path) switch directs
the assembler to append the specified directory or a list of directories sepa-
rated by semicolons (;) to the search path for included files.
1-124 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
These files are:

• Header files (.h) included with the #include preprocessor
command

• Data initialization files (.dat) specified with the .VAR assembly
directive

The assembler passes this information to the preprocessor; the preproces-
sor searches for included files in the following order:

1. Current project directory (.DPJ)

2. ...\include subdirectory of the VisualDSP++ installation
directory

3. Specified directory (or list of directories). The order of the list
defines the order of multiple searches.

Current directory is your *.dpj project directory, not the directory of the
assembler program. Usage of full path names for the -I switch on the
command line is recommended.

For example,

easm21K -proc ADSP-21161 -I “\bin\include” file.asm

-l filename

The -l filename (listing) switch directs the assembler to generate the
named listing file. Each listing file (.LST) shows the relationship between
your source code and instruction opcodes that the assembler produces.

For example,

easm21K -proc ADSP-21161 -I\path -I. -l file.lst file.asm

The file name is a required argument to the -l option. For more informa-
tion, see “Reading a Listing File” on page 1-30.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-125

Assembler Command-Line Reference
-li filename

The -li (listing) switch directs the assembler to generate the named listing
file with #include files. The file name is a required argument to the -li
option. For more information, see “Reading a Listing File” on page 1-30.

-M

The -M (generate make rule only) assembler switch directs the assembler to
generate make dependency rules, which is suitable for the make utility,
describing the dependencies of the source file. No object file is generated
for -M assemblies. For make dependencies with assembly, use -MM.

The output, an assembly make dependencies list, is written to stdout in
the standard command-line format:

“target_file”: “dependency_file.ext”

where dependency_file.ext may be an assembly source file, a header file
included with the #include preprocessor command, a data file, or a header
file imported via the .IMPORT directive.

The -Mo filename switch writes make dependencies to the filename speci-
fied instead of <stdout>. For consistency with the compilers, when the -o
filename is used with -M, the assembler outputs the make dependencies
list to the named file. The -Mo filename takes precedence if both -o file-
name and -Mo filename are present with -M.

-MM

The - MM (generate make rule and assemble) assembler switch directs the
assembler to output a rule, which is suitable for the make utility, describ-
ing the dependencies of the source file. The assembly of the source into an
object file proceeds normally. The output, an assembly make dependen-
cies list, is written to stdout.The only difference between -MM and -M
actions is that the assembling continues with -MM. See “-M” for more
information.
1-126 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
-Mo filename

The -Mo (output make rule) assembler switch specifies the name of the
make dependencies file which the assembler generates when you use the -M
or -MM switch. If -Mo is not present, the default is <stdout> display. If the
named file is not in the current directory, you must provide the path name
in double quotation marks (“ ”).

The -Mo filename option takes precedence over the -o filename
option.

-Mt filename

The -Mt filename (output make rule for named object) assembler switch
specifies the name of the object file for which the assembler generates the
make rule when you use the -M or -MM switch. If the named file is not in
the current directory, you must provide the path name. If -Mt is not
present, the default is the base name plus the .doj extension. See “-M” for
more information.

-micaswarn

The -micaswarn switch treats multi-issue conflicts as warnings.

This switch is used with Blackfin processors ONLY.

-no-source-dependency

The -no-source-dependency switch directs the assembler not to print any-
thing about dependency between the .asm source file and the .doj object
file when outputting dependency information. This option must be used
in conjunction with the -M or -MM options (see on page 1-126).
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-127

Assembler Command-Line Reference
-o filename

The -o filename (output file) switch directs the assembler to use the spec-
ified filename argument for the output file. This switch names the
output, whether for conventional production of an object, a preprocessed,
assemble-produced file (.is), or make dependency (-M). By default, the
assembler uses the root input file name for the output and appends a .doj
extension.

Some examples of this switch syntax are:

easm21K -proc ADSP-21161 -pp -o test1.is test.asm
// preprocessed output goes into test1.is

easm21K -proc ADSP-21161 -o “C:\bin\prog3.doj” prog3.asm
// specify directory and filename for the object file

-pp

The -pp (proceed with preprocessing only) switch directs the assembler to
run the preprocessor, but stop without assembling the source into an
object file. When assembling with the -pp switch, the .is file is the final
result of the assembly. By default, the output file name uses the same root
name as the source, with the extension .is.

-proc processor

The -proc processor (target processor) switch specifies that the assembler
produces code suitable for the specified processor.

The processor identifiers directly supported by VisualDSP++ 4.0 are
listed in “Supported Processors”.

For example,

easm21K -proc ADSP-21161 -o bin\p1.doj p1.asm

easmts -proc ADSP-TS201 -o bin\p1.doj p1.asm

easmblkfn -proc ADSP-BF535 -o bin\p1.doj p1.asm
1-128 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
If the processor identifier is unknown to the assembler, it attempts to read
required switches for code generation from the file <processor>.ini. The
assembler searches for the .ini file in the VisualDSP++ System folder.
For custom processors, the assembler searches the section “proc” in the
<processor>.ini for key “architecture”. The custom processor must be
based on an architecture key that is one of the known processors.

For example, -proc Custom-xxx searches the Custom-xxx.ini file.

See also the “-si-revision version” switch description for more
information on silicon revision of the specified processor.

-save-temps

The -save-temps (save intermediate files) switch directs the assembler to
retain intermediate files generated and normally removed as part of the
assembly process.

-si-revision version

The -si-revision version (silicon revision) switch directs the assembler
to build for a specific hardware revision. Any errata workarounds available
for the targeted silicon revision will be enabled. The parameter “version”
represents a silicon revision for the processor specified by the -proc switch
(on page 1-128).

For example,

easmblkfn -proc ADSP- BF535 -si-revision 0.1

If silicon version “none” is used, then no errata workarounds are enabled,
whereas specifying silicon version “any” will enable all errata workarounds
for the target processor.

If the -si-revision switch is not used, the assembler will build for the lat-
est known silicon revision for the target processor and any errata
workarounds which are appropriate for the latest silicon revision will be
enabled.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-129

Assembler Command-Line Reference
The __SILICON_REVISION__ macro is set by the assembler to two hexadeci-
mal digits representing the major and minor numbers in the silicon
revision. For example, 1.0 becomes 0x100 and 10.21 becomes 0xa15.

If the silicon revision is set to “any”, the __SILICON_REVISION__ macro is
set to 0xffff and if the -si-revision switch is set to “none”, the assem-
bler will not set the __SILICON_REVISION__ macro.

-sp

The -sp (skip preprocessing) switch directs the assembler to assemble the
source file into an object file without running the preprocessor. When the
assembler skips preprocessing, no preprocessed assembly file (.is) is
created.

-stallcheck

The -stallcheck = option switch provides the following choices for dis-
playing stall information:

This switch is used with Blackfin processors ONLY.

-v[erbose]

The -v or -verbose (verbose) switch directs the assembler to display ver-
sion and command-line information for each phase of assembly.

-version

The -version (display version) switch directs the assembler to display ver-
sion information for the assembler and preprocessor programs.

-stallcheck=none Display no messages for stall information

-stallcheck=cond Display information about conditional stalls only (Default).

-stallcheck=all Display all stall information
1-130 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
-w
The -w (disable all warnings) switch directs the assembler not to display
warning messages generated during assembly.

-Wnumber[,number]
The -Wnumber (warning suppression) switch selectively disables warnings
specified by one or more message numbers. For example, -W1092 disables
warning message ea1092. This switch optionally accepts a list, such as
[,number ...].

WARNING ea1121: Missing End Labels

Warning ea1121 is a warning that occurs on assembly file debug builds
(-g) when a globally defined function or label for a data object is missing
its corresponding ending label, with the naming convention label +
“.end”. For example,

[Warning ea1121] ".\gfxeng_thickarc.asm":42 _gfxeng_thickarc:

-g assembly with global function without ending label. Use

'_gfxeng_thickarc.end' or '_gfxeng_thickarc.END' to mark the

ending boundary of the function for debugging information for

automated statistical profiling of assembly functions.

The ending label marks the boundary of the end of a function. Compiled
code automatically provides ending labels. Hand-written assembly needs
to have the ending labels explicitly added to tell the tool-chain where the
ending boundary is. This information is used for automated statistical
profiling of assembly functions. It is also needed by the linker for elimi-
nating unused functions and other features.

To suppress a specific assembler warning by unique warning number, the
assembler provides the following option:

-W1121
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-131

Assembler Command-Line Reference
It is highly recommended that warning ea1121 not be suppressed and the
code be updated to have ending labels.

Functions (Code)

_gfxeng_vertspan:

[--sp] = fp;
...

rts;

Add ending label after rts;. Use the prefix “.end” and begin the label
with “.” to have it treated as an internal label that is not displayed in the
debugger.

.global _gfxeng_vertspan;
_gfxeng_vertspan:

[--sp] = fp;
...

rts;
._gfxeng_vertspan.end:
1-132 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
Specifying Assembler Options in VisualDSP++
Within the VisualDSP++ IDDE, specify tool settings for project builds.
Use the Project menu to open Project Options dialog box

For example, Figure 1-5 shows the project option selections for SHARC
processors.

Figure 1-5. Project Options Dialog Box (SHARC Processors)
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-133

Assembler Command-Line Reference
Figure 1-6 shows the project option selections for TigerSHARC
processors.

Figure 1-6. Project Options Dialog Box (TigerSHARC Processors)
1-134 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
Figure 1-7 shows the project option selections for Blackfin processors.

These dialog boxes allow you to select the target processor, type and and
name of the executable file, as well as VisualDSP++ tools available for use
with the selected processor.

Figure 1-7. Project Options Dialog Box (Blackfin Processors)
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-135

Assembler Command-Line Reference
When using the VisualDSP++ IDDE, use the Assemble option from the
Project Options dialog box (Figure 1-8) to select and/or set assembler
functional options.

Most setup options have corresponding assembler command-line switches
described in “Assembler Command-Line Switch Descriptions” on
page 1-116.

For more information, use the VisualDSP++ context-sensitive online Help
for each target architecture to select information on assembler options you
can specify in VisualDSP++. To do that, click on the ? button and then
click in a field or box you need information about.

Figure 1-8. Project Options – Assemble Tab
1-136 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Assembler
The Additional options field is used to enter the appropriate file names
and options that do not have corresponding controls on the Assemble
page but are available as assembler switches.

The assembler options apply to directing calls to an assembler when
assembling *.asm files. Changing assembler options in VisualDSP++ does
not affect the assembler calls made by the compiler during the compilation
of *.c/*.cpp files.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 1-137

Assembler Command-Line Reference
1-138 VisualDSP++ 4.0 Assembler and Preprocessor Manual

2 PREPROCESSOR

The preprocessor program (pp.exe) evaluates and processes preprocessor

commands in source files on all supported processors. With these com-
mands, you direct the preprocessor to define macros and symbolic
constants, include header files, test for errors, and control conditional
assembly and compilation. The preprocessor supports ANSI C standard
preprocessing with extensions, such as “?” and “...”.

