
Agilent

66000 Modular Power System

Product Note

Agilent Technologies

Using the List and Trigger
Capabilities to Sequence Outputs
in These Applications:

• Sequencing Multiple
Modules During
Power Up

• Sequencing Multiple
Modules to Power
Down on Event

• Controlling Output
Voltage Ramp Up
at Turn On

• Providing Time-
Varying Voltages

• Providing Time-
Varying Current
Limiting

• Output Sequencing
Paced by the
Computer

• Output Sequencing
Without Computer
Intervention

This note provides information

on how you can use the advanced

programmable features of the

Agilent 66000 Modular Power

System to address a variety of

applications. Although your

exact application may not be

described here, the capabilities

described can be generalized and

applied to your specific needs.

The programming examples are

given in Micrsoft Visual Basic 6.0,

and the appendix has an

HP BASIC programming example.

These are the capabilities that

are discussed and a description

of how they can be applied:

1

Introduction

1. Sequencing Multiple Modules During Power Up 10
When testing mixed signal devices, ± bias supply voltages are
typically applied before logic bias supply voltages. For a device
that is sensitive to when bias voltages are applied, the order
of power-up of multiple power modules can be controlled.

2. Sequencing Multiple Modules to Power Down on Event 15
When testing devices, such as some GaAs and ECL devices
that are sensitive to when bias voltages are removed, the
order of power-down of multiple power modules can be
controlled. The power-down sequence can be initiated by
an event, such as a change in power module status, fault
condition, detection of a TTL signal, etc.

3. Controlling Output Voltage Ramp Up at Turn On 20
When control over the rate of voltage ramp-up at turn-on
of the power module output is required, the required shape
can be approximated by downloading and executing a series
of voltage and dwell time points.

4. Providing Time-Varying Voltages 25
To burn-in devices using thermal or mechanical cycling/stress,
cyclical time-varying voltage is provided by programming a
set of voltage and dwell time points that repetitively sequence
over time.

5. Providing Time-Varying Current Limiting 30
To provide current limit protection which varies as a function
of time, multiple thresholds on current limit are required.
Having multiple thresholds can provide a high limit to protect
the device under test (DUT) during its power-up in-rush with
automatic switchover to a lower limit to protect the DUT
during its steady state operation.

6. Output Sequencing Paced by the Computer 35
When performing bias supply margin testing, throughput
can be maximized by eliminating command processing time
associated with reprogramming all outputs for each set of
limit conditions. Instead, multiple sets of bias limit conditions
can be downloaded to the power modules during test system
initialization. During the testing, the computer can use a
single command to simultaneously signal all power modules
to step through each test condition.

7. Output Sequencing Without Computer Intervention 41
When characterizing devices, the DUT's performance is
measured over a range of power supply voltages. This test
can be performed without computer intervention by using
hardware signals from the measurement instrument to cause
the power module to sequence to the next voltage in a
preprogrammed List. By buffering these readings in the
measurement instrument, the entire test can be executed
without computer involvement. For characterizations that
require long measurement times, the computer is free to do
other tasks. For characterizations that must execute at
hardware speeds, the computer is not involved and will not
slow down the test loop.

The Agilent 66000 Modular
Power System (MPS) is a mem-
ber of the Agilent “One-Box”
Solution family of power sup-
plies. The “One-Box” family is
the next generation of power
supplies and offers many
advantages over other power
supply solutions.

The MPS consists of the
Agilent 66000A Modular Power
Mainframe and a number of
different Agilent 66100A series
dc power modules. Each MPS
dc power module contains a dc
power supply with automatic
CV/CC crossover, voltage and
current programmers, a DMM
with precision current shunt,
and a digital interface. This
allows you to directly program
voltage and current, read back
the actual measured voltage
and current, and monitor the
status conditions of the power
module. Each module is opti-
mized for ATE applications and
offers all the built-in features
needed for easy integration
into your test system.

