T－1（3 mm）High Intensity LED Lamps

Technical Data

Features

－High Intensity
－Choice of 3 Bright Colors High Efficiency Red Yellow
High Performance Green
－Popular T－1 Diameter Package
－Selected Minimum Intensities
－Narrow Viewing Angle

Package Dimensions

NOTES：
1．ALL DIMENSIONS ARE IN MILLIMETRES（INCHES 2．AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm （0．040＂）DOWN THE LEADS．
－General Purpose Leads
－Reliable and Rugged
－Available on Tape and Reel
－For more information， please refer to Tape and Reel Option Data Sheet

Description

This family of T－1 lamps is specially designed for applica－

HLMP－132x Series
HLMP－142x Series HLMP－152x Series tions requiring higher on－axis intensity than is achievable with a standard lamp．The light generated is focused to a narrow beam to achieve this effect．

Selection Guide

Part Number	Package Description	Color	Luminous Intensity Iv（mcd）＠ 10 mA	
			Min．	Max．
HLMP－1320－G00xx	Untinted， Nondiffused	High Efficiency Red	8.6	－
HLMP－1320 GH0xx			8.6	27.6
HLMP－1321	Tinted， Nondiffused		8.6	－
HLMP－1321－G00xx			8.6	－
HLMP－1321－HI0xx			13.8	44.0
HLMP－1420	Microtinted， Nondiffused	Yellow	9.2	－
HLMP－1420－F00xx			9.2	－
HLMP－1421	Tinted， Nondiffused		9.2	－
HLMP－1421－F00xx			9.2	－
HLMP－1421－FG0xx			9.2	29.4
HLMP－1520	Microtinted， Nondiffused	Green	6.7	－
HLMP－1520－E00xx			6.7	－
HLMP－1521	Tinted， Nondiffused		6.7	－
HLMP－1521－E00xx			6.7	－
HLMP－1521－EF0xx			6.7	21.2

Part Numbering System

HLMP - $1 \mathrm{xxx}-\mathrm{xxxxx}$

Absolute Maximum Ratings at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$

Parameter	Red	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ${ }^{[1]}$	25	20	25	mA
DC Current[2]	30	20	30	mA
Power Dissipation ${ }^{[3]}$	135	85	135	mW
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$)	5	5	5	V
Transient Forward Current ${ }^{4]}$ ($10 \mu \mathrm{sec}$ Pulse)	500	500	500	mA
LED Junction Temperature	110	110	110	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range			-55 to +100	
Lead Soldering Temperature [1.6 mm (0.063 in .) from body]	$260^{\circ} \mathrm{C}$ for 5 seconds			

Notes:

1. See Figure 5 (Red), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.
2. For Red and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Electrical Characteristics at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$

Symbol	Description	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
I_{V}	Luminous Intensity	$\begin{aligned} & 1320 \\ & 1321 \end{aligned}$	$\begin{aligned} & 8.6 \\ & 8.6 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Figure 3)
		$\begin{aligned} & 1420 \\ & 1421 \end{aligned}$	$\begin{aligned} & 9.2 \\ & 9.2 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Figure 8)
		$\begin{aligned} & 1520 \\ & 1521 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 6.7 \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \end{aligned}$		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Figure 3)
$2 \theta^{1 / 2}$	Including Angle Between Half Luminous Intensity Points	All		45		Deg.	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ See Note 1 (Figures 6, 11, 16, 21)
$\lambda_{\text {PEAK }}$	Peak Wavelength	132x		635		nm	Measurement at Peak (Figure 1)
		$\begin{aligned} & 142 \mathrm{X} \\ & 152 \mathrm{X} \end{aligned}$		$\begin{aligned} & 583 \\ & 565 \end{aligned}$			
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth	132 x		40		nm	
		$\begin{aligned} & 142 \mathrm{X} \\ & 152 \mathrm{X} \end{aligned}$		$\begin{aligned} & 36 \\ & 28 \end{aligned}$			
$\lambda_{\text {d }}$	Dominant Wavelength	132x		626		nm	See Note 2 (Figure 1)
		$\begin{aligned} & \hline 142 \mathrm{X} \\ & 152 \mathrm{X} \end{aligned}$		$\begin{aligned} & 585 \\ & 569 \end{aligned}$			
$\tau_{\text {s }}$	Speed of Response	132x		90		ns	
		$\begin{aligned} & 142 \mathrm{X} \\ & 152 \mathrm{X} \end{aligned}$		$\begin{gathered} 90 \\ 500 \end{gathered}$			
C	Capacitance	132 x		11		pF	$\mathrm{V}_{\mathrm{F}}=0 ; \mathrm{f}=1 \mathrm{MHz}$
		$\begin{aligned} & 142 \mathrm{X} \\ & 152 \mathrm{X} \end{aligned}$		$\begin{aligned} & 15 \\ & 18 \end{aligned}$			
$\mathrm{R} \theta_{\text {J-PIN }}$	Thermal Resistance	All		290		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	132x		1.9	2.4	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
		$\begin{aligned} & 142 \mathrm{X} \\ & 152 \mathrm{X} \end{aligned}$		$\begin{aligned} & \hline 2.0 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.7 \end{aligned}$		
V_{R}	Reverse Breakdown Voltage	All	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η_{V}	Luminous Efficacy	132x		145		lumens	See Note 3
		$\begin{aligned} & 142 \mathrm{X} \\ & 152 \mathrm{X} \end{aligned}$		$\begin{aligned} & 500 \\ & 595 \end{aligned}$		Watt	