The preprocessor is run by other build tools (assembler and linker) from
the operating system’s command line or within the VisualDSP++ 4.0 envi-
ronment. These tools accept command information for the preprocessor
and pass it to the preprocessor. The pp preprocessor can also operate from
the command line with its own command-line switches.

This chapter contains:

• “Preprocessor Guide” on page 2-2
Contains the information on building programs

• “Preprocessor Command Reference” on page 2-14
Describes the preprocessor’s commands, with syntax and usage
examples

• “Preprocessor Command-Line Reference” on page 2-36
Describes the preprocessor’s command-line switches, with syntax
and usage examples
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-1

Preprocessor Guide
Preprocessor Guide
This section contains the pp preprocessor information on how to build
programs from a command line or from the VisualDSP++ 4.0 environ-
ment. Software developers using the preprocessor should be familiar with:

• “Writing Preprocessor Commands” on page 2-3

• “Header Files and #include Command” on page 2-4

• “Writing Macros” on page 2-6

• “Using Predefined Preprocessor Macros” on page 2-9

• “Specifying Preprocessor Options” on page 2-13

The compiler has it own preprocessor that allows you to use preprocessor
commands within your C/C++ source. The compiler preprocessor auto-
matically runs before the compiler. This preprocessor is separate from the
assembler preprocessor and has some features that may not be used within
your assembly source files. For more information, see the VisualDSP++
4.0 C/C++ Compiler and Library Manual for the target processors.

The assembler preprocessor differs from the ANSI C standard preproces-
sor in several ways. First, the assembler preprocessor supports a “?”
operator (see on page 2-34) that directs the preprocessor to generate a
unique label for each macro expansion. Second, the assembler preproces-
sor does not treat “.” as a separate token. Instead, “.” is always treated as
part of an identifier. This behavior matches the assembler’s which uses ’.’
to start directives and accepts “.” in symbol names. For example,

#define VAR my_var

.VAR x;

does not cause any change to the variable declaration. The text ‘.VAR’ is
treated as a single identifier which does not match the macro name ‘VAR’.
2-2 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
The standard C preprocessor treats ‘.VAR’ as two tokens, ‘.’ and ‘VAR’, and
makes the following substitution:

.my-var x;

The assembler preprocessor also produces assembly-style strings (single
quote delimiters) instead of C-style strings.

Finally, the assembler preprocessor supports (under command-line switch
control) legacy assembler commenting formats (“!” and “{ }”).

Writing Preprocessor Commands
Preprocessor commands begin with a pound sign (#) and end with a car-
riage return. The pound sign must be the first non-white space character
on the line containing the command. If the command is longer than one
line, use a backslash (\) and a carriage return to continue the command on
the next line. Do not put any characters between the backslash and the
carriage return. Unlike assembly directives, preprocessor commands are
case sensitive and must be lowercase.

For more information on preprocessor commands, see “Preprocessor
Command Reference” on page 2-14.

For example,

#include "string.h"

#define MAXIMUM 100

When the preprocessor runs, it modifies the source code by:

• Including system and user-defined header files

• Defining macros and symbolic constants

• Providing conditional assembly
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-3

Preprocessor Guide
Specify preprocessing options with preprocessor commands—lines start-
ing with #. Without any commands, the preprocessor performs these three
global substitutions:

• Replaces comments with single spaces

• Deletes line continuation characters (\)

• Replaces macro references with corresponding expansions

The following cases are notable exceptions to the described substitutions:

• The preprocessor does not recognize comments or macros within
the file name delimiters of an #include command.

• The preprocessor does not recognize comments or predefined mac-
ros within a character or string constant.

Header Files and #include Command
A header file (.h) contains lines of source code to be included (textually
inserted) into another source file. Typically, the header file contains decla-
rations and macro definitions. The #include preprocessor command
includes a copy of the header file at the location of the command. There
are three forms for the #include command:

1. System Header Files
Syntax: #include <filename>

where a file name is within angle brackets. The file name in this form is
interpreted as a “system” header file. These files are used to declare global
definitions, especially memory-mapped registers, system architecture and
processors.

Example:

#include <device.h>
#include <major.h>

System header files are installed in the ...\VisualDSP\21K\include folder.
2-4 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
2. User Header Files
Syntax: #include “filename”

where a file name is within double quotes. The file name in this form is
interpreted as a “user” header file. These files contain declarations for
interfaces between the source files of the program.

Example:

#include "defTS.h”
#include "fft_ovly.h"

3. Sequence of Tokens
Syntax: #include text

In this case, “text” is a sequence of tokens that is subject to macro expan-
sion by the preprocessor. It is an error if after macro expansion the text
does not match one of the two header file forms.

In other words, if the text on the line after the “#include” is not included
in either double quotes (as a user header) or angle brackets (as a system
header), then the preprocessor performs macro expansion on the text.
After that expansion, the line needs to have either of the two header file
forms. It is important to note that unlike most preprocessor commands,
the text after the #include is available for macro expansion.

Examples:

// define preprocessor macro with name for include file
#define includefilename "header.h"
// use the preprocessor macro in a #include command
#include includefilename
// above evaluates to #include "header.h"

// define preprocessor macro to build system include file
#define syshdr(name) <name ## .h>
// use the preprocessor macro in a #include command
#include syshdr(adi)
// above evaluates to #include <adi.h>
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-5

Preprocessor Guide
Include Path Search
It is good programming practice to distinguish between system and user
header files. The only technical difference between the two different nota-
tions is the directory order the assembler searches the specified header file.

For example, when using SHARC processors, the #include <file> search
order is:

1. include path specified by the -I switch

2. ...\VisualDSP\21K\include folders

The #include "file" search order is:

1. local directory – the directory in which the source file resides

2. include path specified by the -I switch

3. ...VisualDSP\21K\include folders

If you use both the -I and -I- switches on the command line, the system
search path (#include < >) is modified in such a manner that search direc-
tories specified with the -I switch that appear before the directory
specified with the -I- switch are ignored. For syntax information and
usage examples on the #include preprocessor command, see “#include” on
page 2-26.

Writing Macros
The preprocessor processes macros in your C, C++, assembly source files,
and Linker Description Files (LDF). Macros are useful for repeating
instruction sequences in your source code or defining symbolic constants.

The term macro defines a macro-identifying symbol and corresponding
definition that the preprocessor uses to substitute the macro reference(s).
Macros allow text replacement, file inclusion, conditional assembly, con-
ditional compilation, and macro definition.
2-6 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
Macro definitions start with #define and end with a carriage return. If a
macro definition is longer than one line, place the backslash character (\)
at the end of each line except for the last line, for line continuation. This
character indicates that the macro definition continues on the next line
and allows to break a long line for cosmetic purposes without changing its
meaning.

The macro definition can be any text that occurs in the source file,
instructions, commands, or memory descriptions. The macro definition
may also have other macro names that are replaced with their own
definitions.

Macro nesting (macros called within another macro) is limited only by the
memory that is available during preprocessing. However, recursive macro
expansion is not allowed.

Blackfin Code Example:

#define false 0

#define min(a,b) ((a) < (b) ? (a):(b))
#define xchg(xv,yv)\

p0=xv;\
p1=yv;\
r0=[p0];\
r1=[p1];\
[p1]=r0;\
[p0]=r1;

SHARC Code Example:

#define ccall(x) \
r2=i6; i6=i7; \
jump (pc, x) (db); \
dm(i7,m7)=r2; \
dm(i7, m7)=PC

<in code section>
.
. <instruction code here>
.

VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-7

Preprocessor Guide
ccall(label);
.
. <instruction code here>

.label:nop;
<instruction code here>

TigerSHARC Code Example:

#define copy (src,dest) \

j0 = src;; \

j1 = dest;; \

R0 =[j0+0];; \

[j1+0] = R0;;

A macro can have arguments. When you pass parameters to a macro, the
macro serves as a general-purpose routine that is usable in many different
programs. The block of instructions that the preprocessor substitutes can
vary with each new set of arguments. A macro, however, differs from a
subroutine call.

During assembly, each instance of a macro inserts a copy of the same
block of instructions, so multiple copies of that code appear in different
locations in the object code. By comparison, a subroutine appears only
once in the object code, and the block of instructions at that location are
executed for every call.

If a macro ends with a semicolon (;), the semicolon is not needed when it
appears in an assembly statement. However, if a macro does not end with
a semicolon character (“;”), it must be followed by the semicolon when
appearing in the assembly statement. Users should be consistent in treat-
ment of the semicolon in macro definitions.

For example,

Blackfin Code Example:

#define mac mrf = mrf+r2*r5(ssfr) // macro definition

r2=r1-r0; // set parameters
2-8 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
r5=dm(i1,m0);
mac; // macro invocation

For more syntax information and usage examples for the #define prepro-
cessor command, see “#define” on page 2-16.

Using Predefined Preprocessor Macros
In addition to macros you define, the pp preprocessor provides a set of
predefined and feature macros that can be used in the assembly code. The
preprocessor automatically replaces each occurrence of the macro refer-
ence found throughout the program with the specified (predefined) value.
The DSP development tools also define feature macros that can be used in
your code.

The __DATE__, __FILE__, and __TIME__ macros return strings
within the single quotation marks (‘’) suitable for initialization of
character buffers (see “.VAR and ASCII String Initialization Sup-
port” on page 1-110).

Table 2-1 describes the common predefined macros provided by the pp
preprocessor. Table 2-2, Table 2-3, and Table 2-4 list processor-specific
feature macros that are defined by the project development tools to specify
the architecture and language being processed.

Table 2-1. Common Predefined Preprocessor Macros

Macro Definition

ADI Defines ADI as 1.

__LASTSUFFIX__ Specifies the last value of suffix that was used to build prepro-
cessor generated labels.

__LINE__ Replaces __LINE__ with the line number in the source file that
the macro appears on.

__FILE__ Defines __FILE__ as the name and extension of the file in
which the macro is defined, for example, ‘macro.asm’.

__STDC__ Defines __STDC__ as 1.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-9

Preprocessor Guide
__TIME__ Defines __TIME__ as current time in the 24-hour format
‘hh:mm:ss’, for example, ‘06:54:35’.

__DATE__ Defines __DATE__ as current date in the format ‘Mm dd yyyy’,
for example, ‘Oct 02 2000’.

_LANGUAGE_ASM Always set to 1

_LANGUAGE_C Equal 1 when used for C compiler calls to specify .IMPORT
headers. Replaces _LANGUAGE_ASM.