The MPS dc power modules
feature a SCPI (Standard
Commands for Programmable
Instruments) command set. This
industry standard command
set simplifies test system devel-
opment by offering command
set commonality between all
types of instrumentation so that
all instruments performing the
same function use the same
self-documenting SCPI instruc-
tions. For example, measuring
the actual output voltage from
a dc power module and reading
the voltage from an external
multimeter use the same SCPI
commands. Because you spend
less time learning device com-
mands, you can get your appli-
cation up and running faster.

The following sections of this
note explain how to get the
most from the advanced pro-
gramming features of the MPS
dc power modules. These
explanations are followed
by seven practical example
applications that show how to
apply these advanced features.

How Can I Benefit from Triggers?

With most system power sup-
plies, the only way to make it
perform some action is to send
it a command over GP-IB. Upon
receipt of that command, the
power supply processes the
command and executes the
action. This can cause two
problems:

1. When many commands must
be processed, the combined
command processing time
can slow down test execution.

2. When multiple power supplies
must be programmed to act
in unison, the command
processing time can cause
the resultant outputs to
occur out of synchronization.

The MPS dc power modules
offer a solution to these prob-
lems by providing the ability to
send and receive triggers. With
triggers, the new voltage and
current levels are sent to the
power module before they are
needed so that they can be pre-
processed. When you want to
change the output, you send a
trigger and the module immedi-
ately changes its output to the
new programmed settings,
without command processing
delays. You no longer need to
explicitly program the voltage
and current each time you
needed to change the output
setting.

Triggers can be used when you
require multiple bias modules
to act in unison (for example,
to apply power from three

2

Introduction to the Agilent 66000
Modular Power System

Agilent 66000 MPS Triggering

3

modules to the DUT simultane-
ously). Instead of separately
programming the voltage and
current settings for each of the
three modules (and having
them reach their voltage set-
tings at different times), you
can preprogram the modules
to the required correct output.
You can then trigger all three
at once and they will reach
their desired outputs together.

In addition to responding to
triggers, the power module can
provide a Trigger Out signal.
This signal can be used to notify
other hardware in your test
system that the power module
has changed its output. For
example, Trigger Out can be
connected to the Trigger In
of a digital oscilloscope to
request it to begin making a
measurement on the DUT. With
this method of synchroniza-
tion, a measurement is valid
because it is triggered as soon
as the power module reaches
its programmed voltage but not
before it has had time to do so.
This method also maximizes
throughput because the mea-
surement begins as soon as
the module reaches its
required output voltage.

What Actions Can I Trigger?

The MPS dc power modules
support triggering of any of
the following, called “trigger
actions”:

• a change in output voltage

• a change in output current

• a start of a List sequence
(see next section)

• the pace of a List sequence
(see next section)

The MPS dc power modules
also have a programmable
trigger delay. This allows you
to insert a time interval
between the time a trigger is
detected by the module and the
time the trigger action occurs.

From Where Do I Receive Triggers?

The MPS dc power modules
can receive triggers from the
following trigger sources:

The GP-IB. The computer can
send trigger commands to the
modules. There is a short
command processing time
associated with this source.

External Trigger In. This is
the MPS mainframe TRIGGER
IN connector. It is a BNC con-
nector wired to a backplane
bus that provides a trigger
input common to all modules.
TRIGGER IN accepts TTL levels,
with the falling edge detected
as the trigger.

Status Conditions. A change
in a module’s status can be
used to generate a trigger. For
example, you can use the con-
stant current status condition
to trigger the module to change
its output voltage.

To Other
Modules

MPS Mainframe

Trigger
Detector

Backplane
TTL Trigger

Module

Trigger
Action

GP-IB
Trigger
Command
“TRIG”
“* TRG”
< GET >

Internal
Status
Conditions

CC, CV,
Unreg,
Error, etc.

External
Trigger In

5 V

0 V

(Rear Panel BNC)

Other
 Modules

Figure 1. MPS Trigger Sources

TTL Trigger. The TTL Trigger
bus is a backplane bus that can
be used as a trigger input by
any module. (See next section
for how to drive the backplane
TTL Trigger bus.)

How Do I Generate Triggers?

Any module can be programmed
to drive the backplane TTL
Trigger bus. By means of this
bus, a module can trigger all
other modules that have been
programmed to respond to the
TTL Trigger bus as their trigger
source (see the preceding
paragraph).