Notes:

1. $\theta^{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=l_{v} / \eta_{v}$, where l_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

T-1 High Efficiency Red Non-Diffused

V_{F} - FORWARD VOLTAGE - V

Figure 2. Forward Current vs. Forward Voltage Characteristics.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. ($I_{\text {DC }}$ MAX as per MAX Ratings).

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

T-1 Yellow Non-Diffused

Figure 7. Forward Current vs. Forward Voltage Characteristics.

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

Figure 8. Relative Luminous Intensity vs. Forward Current.

Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

T-1 Green Non-Diffused

Figure 12. Forward Current vs. Forward Voltage Characteristics.

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. ($\mathrm{I}_{\text {DCMAX }}$ as per MAX Ratings).

Figure 13. Relative Luminous Intensity vs. Forward Current.

Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

Intensity Bin Limits

Color	Bin	Intensity Range (mcd)	
		Min.	Max.
Red	G	9.7	15.5
	H	15.5	24.8
	I	24.8	39.6
	J	39.6	63.4
	K	63.4	101.5
	L	101.5	162.4
	M	162.4	234.6
	N	234.6	340.0
	O	340.0	540.0
	P	540.0	850.0
	Q	850.0	1200.0
	R	1200.0	1700.0
	S	1700.0	2400.0
	T	2400.0	3400.0
	U	3400.0	4900.0
	V	4900.0	7100.0
	W	7100.0	10200.0
	X	10200.0	14800.0
	Y	14800.0	21400.0
	Z	21400.0	30900.0
Yellow	F	10.3	16.6
	G	16.6	26.5
	H	26.5	42.3
	I	42.3	67.7
	J	67.7	108.2
	K	108.2	173.2
	L	173.2	250.0
	M	250.0	360.0
	N	360.0	510.0
	O	510.0	800.0
	P	800.0	1250.0
	Q	1250.0	1800.0
	R	1800.0	2900.0
	S	2900.0	4700.0
	T	4700.0	7200.0
	U	7200.0	11700.0
	V	11700.0	18000.0
	W	18000.0	27000.0

Intensity Bin Limits, continued

Color	Bin	Intensity Range (mcd) Min.	
	E	7.6	12.0
	F	12.0	19.1
	G	19.1	30.7
	H	30.7	49.1
	I	49.1	78.5
	J	78.5	125.7
	K	125.7	201.1
	L	201.1	289.0
	M	289.0	417.0
	N	417.0	680.0
	O	680.0	1100.0
	P	1100.0	1800.0
	Q	1800.0	2700.0
	R	2700.0	4300.0
	S	4300.0	6800.0
	T	6800.0	10800.0
	U	10800.0	16000.0
	V	16000.0	25000.0
	W	25000.0	40000.0

Maximum tolerance for each bin limit is $\pm 18 \%$.

Color Categories

Color	Lambda (nm)		
		Min.	Max.
	6	561.5	564.5
	5	564.5	567.5
	4	567.5	570.5
	3	570.5	573.5
	2	573.5	576.5
	1	582.0	584.5
	3	584.5	587.0
	2	587.0	589.5
	4	589.5	592.0
	4	592.0	593.0

Maximum tolerance for each bin limit is $\pm 0.5 \mathrm{~nm}$.

Mechanical Option Matrix

Mechanical Option Code	Definition
00	Bulk Packaging, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
01	Tape \& Reel, crimped leads, minimum increment $1800 \mathrm{pcs} / \mathrm{bag}$
02	Tape \& Reel, straight leads, minimum increment $1800 \mathrm{pcs} / \mathrm{bag}$
A1	Right Angle Housing, uneven leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
A2	Right Angle Housing, even leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$

Note:
All categories are established for classification of products. Products may not be available in all categories. Please contact your local Agilent representative for further clarification/information.