Table 2-2. SHARC Feature Preprocessor Macros

Macro Definition

__ADSP21000__ Always 1 for SHARC processor tools

__ADSP21020__ Present when running easmts -proc ADSP-21020
with ADSP-21020 processor

__ADSP21060__ Present when running easmts -proc ADSP-21060
with ADSP-21060 processor

__ADSP21061__ Present when running easmts -proc ADSP-21061
with ADSP-21061 processor

__ADSP21062__ Present when running easmts -proc ADSP-21062
with ADSP-21062 processor

__ADSP21065L__ Present when running easmts -proc ADSP-21065L
with ADSP-21065L processor

__ADSP21160__ Present when running easmts -proc ADSP-21160
with ADSP-21160 processor

__ADSP21161__ Present when running easmts -proc ADSP-21161
with ADSP-21161 processor

__ADSP2106x__ Present when running easmts -proc ADSP-2106x
with ADSP-2106x processor

__ADSP2116x__ Present when running easmts -proc ADSP-2116x
with ADSP-2116x processor

__ADSP21261__ Present when running easmts -proc ADSP-21261
with ADSP-21261 processor

Table 2-1. Common Predefined Preprocessor Macros (Cont’d)

Macro Definition
2-10 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
__ADSP21262__ Present when running easmts -proc ADSP-21262
with ADSP-21262 processor

__ADSP21266__ Present when running easmts -proc ADSP-21266
with ADSP-21266 processor

__ADSP21267__ Present when running easmts -proc ADSP-21267
with ADSP-21267 processor

__ADSP21363__ Present when running easmts -proc ADSP-21363
with ADSP-21363 processor

__ADSP21364__ Present when running easmts -proc ADSP-21364
with ADSP-21364 processor

__ADSP21365__ Present when running easmts -proc ADSP-21365
with ADSP-21365 processor

__ADSP21366__ Present when running easmts -proc ADSP-21366
with ADSP-21366 processor

__ADSP21367__ Present when running easmts -proc ADSP-21367
with ADSP-21367 processor

__ADSP21368__ Present when running easmts -proc ADSP-21368
with ADSP-21368 processor

__ADSP21369__ Present when running easmts -proc ADSP-21369
with ADSP-21369 processor

Table 2-3. TigerSHARC Feature Preprocessor Macros

Macro Definition

__ADSPTS__ Always 1 for TigerSHARC processor tools

__ADSPTS101__ Equal 1 when used with ASDP-TS101 processor

__ADSPTS201__ Equal 1 when used with ASDP-TS201 processor

__ADSPTS202__ Equal 1 when used with ASDP-TS202 processor

__ADSPTS203__ Equal 1 when used with ASDP-TS203 processor

Table 2-2. SHARC Feature Preprocessor Macros (Cont’d)

Macro Definition
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-11

Preprocessor Guide
Table 2-4. Blackfin Feature Preprocessor Macros

Macro Definition

__ADSPBLACKFIN__ Always 1 for Blackfin processor tools

__ADSPBF531__ Present when running easmblkfn -proc ADSP-BF531
with ADSP-BF531 processor.

__ADSPBF532__

__ADSP21532_=1

Present when running easmblkfn -proc ADSP-BF532
with ADSP-BF532 processor.

__ADSPBF533__

__ADSP21533__=1

Present when running easmblkfn -proc ADSP-BF533
with ADSP-BF533 processor.

__ADSPBF535__

__ADSP21535__=1

Present when running easmblkfn -proc ADSP-BF535
with ADSP-BF535 processor.

__ADSPBF536__ Present when running easmblkfn -proc ADSP-BF536
with ADSP-BF536 processor.

__ADSPBF537__ Present when running easmblkfn -proc ADSP-BF537
with ADSP-BF537 processor.

__ADSPBF538__ Present when running easmblkfn -proc ADSP-BF538
with ADSP-BF538 processor.

__ADSPBF539__ Present when running easmblkfn -proc ADSP-BF539
with ADSP-BF539 processor.

__ADSPBF561__ Present when running easmblkfn -proc ADSP-BF561
with ADSP-BF561 processor.

__ADSPBF566__ Present when running easmblkfn -proc ADSP-BF566
with ADSP-BF566 processor.

__AD6532__ Present when running easmblkfn -proc AD6532
with AD6532 processor.
2-12 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
Specifying Preprocessor Options
When developing a DSP project, it may be useful to modify the preproces-
sor’s default options. Because the assembler, compiler, and linker
automatically run the preprocessor as your program is built (unless you
skip the processing entirely), these project development tools can receive
input for the preprocessor program and direct its operation. The way the
preprocessor options are set depends on the environment used to run the
project development software.

You can specify preprocessor options either from the preprocessor’s com-
mand line or via the VisualDSP++ environment:

• From the operating system command line, select the preprocessor’s
command-line switches. For more information on these switches,
see “Preprocessor Command-Line Switches” on page 2-37.

• In the VisualDSP++ environment, select the preprocessor’s options
in the Assemble or Link tabs (property pages) of the Project
Options dialog boxes, accessible from the Project menu. Refer to
“Specifying Assembler Options in VisualDSP++” on page 1-133
for the Assemble tab.

For more information, see the VisualDSP++ 4.0 User’s Guide and
online Help.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-13

Preprocessor Command Reference
Preprocessor Command Reference
This section provides reference information about the processor’s prepro-
cessor commands and operators used in source code, including their
syntax and usage examples. It provides the summary and descriptions of
all preprocessor command and operators.

The preprocessor reads code from a source file (.ASM or .LDF), modifies it
according to preprocessor commands, and generates an altered prepro-
cessed source file. The preprocessed source file is a primary input file for
the assembler or linker; it is purged when a binary object file (.DOJ) is
created.

Preprocessor command syntax must conform to these rules:

• Must be the first non-whitespace character on its line

• Cannot be more than one line in length unless the backslash char-
acter (\) is inserted

• Can contain comments with the backslash character (\)

• Cannot come from a macro expansion

The preprocessor operators are defined as special operators when used in a
#define command.

Preprocessor Commands and Operators
Table 2-5 lists the preprocessor command set. Table 2-6 lists the prepro-
cessor operator set. Sections that begin on page 2-16 describe each of the
preprocessor commands and operators.
2-14 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
Table 2-5. Preprocessor Command Summary

Command/Operator Description

#define (on page 2-16) Defines a macro

#elif (on page 2-19) Subdivides an #if … #endif pair

#else (on page 2-20) Identifies alternative instructions within an #if … #endif pair

#endif (on page 2-21) Ends an #if … #endif pair

#error (on page 2-22) Reports an error message

#if (on page 2-23) Begins an #if … #endif pair

#ifdef (on page 2-24) Begins an #ifdef … #endif pair and tests if macro is defined

#ifndef (on page 2-25) Begins an #ifndef … #endif pair and tests if macro is not
defined

#include (on page 2-26) Includes contents of a file

#line (on page 2-28) Sets a line number during preprocessing

#pragma (on page 2-29) Takes any sequence of tokens

#undef (on page 2-30) Removes macro definition

#warning (on page 2-31) Reports a warning message

Table 2-6. Preprocessor Operator Summary

Command/Operator Description

(on page 2-32) Converts a macro argument into a string constant.
By default, this operator is OFF. Use the command-line switch
“-stringize” on page 2-45 to enable it.

(on page 2-33) Concatenates two tokens

? (on page 2-34) Generates unique labels for repeated macro expansions

... (on page 2-17) Specifies a variable length argument list
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-15

Preprocessor Command Reference
#define

The #define command defines macros.

When defining macros in your source code, the preprocessor substitutes
each occurrence of the macro with the defined text. Defining this type of
macro has the same effect as using the Find/Replace feature of a text edi-
tor, although it does not replace literals in double quotation marks (“ “)
and does not replace a match within a larger token.

For macro definitions that are longer than one line, use the backslash
character (\) at the end of each line except for the last line. You can add
arguments to the macro definition. The arguments are symbols separated
by commas that appear within parentheses.

Syntax:

#define macroSymbol replacementText

#define macroSymbol[(arg1,arg2,…)] replacementText

where

macroSymbol – macro identifying symbol

(arg1,arg2,…) – optional list of arguments enclosed in parenthesis
and separated by commas. No space is permitted between the
macro name and the left parenthesis. If there is a space, the paren-
thesis and arguments are treated as the space is part of the
definition.

replacementText – text to substitute each occurrence of
macroSymbol in your source code.

2-16 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
Examples:

#define BUFFER_SIZE 1020

/* Defines a macro named BUFFER_SIZE and sets its

value to 1020.*/

#define MINIMUM (X, Y) ((X) < (Y)? (X): (Y))

/* Defines a macro named MINIMUM that selects the

minimum of two numeric arguments. */
#define copy(src,dest)

xr0=[j31+src];; \

[j31+dest] = xr0;;
/* define a macro named copy with two arguments.
The definition includes two instructions that copy

a word from memory to memory.

For example,

copy (0x3F,0xC0);

calls the macro, passing parameters to it.

The preprocessor replaces the macro with the code:

[xr0 = [j31+0x3F];;

[j31+0xC0] = xr0;;

*/

Variable Length Argument Definitions

The definition of a macro can also be defined with a variable length argu-
ment list (using the ... operator). For example,

#define test(a, ...) <definition>

defines a macro test which takes two or more arguments. It is invoked as
any other macro, although the number of arguments can vary.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-17

Preprocessor Command Reference
For example,

In the macro definition, the identifier __VA_ARGS__ is available to take on
the value of all of the trailing arguments, including the separating com-
mas, all of which are merged to form a single item.

For example,

#define test(a, ...) bar(a); testbar(__VA_ARGS__);

expands as

test (1,2) -> bar(1); testbar(2);

test (1,2,3,4,5) -> bar(1); testbar(2,3,4,5);

test(1) Error; the macro must have at least one
more argument than formal parameters,
not counting “...”

test(1,2) Valid entry

test(1,2,3,4,5) Valid entry
2-18 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
#elif

The #elif command (else if) is used within an #if … #endif pair. The
#elif includes an alternative condition to test when the initial #if condi-
tion evaluates as FALSE. The preprocessor tests each #elif condition
inside the pair and processes instructions that follow the first true #elif.
There can be an unlimited number of #elif commands inside one #if …
#end pair.

Syntax:

#elif condition

where

condition – expression to evaluate as TRUE (nonzero) or FALSE
(zero)

Example:

#if X == 1

…

#elif X == 2

…

#else

…

/* The preprocessor includes text within the section

and excludes all other text before #else when

x!=1 and x!=2. */

#endif
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-19

Preprocessor Command Reference
#else

The #else command is used within an #if … #endif pair. It adds an
alternative instruction to the #if … #endif pair. Only one #else com-
mand can be used inside the pair. The preprocessor executes instructions
that follow #else after all the preceding conditions are evaluated as FALSE
(zero). If no #else text is specified, and all preceding #if and #elif con-
ditions are FALSE, the preprocessor does not include any text inside the
#if … #endif pair.

Syntax:

#else

Example:

#if X == 1

 …
#elif X == 2

 …
#else

 …
/* The preprocessor includes text within the section

and excludes all other text before #else when

x!=1 and x!=2. */

#endif
2-20 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
#endif

The #endif command is required to terminate #if … #endif,
#ifdef … #endif, and #ifndef … #endif pairs. Make sure that the num-
ber of #if commands matches the number of #endif commands.