The TTL Trigger bus is wired to
the MPS mainframe TRIGGER
OUT BNC connector. The
TRIGGER OUT signal is a
20-microsecond, negative-true
TTL pulse. Whenever a module
drives the backplane TTL
Trigger bus, it also drives the
TRIGGER OUT connector on
the MPS mainframe.

The MPS dc power modules
can drive the TTL Trigger line
in response to:

The GP-IB. When the computer
sends a trigger command to a
module, it can drive the TTL
Trigger bus. This permits you
to trigger one module from the
computer and have that module
“echo” the trigger command
over the TTL Trigger bus,
simultaneously triggering all
other modules.

External Trigger In. A module
can drive the TTL Trigger bus
in response to a trigger received
from the mainframe TRIGGER
IN connector.

Status Conditions. A change in a
module’s status can be used to
drive the TTL Trigger bus. This
allows a change in status in
one module to trigger other
modules. For example, you can
use a current limit condition in
one module to trigger the other
modules to perform a trigger
action.

How Do I Enable the MPS to
Respond to Triggers?

The default state of the dc power
module is the idle state, where
trigger detection is disabled.

Before it can respond to a trig-
ger, the module must be placed
in the “initiated” state (by a
computer command). Once
initiated, the module can detect
a trigger from the selected
source. This is the only time
when the module responds to a
trigger; no trigger detection
occurs in the idle state (above)
or in the “triggered” state
(next paragraph).

Once the trigger is detected, the
module moves into a triggered
state and performs the trigger
action (after waiting any
programmed trigger delay time).
Upon completion of the trigger
action, the module returns to
the idle state.

4

MPS Mainframe

Trigger
Generator

Internal
Status
Conditions

CC, CV,
Unreg,
Error, etc.

Backplane
TTL Trigger

External
Trigger In

(Rear Panel BNC)

To Other
Modules

5 V

0 V

Trigger
Out

5 V
0 V

20 us

(Rear Panel BNC)

Module

Other
 Modules

GP-IB
Trigger
Command
“TRIG”
“* TRG”
< GET >

Figure 2. Generating TTL Triggers

What is a List and How Can I
Benefit from its Use?

Normally, an MPS dc power
module operates in a mode
called “Fixed”, where the
output settings stay fixed at
the programmed value until
you send another command to
change them. Another available
mode is called “List” mode,
where no computer commands
are needed to alter the output
settings.

Lists allow you to download a
sequence of voltage and/or
current values that will be
generated at specific intervals
or on the occurrence of a trigger.
Up to 20 voltage and current
values (points), with 20
associated dwell times, can be
programmed. Once downloaded,
the dc power module can
execute the sequence of output
settings with minimal interac-
tion between the computer
and the dc power module.
By pacing a List using the
programmable dwell times,
you can time output changes
more precisely. By pacing a
List using triggers, you can
better synchronize changes in
the output with asynchronous
events.

Can a List be Repeated?

Although each List can contain
up to 20 points, a List can be
programmed to repeat. The
number of repetitions, called
the List count, is programmable
from 1 to 65534 loops. It can also
be set to repeat continuously
by making the count infinite.

How Do I Execute a List?

If you want the voltage to
change per a downloaded List,
set the voltage mode to List.
Similarly, if you want the
current to change per a down-
loaded List, set the current
mode to List. If you want both
to change, set both to List
mode.

A module begins executing a
List in response to a trigger.
All of the trigger sources men-
tioned under “Agilent 66000
MPS Triggering” are valid.
Once triggered, Lists can be
paced by dwell times or paced
by triggers.

Dwell-Paced Lists

When the List is dwell paced,
each List point is programmed
for the dwell time associated
with that point. When the
dwell time expires, the output
changes to the next point in
the List.

Valid dwell times for the MPS
dc power modules are from
10 milliseconds to 65 seconds
per point. The resolution is in
2-millisecond increments. The
command to select dwell-paced
List mode is LIST:STEP AUTO.
This commands the List to step
automatically to the next point
after expiration of the dwell
time. If the List count is
greater than 1, the List will
automatically repeat until the
count has been satisfied. With
dwell pacing, the execution
of the entire List is the triggered
action, so only one trigger is
required.

