

# Selecting Agilent Columns for Gel Permeation Chromatography

# **Technical Overview**

### Introduction

Agilent MIXED gel technology for gel permeation chromatography and size exclusion chromatography columns has developed rapidly. Individual pore size gels can be blended together to give a column that exhibits a linear calibration spanning a molecular weight range suitable for a particular application.

For a given particle size of packing material, selectivity in GPC/SEC separations is controlled by the slope of the calibration curve in the molecular weight region of interest. Calibration slope is affected by column length and the pore size distribution of the packing material.

Figure 1 illustrates the effect of column length on the resolution of polystyrene standards using a MIXED gel packing. Multiples of MIXED gel columns are normally required to provide sufficient resolution (Figure 1b). Compared to a MIXED gel packing, an individual pore size gel provides resolution over a limited molecular weight range, restricted to a region in the calibration curve that is linear, and has a relatively shallow slope (Figure 1a).







#### **Conditions for Figure 1**

| Calibrants | Agilent EasiCal                                                                                                            |
|------------|----------------------------------------------------------------------------------------------------------------------------|
| Columns    | 1 × Agilent PLgel 10 $\mu m$ MIXED-B, 7.5 × 300 mm (p/n PL1110-6100) or 3 × Agilent PLgel 10 $\mu m$ MIXED-B, 7.5 × 300 mm |
| Eluent     | THF (stabilized)                                                                                                           |
| Flow rate  | 1.0 mL/min                                                                                                                 |
| Detector   | VWD, 254 nm                                                                                                                |
| System     | Agilent 1260 Infinity GPC-SEC Analysis System                                                                              |
|            |                                                                                                                            |

Figures 2a and 2b show a comparison of the calibration characteristics for a MIXED gel and an individual pore size gel. In the case of the Agilent PLgel 5  $\mu$ m MIXED-C packing, the linear resolving range is 200 to 2,000,000, whereas the most useful region in the PLgel 10<sup>4</sup>Å gel is 10,000 to 500,000. However, within the

more limited range of the PLgel 10<sup>4</sup>Å packing, the calibration curve is shallow and, as shown in Figures 3a and 3b, within this molecular weight region, resolution will be superior.



Figure 2a . Comparing pore size distribution for Agilent PLgel 5 µm MIXED-C. Figure 2b. Comparing an individual pore size PLgel 5 µm 10<sup>4</sup>Å column.

#### **Conditions for Figures 2a and 2b**

| (a)       |                                                                        |
|-----------|------------------------------------------------------------------------|
| Column    | Agilent PLgel 5 $\mu m$ MIXED-C, 7.5 $\times$ 300 mm (p/n PL1110-6500) |
| Eluent    | THF                                                                    |
| Flow rate | 1.0 mL/min                                                             |
| (b)       |                                                                        |
| Column    | Agilent PLgel 5 μm 10 <sup>4</sup> Å, 7.5 × 300 mm (p/n PL1110-6540)   |
| Eluent    | THF                                                                    |
| Flow rate | 1.0 mL/min                                                             |

Column selection in GPC depends heavily on the range of applications involved. In the case of the two columns described above, the PLgel 5  $\mu$ m 10<sup>4</sup>Å would certainly be more useful in separating discrete, narrow polydispersity polymers within its optimum molecular weight range, styrenic block copolymers, for example. However, in the case of high molecular weight additives, the MIXED gel approach is generally most favorable. MIXED gel columns, particularly the PLgel 10  $\mu$ m MIXED-B, are also very useful as scouting columns used to screen unknown samples prior to making a more appropriate column selection.



Figure 3b. Separation of an individual pore size PLgel 5 µm 10<sup>4</sup>Å column.

#### **Conditions for Figures 3a and 3b**

| Agilent PLgel 5 $\mu m$ MIXED-C, 7.5 $\times$ 300 mm (p/n PL1110-6500)                   |
|------------------------------------------------------------------------------------------|
| THF                                                                                      |
| 1.0 mL/min                                                                               |
|                                                                                          |
| Agilent PLgel 5 $\mu m$ 10 <sup>4</sup> Å, 7.5 $\times$ 300 mm (part number PL1110-6540) |
| THF                                                                                      |
| 1.0 mL/min                                                                               |
| Polystyrene standards                                                                    |
| 1. Mp = 552,500                                                                          |
| 2 Mn - 66 000                                                                            |
| 2. Wp = 00,000                                                                           |
|                                                                                          |

## **GPC/SEC Columns and Calibrants from Agilent**

Agilent offers a comprehensive portfolio of GPC/SEC columns and calibrants for high-performance separations based on molecular size in solution. Agilent delivers leading solutions for characterizing and separating polymers by GPC/SEC, and manufactures all components for accurate polymer analysis.

Look at the Agilent Literature Library on www.agilent.com/chem/gpc-sec for a comprehensive range of application notes and technical overviews to help you get the best from your Agilent GPC/SEC columns and instruments.

#### www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc., 2011 Printed in the USA June 16, 2011 5990-8424EN