Syntax:

#endif

Example:

#if condition

…

…

#endif

/* The preprocessor includes text within the section only

if the test is true */
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-21

Preprocessor Command Reference
#error

The #error command causes the preprocessor to raise an error. The pre-
processor uses the text following the #error command as the error
message.

Syntax:

#error messageText

where

messageText – user-defined text

To break a long messageText without changing its meaning, place
the backslash character (\) at the end of each line except for the last
line.

Example:

#ifndef __ADSPTS201__

#error \

MyError:\

Expecting a ADSP-TS201. \

Check the Linker Description File!

#endif
2-22 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
#if

The #if command begins an #if … #endif pair. Statements inside an
#if … #endif pair can include other preprocessor commands and condi-
tional expressions. The preprocessor processes instructions inside the
#if … #endif pair only when condition that follows the #if evaluates as
TRUE. Every #if command must terminated with an #endif command.

Syntax:

#if condition

where

condition – expression to evaluate as TRUE (nonzero) or FALSE
(zero)

Example:

#if x!=100 /* test for TRUE condition */

…

/* The preprocessor includes text within the section

if the test is true and excludes all other text

after #if only when x!=100 */

#endif

More examples:

#if (x!=100) && (y==20)

#if defined(__ADSPTS201__)
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-23

Preprocessor Command Reference
#ifdef

The #ifdef (if defined) command begins an #ifdef … #endif pair and
instructs the preprocessor to test whether the macro is defined. The num-
ber of #ifdef commands must match the number of #endif commands.

Syntax:

#ifdef macroSymbol

where

 macroSymbol – macro identifying symbol

Example:

#ifdef __ADSPTS201__

/* Includes text after #ifdef only when __ADSPTS201__ has

been defined */

#endif
2-24 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
#ifndef

The #ifndef (if not defined) command begins an #ifndef … #endif pair
and directs the preprocessor to test for an undefined macro. The prepro-
cessor considers a macro undefined if it has no defined value. The number
of #ifndef commands must equal the number of #endif commands.

Syntax:

#ifndef macroSymbol

where

macroSymbol – macro identifying symbol

Example:

#ifndef __ADSPTS201__

/* Includes text after #ifndef only when __ADSPTS201__ is

not defined */

#endif
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-25

Preprocessor Command Reference
#include

The #include command directs the preprocessor to insert the text from a
header file at the command location. There are two types of header files:
system and user. However, the #include command may be presented in
three forms:

• #include <filename> – used with system headers

• #include “filename” – used with user headers

• #include text – used with a sequence of tokens
The sequence of tokens is subject to macro expansion by the pre-
processor. After macro expansion, the text must match one of the
header file forms.

The only difference to the preprocessor between the two types of header
files is the way the preprocessor searches for them.

• System Header <fileName> – The preprocessor searches for a sys-
tem header file in this order: (1) the directories you specify, and (2)
the standard list of system directories.

• User Header “fileName” – The preprocessor searches for a user
header file in this order:

1. Current directory – the directory where the source file that
has the #include command(s) lives

2. Directories you specify

3. Standard list of system directories

Refer to “Header Files and #include Command” on page 2-4 for
more information.
2-26 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
Syntax:

#include <fileName> // include a system header file
#include "fileName" // include a user header file

#include macroFileNameExpansion
/* Include a file named through macro expansion.
This command directs the preprocessor to expand the
macro. The preprocessor processes the expanded text,
which must match either <fileName> or "fileName". */

Example:

#ifdef __ADSPTS201__

/* Tests that __ADSPTS201__ has been defined */

#include <stdlib.h>

#endif
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-27

Preprocessor Command Reference
#line

The #line command directs the preprocessor to set the internal line
counter to the specified value. Use this command for error tracking
purposes.

Syntax:

#line lineNumber “sourceFile”

where

lineNumber – number of the source line that you want to output

sourceFile – name of the source file included in double quotation
marks. The sourceFile entry can include the drive, directory, and
file extension as part of the file name.

Example:

#line 7 “myFile.c”

All assembly programs have #line directives after preprocessing.
They always have a first line with #line 1 "filename.asm" and
they will also have #line directives to establish correct line num-
bers for text that came from include files as a result of the processed
#include directives.
2-28 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
#pragma

The #pragma is the implementation-specific command that modifies the
preprocessor behavior. The #pragma command can take any sequence of
tokens. This command is accepted for compatibility with other
VisualDSP++ software tools. The pp preprocessor currently does not sup-
port pragmas; therefore, it ignores any information in the #pragma.

Syntax:

#pragma any_sequence_of_tokens

Example:

#pragma disable_warning 1024
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-29

Preprocessor Command Reference
#undef

The #undef command directs the preprocessor to undefine the macro.

Syntax:

#undef macroSymbol

where

macroSymbol – macro created with the #define command

Example:

#undef BUFFER_SIZE /* undefines a macro named BUFFER_SIZE */
2-30 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
#warning

The #warning command causes the preprocessor to issue a warning. The
preprocessor uses the text following the #warning command as the warn-
ing message.

Syntax:

#warning messageText

where

messageText – user-defined text

To break a long messageText without changing its meaning, place
the backslash character (\) at the end of each line except for the last
line.

Example:

#ifndef __ADSPTS201__

#warning \

MyWarning: \

Expecting a ADSPTS201. \

Check the Linker Description File!

#endif
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-31

Preprocessor Command Reference
(Argument)

The # (argument) “stringization” operator directs the preprocessor to con-
vert a macro argument into a string constant. The preprocessor converts
an argument into a string when macro arguments are substituted into the
macro definition.

The preprocessor handles white space in string-to-literal conversions by:

• Ignoring leading and trailing white spaces

• Converting any white space in the middle of the text to a single
space in the resulting string

Syntax:

#toString

where

toString – macro formal parameter to convert into a literal string.
The # operator must precede a macro parameter. The preprocessor
includes a converted string within the double quotation marks
(“ ”).

This feature is “off” by default. Use the “-stringize” command-line
switch (on page 2-45) to enable it.

C Code Example:

#define WARN_IF(EXP)\
fprintf (stderr,"Warning:"#EXP "\n")

/*Defines a macro that takes an argument and converts the
argument to a string */

WARN_IF(current <minimum);
/* Invokes the macro passing the condition.*/

fprintf (stderr,"Warning:""current <minimum""\n");
/* Note that the #EXP has been changed to current <minimum
an is enclosed in “ ” */
2-32 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
(Concatenate)

The ## (concatenate) operator directs the preprocessor to concatenate two
tokens. When you define a macro, you request concatenation with ## in
the macro body. The preprocessor concatenates the syntactic tokens on
either side of the concatenation operator.

Syntax:

token1##token2

Example 1:

#define varstring(name) .VAR var_##name[] = {‘name’, 0};
varstring (error);
varstring (warning);

/* The above code results in */

.VAR var_error = {‘error’, 0};

.VAR var_warning = {‘warning’, 0};
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-33

Preprocessor Command Reference
? (Generate a Unique Label)

The “?” operator directs the preprocessor to generate unique labels for
iterated macro expansions. Within the definition body of a macro
(#define), you can specify one or more identifiers with a trailing question
mark (?) to ensure that unique label names are generated for each macro
invocation.

The preprocessor affixes “_num” to a label symbol, where num is a uniquely
generated number for every macro expansion. For example,

abcd? ===> abcd_1

If a question mark is a part of the symbol that needs to be preserved,
ensure that “?” is delimited from the symbol. For example,

“abcd?” is a generated label, while “abcd ?” is not.

Example:

#define loop(x,y) mylabel?:x =1+1;\

x = 2+2;\

yourlabel?:y =3*3;\

y = 5*5;\

JUMP mylabel?;\

JUMP yourlabel?;

loop (bz,kjb)

loop (lt,ss)

loop (yc,jl)

// Generates the following output:

mylabel_1:bz =1+1;bz =2+2;yourlabel_1:kjb =3*3;kjb = 5*5;

JUMP mylabel_1;

JUMP yourlabel_1;

mylabel_2:lt =1+1;lt =2+2;yourlabel_2:ss =3*3;ss =5*5;

JUMP mylabel_2;
2-34 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
JUMP yourlabel_2;

mylabel_3:yc =1+1;yc =2+2;yourlabel_3:jl =3*3;jl =5*5;

JUMP mylabel_3;

JUMP yourlabel_3;

The last numeric suffix used to generate unique labels is maintained by the
preprocessor and is available through a preprocessor predefined macro
__LASTSUFFIX__ (see on page 2-9). This value can be used to generate ref-
erences to labels in the last macro expansion.

The following example assumes the macro “loop” from the previous
example.

// Some macros for appending a suffix to a label

#define makelab(a, b) a##b

#define Attach(a, b) makelab(a##_, b)

#define LastLabel(foo) Attach(foo, __LastSuffix__)

// jump back to label in the previous expansion

JUMP LastLabel(mylabel);

The above expands to (the last macro expansion had a suffix of 3):

JUMP mylabel_3;
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-35

Preprocessor Command-Line Reference
Preprocessor Command-Line Reference
The pp preprocessor is the first step in the process of building (assembling,
compiling, and linking) your programs. The pp preprocessor is run before
the assembler and complier from the assembler or linker. You can also run
the preprocessor independently from its own command line.

This section contains:

• “Running the Preprocessor”

• “Preprocessor Command-Line Switches” on page 2-37

Running the Preprocessor
To run the preprocessor from the command line, type the name of the
program followed by arguments in any order.

pp [-switch1 [-switch2 …]] [sourceFile]

where

For example, the following command line

pp -Dfilter_taps=100 -v -o bin\p1.is p1.asm

pp Name of the preprocessor program.

-switch Switch (or switches) to process. The preprocessor offers several switches
that are used to select its operation and modes. Some preprocessor
switches take a file name as a required parameter.

sourceFile Name of the source file to process. The preprocessor supports relative
and absolute path names. The pp.exe outputs a list of command-line
switches when runs without this argument..
2-36 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
runs the preprocessor with

-Dfilter_taps=100 – defines the macro filter_taps as equal to
100

-v – displays verbose information for each phase of the
preprocessing

-o bin\p1.is – specifies the name and directory for the intermedi-
ate preprocessed file

p1.asm – specifies the assembly source file to preprocess

Most switches without arguments can be negated by prepending
-no to the switch; for example, -nowarn turns off warning messages,
and -nocs! turns off omitting “!” style comments.

Preprocessor Command-Line Switches
The preprocessor is controlled through the switches (or VisualDSP++
options) of other DSP development tools, such as the compiler, assembler,
and linker. Note that the preprocessor (pp.exe) can operate independently
from the command line with its own command-line switches.

Table 2-7 lists the pp.exe switches. A detailed description of each switch
appears beginning on page 2-39.