5

Agilent 66000 MPS Lists

The diagram at right shows
the timing for the start trigger,
status conditions, and output
voltage changes for a dwell
paced List. The programmed
parameters are:

List points: 5 V for 50 ms
10 V for 150 ms

0 V for 30 ms

Trigger delay: 20 ms

Triggering Each Point in a List

When the List is paced by
triggers, each List point is
generated when a trigger is
detected. When the dwell time
expires, the output stays at
the same value until the next
trigger is detected. Thus, one
trigger is required to sequence
the List from each point to the
next. Any triggers received
during a point’s dwell time
are ignored. The command to
select trigger-paced List mode
is LIST:STEP ONCE. This
commands the List to execute
only one List point (step)
upon receipt of each trigger.

Note that since the module
ignores triggers during the
dwell time, you must be careful
not to program a dwell time
that is so long that you will
miss the next trigger. If you are
unsure of when triggers will be
sent and you want to guarantee
that you get all of them, set the
dwell time to its minimum
value.

The diagram above shows the
timing for triggers, status
conditions, and output voltage
changes for a trigger paced
List. The programmed
parameters are:

List points: 5 V for 50 ms
10 V for 150 ms

0 V for 30 ms

Trigger delay: 20 ms

6

0.01 seconds

Trig Initiated

Waiting for Trigger
(WTG)

Trigger Event

Step Started
(STS)

Step Completed
(STC)

List Sequence Completed
(LSC)

Operation Complete
(OPC)

OUTPUT
VOLTAGE

1 112 23 32

4

10 V

5 V

0 V NOTES: 1. Trigger delay
2. Dwell times
3. Waiting for trigger event
4. Triggers during dwell time are ignored

Figure 4. Timing Diagram for Trigger-Paced Lists

0.01 seconds

Trig Initiated

Waiting for Trigger
(WTG)

Trigger Event

Step Started
(STS)

Step Completed
(STC)

List Sequence Completed
(LSC)

Operation Complete
(OPC)

OUTPUT
VOLTAGE

1 2 2 2

10 V

5 V

0 V

NOTES: 1. Trigger delay
2. Dwell times

Figure 3. Timing Diagram for Dwell-Paced Lists

This section describes how to
make several modules respond
synchronously. The general
concepts described here provide
the basis for many synchronized
multiple-output applications.

Each MPS dc power module
functions independently. To get
them to operate in unison, a
common synchronizer must be
established. This can be done
by having a single trigger source
or timebase for all modules.

For example, to sequence
3 modules to power up 50 ms
apart, you could use the three
simple Lists in the table below:

As you can see, although each
module functions independently
from the other, the result is a
sequenced output. This simple
method has two problems if
tight synchronization is needed:

• How do you get three Lists
to start simultaneously?

• How do you guarantee that
the dwell time clocks in all
modules stay synchronized?

The following sections describe
how the MPS solves the problems
of synchronization.

GP-IB Triggering Between Modules

Sometimes a common trigger
signal is not available. For
example, when it sends a trigger
command, the computer cannot
talk to all devices on the GP-IB
simultaneously. The time
required to individually trigger
each dc power module could
cause an undesirable “skewing”
of the trigger actions.

You can use the backplane TTL
Trigger bus of the mainframe
to solve the lack of a common
trigger. The procedure is as
follows: Program the first
module to generate a backplane
TTL Trigger when it receives a
trigger command over GP-IB.
Then, command all other
modules to use the backplane
TTL Trigger bus as a source.
The computer then triggers
only the first module, which
“echos” that trigger over the
backplane to all other modules
simultaneously.

Status Triggering Between Modules

Some applications require a
trigger to occur in response to
a change in status within a
module. Since change-of-status
detection is internal to each
module, one module is unaware
of, and therefore cannot react
to, status changes within
another module. Using the
mainframe backplane TTL
Trigger bus solves this. The
module that detects a status
change can be programmed to
not only trigger itself to per-
form some trigger action, but
also to send a TTL Trigger out
on the backplane bus. This
triggers all the other modules.