Table 2-7. Preprocessor Command-Line Switch Summary

Switch Name Description

-cstring
on page 2-39

Enables the stringization operator and provides C com-
piler-style preprocessor behavior

-cs!
on page 2-40

Treats as a comment all text after “!” on a single line

-cs/*
on page 2-40

Treats as a comment all text within /* */
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-37

Preprocessor Command-Line Reference
-cs//
on page 2-40

Treats as a comment all text after / /

-cs{
on page 2-40

Treats as a comment all text within { }

-csall
on page 2-41

Accepts comments in all formats

–Dmacro[=definition]
on page 2-41

Defines macro

-h[elp]
on page 2-41

Outputs a list of command-line switches

–i
on page 2-41

Outputs only makefile dependencies for include files speci-
fied in double quotes

–i|Idirectory
on page 2-42

Searches directory for included files

-M
on page 2-43

Makes dependencies only

-MM
on page 2-44

Makes dependencies and produces preprocessor output

-Mo filename
on page 2-44

Specifies filename for the make dependencies output file

-Mt filename
on page 2-44

Makes dependencies for the specified source file

–o filename
on page 2-44

Outputs named object file

–stringize
on page 2-45

Enables stringization (includes a string in double quotes)

–tokenize-dot
(on page 2-45)

Treats “.” (dot) as an operator when parsing identifiers

–Uname
on page 2-45

Undefines a macro on the command line

–v[erbose]
on page 2-45

Displays information about each preprocessing phase

Table 2-7. Preprocessor Command-Line Switch Summary (Cont’d)
2-38 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
The following sections describe preprocessor’s command-line switches.

-cstring

The -cstring switch directs the preprocessor to produce “C compiler”-
style strings in all cases. Note that by default, the preprocessor produces
assembler-style strings within single quotes (for examples, ‘string’) unless
the -cstring switch is used.

The -cstring switch sets these three C compiler-style behaviors:

• Directs the preprocessor to use double quotation marks rather than
the default single quotes as string delimiters for any preprocessor-
generated strings. The preprocessor generates strings for predefined
macros that are expressed as string constants, and as a result of the
stringize operator in macro definitions (see Table 2-1 on page 2-9
for the predefined macros).

• Enables the stringize operator (#) in macro definitions. By default,
the stringize operator is disabled to avoid conflicts with constant
definitions (see “-stringize” on page 2-45).

–version
on page 2-46

Displays version information for the preprocessor

-w
(on page 2-46)

Removes all preprocessor-generated warnings

-Wnumber
(on page 2-46)

Suppresses any report of the specified warning

-warn
(on page 2-46)

Prints warning messages (default)

Table 2-7. Preprocessor Command-Line Switch Summary (Cont’d)
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-39

Preprocessor Command-Line Reference
• Parses identifiers using C language rules instead of assembler rules.
In C, the character “.” is an operator and is not considered part of
an identifier. In the assembler, the “.” is considered part of a direc-
tive or label. With -cstring, the preprocessor treats “.” as an
operator.

The following example shows the difference in effect of the two styles.

#define end last
// what label.end looks like with -cstring
label.last // "end" parsed as ident and macro expanded

// what label.end looks like without -cstring (asm rules)
label.end // "end" not parsed separately

-cs!

The -cs! switch directs the preprocessor to treat as a comment all text
after “!” on a single line.

-cs/*

The -cs/* switch directs the preprocessor to treat as a comment all text
within /* */ on multiple lines.

-cs//

The -cs// switch directs the preprocessor to treat as a comment all text
after / / on a single line.

-cs{

The -cs{ switch directs the preprocessor to treat as a comment all text
within { }.
2-40 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
-csall

The -csall switch directs the preprocessor to accept comments in all
formats.

-Dmacro[=def]

The -Dmacro switch directs the preprocessor to define a macro. If you do
not include the optional definition string (=def), the preprocessor defines
the macro as value 1. Similar to the C compiler, you can use the -D switch
to define an assembly language constant macro.

Some examples of this switch are:

-Dinput // defines input as 1

–Dsamples=10 // defines samples as 10

–Dpoint="Start" // defines point as “Start”

–D_LANGUAGE_ASM=1 // defines assembly language as 1

-h[elp]

The -help switch directs the preprocessor to send to standard output the
list of command-line switches with a syntax summary.

-i

The -i (less includes) switch may be used with the -M or -MM switches to
direct the preprocessor to not output dependencies on any system files.
System files are any files that are brought in using #include < >. Files
included using #include " " (double quotes) are included in the depen-
dency list.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-41

Preprocessor Command-Line Reference
-i|I directory

The -idirectory or -Idirectory switch directs the preprocessor to
append the specified directory (or a list of directories separated by semico-
lon) to the search path for included header files (see on page 2-26).

 Note that no space is allowed between -i or -I and the path name.

The preprocessor searches for included files delimited by “ ” in this order:

1. The source directory, that is the directory in which the original
source file resides.

2. The directories in the search path supplied by the -I switch. If
more than one directory is supplied by the -I switch, they are
searched in the order that they appear on the command line.

3. The system directory, that is the ...\include subdirectory of the
VisualDSP++ installation directory.

Current directory is the directory where the source file lives, not
the directory of the assembler program. Usage of full path names
for the -I switch on the command line (omitting the disk parti-
tion) is recommended.

The preprocessor searches for included files delimited by < > in this order:

1. The directories in the search path supplied by the -I switch (sub-
ject to modification by the -I- switch, as shown in “Using the -I-
Switch”. If more than one directory is supplied by the -I switch,
the directories are searched in the order that they appear on the
command line.

2. The system directory, that is the . . .\include subdirectory of the
VisualDSP++ installation directory.
2-42 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
Using the -I- Switch

The -I- switch indicates where to start searching for include files delim-
ited by < >, sometimes called system include files. If there are several
directories in the search path, the -I- switch indicates where in the path
the search for system include files begins. For example,

pp -Idir1 -Idir2 -I- -Idir3 -Idir4 myfile.asm

When searching for

#include "inc1.h"

the preprocessor searches in the source directory, then dir1, dir2, dir3,
and dir4 in that order. When searching for

#include <inc2.h>

the preprocessor searches for the file in dir3 and then dir4. The -I-
switch marks the point where the system search path starts.

-M

The -M switch directs the preprocessor to output a rule (generate make
rule only), which is suitable for the make utility, describing the dependen-
cies of the source file. The output, a make dependencies list, is written to
stdout in the standard command-line format.

“target_file”: “dependency_file.ext”

where

dependency_file.ext may be an assembly source file or a header
file included with the #include preprocessor command.

When the “-o filename” switch is used with -M, the -o option is ignored.
To specify an alternate target name for the make dependencies, use the
“-Mt filename” option. To direct the make dependencies to a file, use the
“-Mo filename” option.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-43

Preprocessor Command-Line Reference
-MM

The -MM switch directs the preprocessor to output a rule (generate make
rule and preprocess), which is suitable for the make utility, describing the
dependencies of the source file. The output, a make dependencies list, is
written to stdout in the standard command-line format.

The only difference between -MM and -M actions is that the preprocessing
continues with -MM. See “-M” for more information.

-Mo filename

The -Mo switch specifies the name of the make dependencies file (output
make rule) that the preprocessor generates when using the -M or -MM
switch. If the named file is not in the current directory, you must provide
the path name in the double quotation marks (“ ”). The the “-o filename”
switch overrides default of make dependencies to stdout.

-Mt filename

The -Mt switch specifies the name of the target file (output make rule for
the named source) for which the preprocessor generates the make rule
using the -M or -MM switch. The -M fileneme switch overrides the default
base.is. See “-M” for more information.

-o filename

The -o switch directs the preprocessor to use (output) the specified file-
name argument for the preprocessed assembly file. The preprocessor directs
the output to stdout when no -o option is specified.
2-44 VisualDSP++ 4.0 Assembler and Preprocessor Manual

Preprocessor
-stringize

The -stringize switch enables the preprocessor stringization operator. By
default, this switch is off. When set, this switch turns on the preprocessor
stringization functionality (see “# (Argument)” on page 2-32) which, by
default, is turned off to avoid possible undesired stringization.

For example, there is a conflict between the stringization operator and the
assembler’s boolean constant format in the following macro definition:

#define bool_const b#00000001

-tokenize-dot

The -tokenize-dot switch parses identifiers using C language rules
instead of assembler rules, without the need of other C semantics (see
“-cstring” on page 2-39 for more information).

When the -tokenize-dot switch is used, the preprocessor treats “.” as an
operator and not as part of an identifier. If the -notokenize-dot switch is
used, it returns the preprocessor to the default behavior. The only benefit
to the negative version is that if it appears on the command line after the
-cstring switch, it can turn off the behavior of “.” without affecting other
C semantics.

-Uname

The -Uname switch directs the preprocessor to undefine a macro on the
command line. The “undefine macro” switch applies only to macros that
were defined on the same command line. The functionality provides a
way for users to undefine feature macros specified by the compiler.

-v[erbose]

The -v[erbose] switch directs the preprocessor to output the version of
the preprocessor program and information for each phase of the
preprocessing.
VisualDSP++ 4.0 Assembler and Preprocessor Manual 2-45

Preprocessor Command-Line Reference
-version

The -version switch directs the preprocessor to display the version infor-
mation for the preprocessor program.

The -version switch on the assembler command line provides ver-
sion information for both the assembler and preprocessor. The
-version option on the preprocessor command line provides pre-
processor version information only.

-w

The -w (disable all warnings) switch directs the assembler not to display
warning messages generated during assembly. Note that -w has the same
effect as the -nowarn switch.

-Wnumber

The -Wnumber (warning suppression) switch selectively disables warnings
specified by one or more message numbers. For example, -W1092 disables
warning message ea1092.

-warn

The -warn switch generates (prints) warning messages (this switch is on by
default). The-nowarn switch option negates this action.
2-46 VisualDSP++ 4.0 Assembler and Preprocessor Manual

VisualDSP++ 4.0 Assembler and Preprocessor Manual I-1

I INDEX

Symbols
? preprocessor operator, 2-34

Numerics
1.0r fract, 1-53
1.15 fract, 1-51, 1-52
1.31 fract, 1-52
1.31 fracts, 1-70
32-bit initialization

used with 1.31 fracts, 1-70

A
absolute address, 1-58
__AD6532__ macro, 2-12
address alignment, 1-65
ADDRESS () assembler operator, 1-48
ADI macro, 2-9
__ADSP21000__ macro, 2-10
__ADSP21020__ macro, 2-10
__ADSP21060__ macro, 2-10
__ADSP21061__ macro, 2-10
__ADSP21062__ macro, 2-10
__ADSP21065L__ macro, 2-10
__ADSP2106x__ macro, 2-10
__ADSP21160__ macro, 2-10
__ADSP21161__ macro, 2-10
__ADSP2116x__ macro, 2-10
__ADSP21261__ macro, 2-10
__ADSP21262__ macro, 2-11
__ADSP21266__ macro, 2-11

__ADSP21267__ macro, 2-11
__ADSP21363__ macro, 2-11
__ADSP21364__ macro, 2-11
__ADSP21365__ macro, 2-11
__ADSP21367__ macro, 2-11
__ADSP21368__ macro, 2-11
__ADSP21369__ macro, 2-11
__ADSPBF531__ macro, 2-12
__ADSPBF532__ macro, 2-12
__ADSPBF533__ macro, 2-12
__ADSPBF535__ macro, 2-12
__ADSPBF536__ macro, 2-12
__ADSPBF537__ macro, 2-12
__ADSPBF538__ macro, 2-12
__ADSPBF539__ macro, 2-12
__ADSPBF561__ macro, 2-12
__ADSPBF566__ macro, 2-12
__ADSPBLACKFIN macro, 2-12
__ADSPTS101__ macro, 2-11
__ADSPTS201__ macro, 2-11
__ADSPTS202__ macro, 2-11
__ADSPTS203__ macro, 2-11
__ADSPTS__ macro, 2-11
.ALIGN (address alignment) assembler

directive, 1-65
-align-branch-lines assembler switch, 1-119
.ALIGN_CODE (code address alignment)

assembler directive, 1-67
aligning branch instructions, 1-119
archiver

object file input to, 1-4

INDEX

I-2 VisualDSP++ 4.0 Assembler and Preprocessor Manual

arithmetic
fractional, 1-53
mixed fractional, 1-53

ASCII
string initialization, 1-71, 1-110

assembler
Blackfin feature macros, 1-27
command-line switch

-align-branch-lines, 1-119
-char-size-32, 1-119
-char-size-8, 1-119
-char-size-any, 1-120
-D (define macro), 1-121
-D (defines) option, 1-122
-default-branch-np, 1-120
-default-branch-p, 1-120
-double-size-32, 1-121
-double-size-64, 1-121
-double-size-any, 1-122
-flags-compiler, 1-122
-flags-pp, 1-124
-g (generate debug info), 1-124
-h (help), 1-124
-i (include directory path), 1-124
-I option, 1-123
-li (listing with include) switch, 1-126
-l (listing file) switch, 1-125
-micaswarn, 1-127
-M (make rule only), 1-126
-MM (generate make rule and assem-

ble), 1-126
-Mo (output make rule), 1-127
-Mt (output make rule for named ob-

ject), 1-127
-no-source-dependency, 1-127
-o (output), 1-128
-pp (proceed with preprocessing),

1-128
-proc processor, 1-128
-save-temps (save intermediate files),

1-129
-si-revision version (silicon revision),

1-129
-sp (skip preprocessing), 1-130
-stallcheck, 1-130
-version (display version), 1-130
-v (verbose), 1-130
-wnumber (warning suppression),

1-131
-w (skip warning messages), 1-131

command-line syntax, 1-114
directive syntax, 1-6, 1-61
expressions, constant and address, 1-46
file extensions, 1-115
instruction set, 1-6
keywords, 1-33, 1-37, 1-42
numeric bases, 1-51
operators, 1-47
predefined macros, 1-25, 1-26, 1-27
program content, 1-6
running from command line, 1-114
run-time environment, 1-2
SHARC feature macros, 1-25
source files

(.ASM), 1-4
special operators, 1-48
symbols, 1-44
TigerSHARC feature macros, 1-26

assembler directives
.ALIGN, 1-65
.ALIGN_CODE, 1-67
.BYTE/.BYTE2/.BYTE4, 1-69
conditional, 1-54
.EXTERN, 1-72
.EXTERN STRUCT, 1-73
.FILE (override filename), 1-75
.GLOBAL, 1-76
.IMPORT, 1-78
.INC/BINARY, 1-80
.LEFTMARGIN, 1-81

VisualDSP++ 4.0 Assembler and Preprocessor Manual I-3

INDEX

.LIST, 1-82

.LIST_DATA, 1-83

.LIST_DATFILE, 1-84

.LIST_DEFTAB, 1-85

.LIST_LOCTAB, 1-86

.LIST_WRAPDATA, 1-87

.NEWPAGE, 1-88

.NOLIST, 1-82

.NOLIST_DATA, 1-83

.NOLIST_DATFILE, 1-84

.NOLIST_WRAPDATA, 1-87

.PAGELENGTH, 1-89

.PAGEWIDTH, 1-90

.PORT, 1-91

.PRECISION, 1-92

.PREVIOUS, 1-93

.ROUND_MINUS, 1-95

.ROUND_NEAREST, 1-95

.ROUND_PLUS, 1-95

.ROUND_ZERO, 1-95

.SECTION, 1-97

.SEGMENT/.ENDSEG, 1-102

.SEPARATE_MEM_SEGMENTS,
1-102

.STRUCT, 1-103

.TYPE, 1-106

.VAR, 1-107

.WEAK, 1-112
assembly language constant, 2-41

B
backslash character, 2-16
BITPOS() assembler operator, 1-48, 1-49
block initialization section qualifiers, 1-100
branch

instructions, 1-119, 1-120
target buffer, 1-120

branch lines default to NP, 1-120

built-in functions
OFFSETOF(), 1-55, 1-57
SIZEOF(), 1-55, 1-57

.BYTE4/R32 assember directive
32-bit initialization, 1-70

.BYTE/.BYTE2/.BYTE4 assembler
directive, 1-69

C
C and assembly, interfacing, 1-20
C/C++run-time library

initializing, 1-100
CHAR32 section qualifier, 1-97
CHAR8 section qualifier, 1-97
CHARANY section qualifier, 1-97
-char-size-32 assembler switch, 1-119
-char-size-8 assembler switch, 1-119
-char-size-any assembler switch, 1-120
circular buffers

setting, 1-49, 1-50
comma-separated option, 1-124
(concatenate) preprocessor operator,

2-33
concatenate (##) preprocessor operator,

2-33
conditional assembly directives

.ELIF, 1-54

.ELSE, 1-54

.ENDIF, 1-54

.IF, 1-54
constant expression, 1-46
conventions

comment strings, 1-54
file extensions, 1-115
file names, 1-114
numeric formats, 1-51
user-defined symbols, 1-44

-cpredef (C-style definitions) preprocessor
switch, 2-39

INDEX

I-4 VisualDSP++ 4.0 Assembler and Preprocessor Manual

-cs! ("!" comment style) preprocessor
switch, 2-40

-cs/* ("/* */" comment style) preprocessor
switch, 2-40

-cs// ("//" comment style) preprocessor
switch, 2-40

-cs{ ("{}" comment style) preprocessor
switch, 2-40

-csall (all comment styles) preprocessor
switch, 2-41

-cstring (C style) preprocessor switch, 2-39
C structs

in assembler, 1-21
custom processors, 1-129

D
-D__2102x__ macro, 1-25
-D__2106x__ macro, 1-25
-D__2116x__ macro, 1-25
-D__2126x__ macro, 1-25, 1-26
-D__2136x__ macro, 1-26
-D__2636x__ macro, 1-26
-D__ADSP21000__ macro, 1-25
-D__ADSP21020__ macro, 1-25
-D__ADSP2116x__ macro, 1-25
-D__ADSP2126x__ macro, 1-26
-D__ADSPAD6532__ macro, 1-28
-D__ADSPBF531__ macro, 1-27
-D__ADSPBF532__ macro, 1-27
-D__ADSPBF533__ macro, 1-27
-D__ADSPBF535__ macro, 1-27
-D__ADSPBF536__ macro, 1-27
-D__ADSPBF537__ macro, 1-27
-D__ADSPBF538__ macro, 1-27
-D__ADSPBF539__ macro, 1-27
-D__ADSPBF561__ macro, 1-27
-D__ADSPBF566__ macro, 1-28
-D__ADSPBLACKFIN__ macro, 1-27
-D__ADSPTS101__ macro, 1-26
-D__ADSPTS201__ macro, 1-26

-D__ADSPTS202__ macro, 1-26
-D__ADSPTS203__ macro, 1-27
-D__ADSPTS20x__ macro, 1-27
-D__ADSPTS__ macro, 1-26
DATA64, 64-bit word section type, 1-98
__DATE__ macro, 2-10
-D (define macro) assembler switch, 1-121
-D (define macro) preprocessor switch,

2-41
-D (defines) command-line option, see

-flags-compiler switch, 1-122
debugging information), 1-124
default

defines, 1-122
symbol type, 1-106
tab width, 1-85, 1-86

-default-branch-np assembler switch, 1-120
-default-branch-p assembler switch, 1-120
#define (macro) preprocessor command,

2-16
defines options, 1-122
defining

a macro, 2-16
directives

assembler, 1-61
-D_LANGUAGE_ASM macro, 1-25,

1-26, 1-27, 2-10
-D_LANGUAGE_C macro, 1-28, 2-10
DM (data), 40-bit word section type, 1-98
DOUBLE32 section qualifier, 1-97
DOUBLE64 section qualifier, 1-97
DOUBLEANY section qualifier, 1-97
-double-size-32 assembler switch, 1-121
-double-size-64 assembler switch, 1-121
-double-size-any assembler switch, 1-122

E
easm21k assembler diriver, 1-2
easmblkfn assembler diriver, 1-2
easmts assembler diriver, 1-2

VisualDSP++ 4.0 Assembler and Preprocessor Manual I-5

INDEX

ELF.h header file, 1-99
.ELIF conditional assembly directive, 1-54
#elif (else if) preprocessor command, 2-19
#else (alternate instruction) preprocessor

command, 2-20
.ELSE conditional assembly directive, 1-54
.ENDIF conditional assembly directive,

1-54
#endif (termination) preprocessor

command, 2-21
end labels

missing, 1-131
.ENDSEG assembler directive, 1-102
#error (error message) preprocessor

command, 2-22
expressions

address, 1-46
constant, 1-46

.EXTERN (global label) assembler
directive, 1-72

.EXTERN STRUCT assembler directive,
1-73

F
feature assembler macros

-D__ADSP21000__, 1-25
-D__ADSP21020__, 1-25
-D__ADSP21060__, 1-25
-D__ADSP21061__, 1-25
-D__ADSP21062__, 1-25
-D__ADSP21065L__, 1-25
-D__ADSP21160__, 1-25
-D__ADSP21161__, 1-25
-D__ADSP21261__, 1-25
-D__ADSP21262__, 1-25
-D__ADSP21266__, 1-26
-D__ADSP21267__, 1-26
-D__ADSP21363__, 1-26
-D__ADSP21364__, 1-26
-D__ADSP21365__, 1-26

-D__ADSP21366__, 1-26
-D__ADSP21367__, 1-26
-D__ADSP21368__, 1-26
-D__ADSP21369__, 1-26
-D__ADSPAD6532__, 1-28
-D__ADSPBF531__, 1-27
-D__ADSPBF532__, 1-27
-D__ADSPBF533__, 1-27
-D__ADSPBF535__, 1-27
-D__ADSPBF536__, 1-27
-D__ADSPBF537__, 1-27
-D__ADSPBF538__, 1-27
-D__ADSPBF539__, 1-27
-D__ADSPBF561__, 1-27
-D__ADSPBF566__, 1-28
-D__ADSPBLACKFIN__, 1-27
-D__ADSPTS__, 1-26
-D__ADSPTS101__, 1-26
-D__ADSPTS201__, 1-26
-D__ADSPTS202__, 1-26
-D__ADSPTS203__, 1-27
-D__ADSPTS20x__, 1-27
-D_LANGUAGE_ASM, 1-25, 1-26,