7

Using Triggers with Lists to
Implement Output Sequences

Module #1 Module #2 Module #3

Step no. Voltage Dwell Voltage Dwell Voltage Dwell
List Time List Time List Time

1 5 V 50 ms 0 V 50 ms 0 V 50 ms

2 5 V 50 ms 5 V 50 ms 0 V 50 ms

3 5 V 50 ms 5 V 50 ms 5 V 50 ms

A Generalized
Synchronizing Scheme

It is desirable to simultaneously
start and then maintain
synchronization between Lists
running in multiple modules.
You can use a combination of
GP-IB and status triggering to
synchronize several Lists. Use
the following approach:

For Module 1...

• Trigger the module from a
computer trigger command
over GP-IB

• Generate the output voltage
from a List

• Use a dwell-paced List. The
computer trigger command
causes the execution of the
entire List.

• Have the module generate a
backplane TTL Trigger at the
start of each point (step) in
the List. This can be done by
triggering on the STS (Step
Started) status condition.

For Modules 2 and 3...

• Trigger the module from the
backplane TTL Trigger bus

• Generate the output voltage
from a List

• Use a trigger-paced List. Each
backplane TTL Triggers
causes the execution of
one point of the List.

• Program the dwell times to
minimum (so you don’t miss
any triggers)

When the computer sends the
trigger command to module 1,
it will begin executing its List.
Module 1 will step through its
List of points, generating a TTL
Trigger each time the Step
Started (STS) condition occurs
at the start of each new point.
Modules 2, 3... will wait for
these triggers before proceeding
to their next point. The result
is an “unskewed” synchronized
output, started by a single
computer command.

8

Figure 5. Timing Diagram for the Generalized Synchronizing Scheme

Point
(Step)

1

Point
(Step)

2

Point
(Step)

3

Point
(Step)

4

Dwell 1 Dwell 2 Dwell 3 Dwell 4

Computer
Trigger

Command

Module 1
Output

Step Started
(STS)

MPS Mainframe
Backplane

TTL Trigger

Module 2
Output

Module 3
Output

* * * *

* = Minimum Dwell Time

M
odule 1 D

w
ell-Paced

M
odules 2, 3 Trigger-Paced

This section contains seven
example applications. For each
application, there is:

• An overview of the
application

• Which MPS features are
used to implement the
application

• The advantages and benefits
of the MPS solution

• The details of the implemen-
tation of the solution

• A block diagram of the setup

• A description of variations
on the application

• A sample program listing in
Microsoft Visual Basic 6.0

The sample programs were
developed and tested using the
following software/hardware:

• Microsft Visual Basic 6.0

• Agilent I/O Library
version M.01.00

• Agilent VISA COM (can
be downloaded from the
Agilent Developers
Network website, see:
http://adn.tm.agilent.com/)

• Microsoft Windows 2000

• Agilent 82350B PCI GPIB
Interface

9

Applications

The following table lists what MPS features are used in each of the
applications. It can be used as an index into this section.

Application 1. Sequencing Multiple Modules During Power Up

Application 2. Sequencing Multiple Modules to Power Down on Event

Application 3. Controlling Output Voltage Ramp Up at Turn On

Application 4. Providing Time-Varying Voltages

Application 5. Providing Time-Varying Current Limiting

Application 6. Output Sequencing Paced by the Computer

Application 7. Output Sequencing Without Computer Intervention

Application
1 2 3 4 5 6 7

Lists

20-point current List •
20-point voltage List • • • •
Repetitive Lists •
Dwell time • • • •

List Pacing

Dwell-paced Lists • • •
Trigger-paced Lists • •

Actions due to a change in status

Generate an SRQ • •
Generate a trigger • •
Disable the output • •
Stop the List • •

Triggers

Change the voltage on trigger • • •
Trigger in/out from MPS backplane • • • •
TTL Trigger

Trigger on an GP-IB trigger command • • • • •
Trigger delay • •

Other Features

Active downprogramming • • •
Overcurrent protection • •

http://adn.tm.agilent.com/

Overview of application

When testing mixed signal
devices, ± bias supply voltages
are typically applied before
logic bias supply voltages. For
a device that is sensitive to
when bias voltages are applied,
the order of power up of
multiple power modules can
be controlled.