1-27
feature preprocessor macros

__AD6532__, 2-12
__ADSP21000__, 2-10
__ADSP21020__, 2-10
__ADSP21060__, 2-10
__ADSP21061__, 2-10
__ADSP21062__, 2-10
__ADSP21065L__, 2-10
__ADSP2106x__, 2-10
__ADSP21160__, 2-10
__ADSP21161__, 2-10
__ADSP2116x__, 2-10
__ADSP21261__, 2-10
__ADSP21262__, 2-11
__ADSP21266__, 2-11
__ADSP21267__, 2-11

INDEX

I-6 VisualDSP++ 4.0 Assembler and Preprocessor Manual

__ADSP21363__, 2-11
__ADSP21364__, 2-11
__ADSP21365__, 2-11
__ADSP21367__, 2-11
__ADSP21368__, 2-11
__ADSP21369__, 2-11
__ADSPBF531__, 2-12
__ADSPBF532__, 2-12
__ADSPBF533__, 2-12
__ADSPBF535__, 2-12
__ADSPBF536__, 2-12
__ADSPBF537__, 2-12
__ADSPBF538__, 2-12
__ADSPBF539__, 2-12
__ADSPBF561__, 2-12
__ADSPBF566__, 2-12
__ADSPBLACKFIN__, 2-12
__ADSPTS__, 2-11
__ADSPTS101__, 2-11
__ADSPTS201__, 2-11
__ADSPTS202__, 2-11
__ADSPTS203__, 2-11
-D_LANGUAGE_ASM, 2-10
-D_LANGUAGE_C, 2-10

file extensions
.ASM (assembly source), 1-3
.DAT (data file), 1-3
.DLB (library file), 1-4
.DOJ (object file), 1-3
.H (header file), 1-3
.IS (preprocessed assembly file), 1-128

file formats
ELF (Executable and Linkable Format),

1-3
__FILE__ macro, 2-9
.FILE (override filename) assembler

directive, 1-75
files

extensions, 1-115
naming conventions, 1-114

-flags-compiler assembler switch, 1-122
-flags-pp assembler switch, 1-124
floating-point

precision, 1-92
rounding, 1-95

formats
numeric, 1-51

fractional
arithmetic, 1-53
constants, 1-53

fracts
1.0r special case, 1-53
1.15 format, 1-52
1.31 format, 1-52
constants, 1-51
mixed type arithmetic, 1-53
signed values, 1-51

G
generating

unique labels, 2-34
global

substitutions, 2-4
symbols, 1-76

.GLOBAL (global symbol) assembler
directive, 1-76

H
header files

system, 2-4
tokens, 2-5
user, 2-5

-h (help) assembler switch, 1-124, 2-41
HI () assembler operator, 1-48

I
-I assembler switch, see -flags-compiler

switch, 1-123

VisualDSP++ 4.0 Assembler and Preprocessor Manual I-7

INDEX

.IF conditional assembly directive, 1-54
#ifdef (test if defined) preprocessor

command, 2-24
#ifndef (test if not defined) preprocessor

command, 2-25
#if (test if true) preprocessor command,

2-23
-i (include directory path) assembler switch,

1-124
-i (include directory) preprocessor switch,

2-42
-I (include search-path)) assembler options,

1-123
-i (less includes) preprocessor switch, 2-41
.IMPORT assembler directive, 1-78
.IMPORT header files, 1-78
IMPORT headers

make dependencies, 1-28
.INC/BINARY assembler directive, 1-80
include files

system header files, 2-4
user header files, 2-4

#include (insert a file) preprocessor
command, 2-26

include path search, 2-6
#include preprocessor command, 2-4
initialization section qualifiers, 1-100
INPUT_SECTION_ALIGN() linker

command, 1-65
input section alignment instruction, 1-65
instruction set, 1-6
intermediate source file (.IS), 1-5
-I- (search system include files)

preprocessor switch, 2-43
-I- (system include files) preprocessor

switch, 2-43

K
keywords

assembler, 1-33

L
__LASTSUFFIX__ macro, 2-9, 2-35
.LEFTMARGIN assembler directive, 1-81
legacy directives

.PORT, 1-91

.SEGMENT/.ENDSEG, 1-102
LENGTH () assembler operator, 1-48
-li (listing with include) assembler switch,

1-126
__LINE__ macro, 2-9
#line (output line number) preprocessor

command, 2-28
linker

object file input to, 1-4
Linker Description File, 1-7
.LIST assembler directive, 1-82
.LIST_DATA assembler directive, 1-83
.LIST_DATFILE assembler directive, 1-84
.LIST_DEFTAB assembler directive, 1-85
LIST_DEFTAB assembler directive, 1-85
listing files

address, 1-30
assembly process information, 1-4
assembly source code, 1-30
C data structure information, 1-4
data initialization, 1-84
data opcodes, 1-83
large opcodes, 1-87
line number, 1-30
.LST extension, 1-4, 1-30
named, 1-125
opcode, 1-30
producing, 1-4

.LIST_LOCTAB assembler directive, 1-86
LIST_LOCTAB assembler directive, 1-86
.LIST_WRAPDATA assembler directive,

1-87
-l (listing file) assembler switch, 1-125
LO () assembler operator, 1-48
local tab width, 1-85, 1-86

INDEX

I-8 VisualDSP++ 4.0 Assembler and Preprocessor Manual

M
macro argument

converting into string constant, 2-32
macro expansion

tokens, 2-5
macros

assembler feature, 1-25
Blackfin feature assembler, 1-27
defining with variable length argument

list, 2-17
feature assembler, 1-26
predefined preprocessor, 2-9
preprocessor feature, 2-9
TigerSHARC assembler feature, 1-26
writing, 2-6

macroSymbol, 2-16
make dependencies, 1-78
-meminit linker switch, 1-100
memory

initializer, 1-100
types, 1-7

memory sections
declaring, 1-97

memory type
PM (code and data), 1-98
RAM (random access memory), 1-98

-micaswarn assembler switch, 1-127
-M (make rule only) assembler switch,

1-126
-M (make rule only) preprocessor switch,

2-43
-MM (make rule and assemble) assembler

switch, 1-126
-MM (make rule and assemble)

preprocessor switch, 2-43, 2-44
-Mo (output make rule) assembler switch,

1-127
-Mo (output make rule) preprocessor

switch, 2-44

-Mt (output make rule for named file)
assembler switch, 1-127

-Mt preprocessor switch, 2-44
multi-issue conflict warnings, 1-127

N
N boundary alignment, 1-110
nested struct references, 1-59
.NEWPAGE assembler directive, 1-88
NO_INIT

memory section, 1-101
section qualifier, 1-100

.NOLIST assembler directive, 1-82

.NOLIST_DATA assembler directive,
1-83

.NOLIST_DATFILE assembler directive,
1-84

.NOLIST_WRAPDATA assembler
directive, 1-87

-no-source-dependency assembler switch,
1-127

-nowarn preprocessor switch, 2-46
numeric formats, 1-51

O
object files

.DOJ extension, 1-4
producing, 1-4

OFFSETOF() built-in function, 1-57
-o (output) assembler switch, 1-128
-o (output) preprocessor switch, 2-44
opcodes

large, 1-87

P
.PAGELENGTH assembler directive, 1-89
.PAGEWIDTH assembly directive, 1-90
PM, 48-bit word section type, 1-98

VisualDSP++ 4.0 Assembler and Preprocessor Manual I-9

INDEX

.PORT (declare port) assembler legacy
directive, 1-91

-pp (proceed with preprocessing) assembler
switch, 1-128

#pragma preprocessor command, 2-29
.PRECISION assembler directive, 1-92
predefined preprocessor macros

ADI, 2-9
__DATE__, 2-10
__FILE__, 2-9
__LASTSUFFIX__, 2-9
__LINE__, 2-9
__STDC__, 2-9
__TIME__, 2-10

preprocessed
assembly files, 2-14
source file, 2-14

preprocessing
a program, 1-23

preprocessor
command-line switches, 2-37

-cs!, 2-40
-cs/* ("/* */" comment style), 2-40
-cs// ("//" comment style), 2-40
-cs{ ("{}" comment style), 2-40
-csall (all comment styles), 2-41
-cstring, 2-39
-cstring (C style), 2-39
-D (define macro), 2-41
-h (help), 2-41
-i (include path), 2-42
-i (less includes), 2-41
-I- (search system include files), 2-43
-M (make rule only), 2-43
-MM (make rule and assemble), 2-44
-Mo (output make rule), 2-44
-Mt (output make rule for named file),

2-44
-notokenize-dot, 2-45
-nowarn, 2-46

-o (output), 2-44
-stringize, 2-45
-tokenize-dot, 2-45
-Uname, 2-45
-version (display version), 2-46
-v (verbose), 2-45
-warn (print warnings), 2-46
-Wnumber (warning suppression),

2-46
-w (skip warning messages), 2-46

command-line syntax, 2-36
commands, 1-7

list of, 2-14
command syntax, 2-3, 2-14
compiler, 2-2
feature macros, 2-9
global substitutions, 2-4
guide, 2-2
option settings, 2-13
output file (.IS extenstion), 1-5
overview, 2-1
predefined macros, 2-9
running from command line, 2-36
system header file, 2-26
user header file, 2-26

preprocessor commands, 2-14
#define, 2-16
#elif, 2-19
#else, 2-20
#endif, 2-21
#error, 2-22
#if, 2-23
#ifdef, 2-24
#ifndef, 2-25
#include, 2-26
#line (counter), 2-28
#pragma, 2-29
#undef, 2-30
#warning, 2-31

... preprocessor operator, 2-17

INDEX

I-10 VisualDSP++ 4.0 Assembler and Preprocessor Manual

preprocessor operators
? (generate unique label), 2-34
(concatenate), 2-33
(stringization), 2-32

.PREVIOUS assembler directive, 1-93
-proc (target processor) assembler switch,

1-128
programs

assembling, 1-4
content, 1-6
listing files, 1-30
preprocessing, 1-23
structure, 1-7
writing assembly, 1-3

project settings
assembler, 1-133
preprocessor, 1-23, 2-13

R
R32 qualifier, 1-52
relational

expressions, 1-55
operators, 1-47

RESOLVE() command (in LDF), 1-107
rounding modes, 1-95
.ROUND_MINUS (rounding mode)

assembler directive, 1-95
.ROUND_NEAREST (rounding mode)

assembler directive, 1-95
.ROUND_PLUS (rounding mode)

assembler directive, 1-95
.ROUND_ZERO (rounding mode)

assembler directive, 1-95
RUNTIME_INIT

section qualifier, 1-100

S
-save-temps (save intermediate files)

assembler switch, 1-129

searching
system include files, 2-43

section
name symbol, 1-98
qualifiers, 1-97
type identifier, 1-99
type qualifier, 1-98

.SECTION assembler directive
initialization qualifiers, 1-100

section qualifier
DM (data memory), 1-98
PM (code and data), 1-98
RAM (random access memory), 1-98

.SECTION (start or embed a section)
assembler directive, 1-97

sectionTypes identifier, 1-99
.SEGMENT (legacy directive) assembler

directive, 1-102
.SEPARATE_MEM_SEGMENTS

assembler directive, 1-102
settings

assembler options, 1-133
from command line, 1-113
from VisualDSP++ IDDE, 1-133

default tab width, 1-85
local tab width, 1-86
preprocessor options

from command line, 2-13
from VisualDSP++ IDDE, 2-13
through build tools, 2-13

SHARC processors
SECTION type keyword, 1-98

SHF_ALLOC flag, 1-101
SHF_INIT flag, 1-101
SHT_PROGBITS

identifier, 1-99
memory section, 1-101

__SILICON_REVISION__ macro, 1-130
-si-revision (silicon revision) assembler

switch, 1-129

INDEX

I-11 VisualDSP++ 4.0 Assembler and Preprocessor Manual

SIZEOF() built-in function, 1-57
source files

(.ASM), 1-4
special characters

dot, 1-44
special operators

assembler, 1-48
-sp (skip preprocessing) assembler switch,

1-130
-stallcheck assembler switch, 1-130
stall information, 1-130
__STDC__ macro, 2-9
string initialization, 1-71, 1-110
stringization operator, 2-32, 2-45
(stringization) preprocessor operator,

2-32
-stringize (double quotes) preprocessor

switch, 2-45
struct

layout, 1-78, 1-103
member initializers, 1-103
variable, 1-103

struct references, 1-58
nested, 1-58

.STRUCT (struct variable) assembler
directive, 1-103

STT_OBJECT symbol type, 1-106
STT_* symbol type, 1-106
switches (see assembler command-line

switches)
switches (see preprocessor command-line

switches)
symbol

assembler operator, 1-48
conventions, 1-44
types, 1-106

symbolic expressions, 1-46
symbols (see assembler symbols)

syntax
assembler command line, 1-114
assembler directives, 1-61
constants, 1-46
instruction set, 1-6
macro, 2-6
preprocessor command, 2-14

system
header files, 2-4
include files, searching, 2-43

T
tab

characters, 1-85
characters in source file, 1-86

__TIME__ macro, 2-10
-tokenize-dot (identifier parsing)

preprocessor switch, 2-45
tokens

macro expansion, 2-5
trailing zero character, 1-71
.TYPE (change default type) assembler

directive, 1-106

U
-Uname preprocessor switch, 2-45
#undef (undefine) preprocessor command,

2-30
unique labels, 2-34
user header files, 2-4

V
-v, -verbose assembler switch, 1-130
__VA_ARGS__ identifier, 2-18
.VAR and .VAR/INIT24 (declare variable)

assembler directives, 1-69
.VAR (data variable) assembler directive,

1-107

INDEX

I-12 VisualDSP++ 4.0 Assembler and Preprocessor Manual

variable length argument list, 2-17
-version (display version) assembler switch,

1-130
-version (display version) preprocessor

switch, 2-46
VisualDSP++

assembler settings, 1-133
Assemble tab, 1-30, 1-133, 1-136, 2-13
assembling from, 1-3
preprocessor settings, 2-13
Project Options dialog box, 1-30, 1-32,

1-133, 1-136, 2-13
setting assembler options, 1-30, 1-133,

1-136
setting preprocessor options, 2-13

-v (verbose) preprocessor switch, 2-45

W
WARNING ea1121

missing end labels, 1-131
warnings, 1-127

printing, 2-46
warning suppression, 2-46

#warning (warning message) preprocessor
command, 2-31

-warn (print warnings) preprocessor switch,
2-46

.WEAK assembler directive, 1-112
weak symbol binding, 1-112
-wnumber (warning suppression) assembler

switch, 1-131
-Wnumber (warning suppression)

preprocessor switch, 2-46
wrapping

opcode listings, 1-87
writing

assembly programs, 1-3
-w (skip warning messages) assembler

switch, 1-131
-w (skip warning messages) preprocessor

switch, 2-46

Z
ZERO_INIT

memory section, 1-101
section qualifier, 1-100

INDEX

I-13 VisualDSP++ 4.0 Assembler and Preprocessor Manual

INDEX

I-14 VisualDSP++ 4.0 Assembler and Preprocessor Manual

VisualDSP++ 4.0 Assembler and Preprocessor Manual I-15

INDEX

I-16 VisualDSP++ 4.0 Assembler and Preprocessor Manual

	Contents
	Preface
	Purpose
	Intended Audience
	Manual Contents
	What’s New in this Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	Processor Product Information
	Related Documents
	Online Technical Documentation
	Accessing Documentation From VisualDSP++
	Accessing Documentation From Windows
	Accessing Documentation From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Tools Manuals
	Processor Manuals
	Data Sheets

	Notation Conventions

	1 Assembler
	Assembler Guide
	Assembler Overview
	Writing Assembly Programs
	Program Content
	Program Structure
	Table 1-1. Suggested Input Section Names for a SHARC LDF�
	Table 1-2. Suggested Input Section Names for a TigerSHARC LDF�
	Table 1-3. Suggested Input Section Names for a Blackfin LDF�

	Program Interfacing Requirements

	Using Assembler Support for C Structs
	Preprocessing a Program
	Using Assembler Feature Macros
	Table 1-4. Feature Macros for SHARC Processors (Cont’d)
	Table 1-5. Feature Macros for TigerSHARC Processors (Cont’d)
	Table 1-6. Feature Macros for Blackfin Processors (Cont’d)

	Make Dependencies
	Reading a Listing File
	Statistical Profiling for Assembly Functions

	Assembler Syntax Reference
	Assembler Keywords and Symbols
	Table 1-7. SHARC Processor Assembler Keywords (Cont’d)
	Table 1-8. TigerSHARC Processor Assembler Keywords (Cont’d)
	Table 1-9. Blackfin Processor Assembler Keywords (Cont’d)

	Assembler Expressions
	Assembler Operators
	Table 1-10. Operator Precedence�
	Table 1-11. Special Assembler Operators�

	Numeric Formats
	Table 1-12. Numeric Formats�
	Fractional Type Support

	Comment Conventions
	Table 1-13. Comment Conventions

	Conditional Assembly Directives
	Table 1-14. Relational Operators for Conditional Assembly �

	C Struct Support in Assembly Built-In Functions
	OFFSETOF() Built-In Function
	SIZEOF() Built-In Function

	Struct References
	Assembler Directives
	Table 1-15. Assembler Directive Summary (Cont’d)
	.ALIGN, Specify an Address Alignment
	.ALIGN_CODE, Specify an Address Alignment
	.BYTE, Declare a Byte Data Variable or Buffer
	.EXTERN, Refer to a Globally Available Symbol
	.EXTERN STRUCT, Refer to a Struct Defined Elsewhere
	.FILE, Override the Name of a Source File
	.GLOBAL, Make a Symbol Globally Available
	.IMPORT, Provide Structure Layout Information
	.INC/BINARY, Include Contents of a File
	.LEFTMARGIN, Set the Margin Width of a Listing File
	.LIST/.NOLIST, Listing Source Lines and Opcodes
	.LIST_DATA/.NOLIST_DATA, Listing Data Opcodes
	.LIST_DATFILE/.NOLIST_DATFILE, Listing Data Initialization Files
	.LIST_DEFTAB, Set the Default Tab Width for Listings
	.LIST_LOCTAB, Set the Local Tab Width for Listings
	.LIST_WRAPDATA/.NOLIST_WRAPDATA
	.NEWPAGE, Insert a Page Break in a Listing File
	.PAGELENGTH, Set the Page Length of a Listing File
	.PAGEWIDTH, Set the Page Width of a Listing File
	.PORT, Legacy Directive
	.PRECISION, Select Floating-Point Precision
	.PREVIOUS, Revert to the Previously Defined Section
	.ROUND_, Select Floating-Point Rounding
	�����*/
	.SECTION, Declare a Memory Section
	.SEGMENT & .ENDSEG, Legacy Directives
	.SEPARATE_MEM_SEGMENTS
	.STRUCT, Create a Struct Variable
	.TYPE, Change Default Symbol Type
	.VAR, Declare a Data Variable or Buffer
	.WEAK, Support a Weak Symbol Definition and Reference

	Assembler Command-Line Reference
	Running the Assembler
	Table 1-16. File Name Extension Conventions

	Assembler Command-Line Switch Descriptions
	Table 1-17. Assembler Command-Line Switch Summary (Cont’d)
	-align-branch-lines
	-char-size-8
	-char-size-32
	-char-size-any
	-default-branch-np
	-default-branch-p
	-Dmacro[=definition]
	-double-size-32
	-double-size-64
	-double-size-any
	-flags-compiler
	-flags-pp -opt1 [,-opt2...]
	-g
	�h[elp]
	-i|I directory
	-l filename
	-li filename
	-M
	-MM
	-Mo filename
	-Mt filename
	-micaswarn
	-no-source-dependency
	-o filename
	-pp
	-proc processor
	-save-temps
	-si-revision version
	-sp
	-stallcheck
	�v[erbose]
	-version
	-w
	-Wnumber[,number]

	Specifying Assembler Options in VisualDSP++

	2 Preprocessor
	Preprocessor Guide
	Writing Preprocessor Commands
	Header Files and #include Command
	Writing Macros
	Using Predefined Preprocessor Macros
	Table 2-1. Common Predefined Preprocessor Macros (Cont’d)
	Table 2-2. SHARC Feature Preprocessor Macros (Cont’d)
	Table 2-3. TigerSHARC Feature Preprocessor Macros
	Table 2-4. Blackfin Feature Preprocessor Macros�

	Specifying Preprocessor Options

	Preprocessor Command Reference
	Preprocessor Commands and Operators
	Table 2-5. Preprocessor Command Summary
	Table 2-6. Preprocessor Operator Summary
	#define
	#elif
	#else
	#endif
	#error
	#if
	#ifdef
	#ifndef
	#include
	#line
	#pragma
	#undef
	#warning
	# (Argument)
	## (Concatenate)
	? (Generate a Unique Label)

	Preprocessor Command-Line Reference
	Running the Preprocessor
	Preprocessor Command-Line Switches
	Table 2-7. Preprocessor Command-Line Switch Summary (Cont’d)
	-cstring
	-cs!
	-cs/*
	-cs//
	-cs{
	-csall
	-Dmacro[=def]
	�h[elp]
	-i
	-i|I directory
	-M
	-MM
	-Mo filename
	-Mt filename
	-o filename
	-stringize
	-tokenize-dot
	-Uname
	�v[erbose]
	-version
	-w
	-Wnumber
	-warn

	I Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