For this example, the device
requires three bias supplies,
+5 V for the logic circuits and
±15 V for amplifier circuits.
To properly power up the
device, the supplies must be
sequenced so that the ±15 V
are applied first and the +5 V
is applied 50 ms later.

The MPS can easily address
this application through the
use of triggers. The trigger will
cause the modules to change
from 0 V, where they are not
powering the DUT, to their
final voltage. By delaying the
response to the trigger, you
can control when the module’s
output voltage changes. This
means you can control the
sequence of the modules
during power up.

MPS features used

• Change the voltage on trigger

• Trigger in/out from MPS
mainframe backplane TTL
Trigger

• Trigger on a GP-IB trigger
command Trigger delay

• Trigger delay

Advantages/benefits of the
MPS solution

• By using trigger delay, the
timing is accurate and
repeatable.

• The sequence is simpler to
program (no timing loops).

• The computer is not devoted
to sequencing power modules.

• The computer does not
provide timing for the
sequence.

• One command initiates
the sequence.

Implementation details

How the MPS implements
the sequence

• The computer sends a trigger
command to the first
module.

• The first module simultane-
ously sends a backplane
trigger to other two modules
and goes to +15 V.

• The second module receives
the backplane TTL Trigger
and immediately goes to –15 V.

• The third module receives
the backplane TTL Trigger,
delays 50 ms, and
then goes to +5 V.

MPS set up
Module in slot 0:

• The module is connected
to +15 V on the DUT.

• The initial voltage setting
is 0 V.

• The module listens for the
computer to send a trigger
command.

• Upon receipt of the trigger
command, the module goes
to 15 V.

• Also upon receipt of the
trigger command, the
module generates a
backplane TTL Trigger.

10

Application 1.
Sequencing Multiple Modules during Power Up

Module in slot 1:

• The module is connected
to –15 V on the DUT.

• The initial voltage setting
is 0 V.

• The module listens for a
backplane TTL Trigger.

• Upon receipt of the trigger,
the module goes to 15 V.

Module in slot 2:

• The module is connected
to +5 V on the DUT.

• The initial voltage setting
is 0 V.

• The module listens for a
backplane TTL Trigger.

• The trigger delay is
programmed to 50 ms.

• Upon receipt of the trigger,
the module waits the trigger
delay time and then goes
to 5 V.

Variations on this
implementation

1. The modules could be set
to generate SRQ when the
last module (+5 V) reaches
its final output value. This
would notify the computer
that power has been applied
to the DUT and the testing
can begin.

2. To provide a delay between
the application of the +15 V
and the –15 V bias, you can
program different trigger
delays into modules 2 and 3.
The delay time will be
relative to module in slot 0.

3. To get all three modules to
apply power to the DUT at
the same time, simply elimi-
nate the trigger delay on the
+5 V module.

4. When modules need to be
connected in parallel to
increase current, they
will also need to be synchro-
nized so that they all apply
power simultaneously. To get
modules in parallel to apply
power at the same time, use
the approach described in
this example, but eliminate
any trigger delays.

11

12

Figure 1-2. Timing Diagram of Application #1

Figure 1-1. Block Diagram of Application #1

+ -

D U T +15 V –15 V + –
5 V

Slot
0

Slot
1

Slot
2

Backplane TTL Trigger

In
50 ms delay

In
0 ms delay

Out

GP-IB
Trigger

MPS
Mainframe

+ - + -

Computer
Trigger

Command

Module,
Slot 0 0 V

MPS Mainframe
Backplane

TTL Trigger

Module,
Slot 1 0 V

Module,
Slot 2 0 V

 = Trigger response < 3 ms

50 ms
Trigger Delay

15 V

15 V

5 V

1

1

1

1

13

'Application #1: Sequencing Multiple Modules During Power Up
'
Private Sub CommandApp1_Click()
' THIS IS AN EXAMPLE PROGRAM INTENDED FOR USE WITH MICROSOFT VISUAL BASIC 6.0 AND THE AGILENT
' VISA COM OBJECTS.
'
' TO USE THE IO OBJECT IN A VISUAL BASIC PROJECT, SET THE REFERENCE TO INCLUDE THE LIBRARIES
' IN THE PROJECT/REFERENCES MENU:
' “AGILENT VISA COM RESOURCE MANAGER 1.0”, CORRESPONDS TO AgtRM.DLL
' “VISA COM 1.0 TYPE LIBRARY”, CORRESPONDS TO SISACOM.tlb
' “VISA COM 488.2 FORMATTED I/O 1.0”, CORRESPONDS TO BasicFormattedIO.DLL
'
' USE A STATEMENT SUCH AS “Dim MPS_Slot As VisaComLib.FormattedIO488” TO CREATE THE
' FORMATTED I/O REFERENCE AND USE “Set MPS_Slot = New VisaComLib.FormattedIO488” TO CREATE
' THE ACTUAL OBJECT

Dim io_mgr As VisaComLib.ResourceManager
Dim MPS_Slot0 As VisaComLib.FormattedIO488
Dim MPS_Slot1 As VisaComLib.FormattedIO488
Dim MPS_Slot2 As VisaComLib.FormattedIO488

Set io_mgr = New AgilentRMLib.SRMCls
Set MPS_Slot0 = New VisaComLib.FormattedIO488
Set MPS_Slot1 = New VisaComLib.FormattedIO488
Set MPS_Slot2 = New VisaComLib.FormattedIO488

Set MPS_Slot0.IO = io_mgr.Open(“GPIB0::5::0::INSTR”)
Set MPS_Slot1.IO = io_mgr.Open(“GPIB0::5::1::INSTR”)
Set MPS_Slot2.IO = io_mgr.Open(“GPIB0::5::2::INSTR”)

Dim st_value As Integer ' HOLD STATUS VALUE

On Error GoTo MyError

' SET UP MODULAE IN SLOT 0 AS +15V BIAS SUPPLY ---
With MPS_Slot0

.IO.Timeout = 30000

.WriteString “*RST;*CLS;Status:Preset” ' RESET AND CLEAR MODULE

.WriteString “VOLT 0” ' START AT 0V

.WriteString “VOLT:TRIGGERED 15” ' GO TO 15V ON TRIGGER

.WriteString “TRIGGER:SOURCE BUS” ' TRIGGER SOURCE IS GPIB 'BUS'

.WriteString “OUTPUT:TTLTRG:SOURCE BUS” ' GENERATE BACKPLANE TTL TRIGGER WHEN GPIB 'BUS'
' TRIGGER IS RECEIVED

.WriteString “OUTPUT:TTLTRG:STATE ON” ' ENABLE BACKPLANE TTL TRIGGER DRIVE

.WriteString “OUTPUT ON” ' ENABLE OUTPUT

.WriteString “INITIATE” ' ENABLE RESPONSE TO TRIGGER
End With

' SET UP MODULE IN SLOT 1 AS -15V BIAS SUPPLY ---
With MPS_Slot1

.WriteString “*RST;*CLS;Status:Preset” ' RESET AND CLEAR MODULE

.WriteString “VOLT 0” ' START AT 0V

.WriteString “VOLT:TRIGGERED 15” ' GO TO 15V ON TRIGGER

.WriteString “TRIGGER:SOURCE TTLTRG” ' TRIGGER SOURCE IS BACKPLANE TTL TRIGGER

.WriteString “OUTPUT ON” ' ENABLE OUTPUT

.WriteString “INITIATE” ' ENABLE RESPONSE TO TRIGGER

14

To download this example program, see: www.agilent.com/find/66000PN

End With

' SET UP MODULE IN SLOT 2 AS +5V BIAS SUPPLY ---------------------
With MPS_Slot2

.WriteString “*RST;*CLS;Status:Preset” ' RESET AND CLEAR MODULE

.WriteString “VOLT 0” ' START AT 0V

.WriteString “VOLT:TRIGGERED 5” ' GO TO 5V ON TRIGGER

.WriteString “TRIGGER:SOURCE TTLTRG” ' TRIGGER SOURCE IS BACKPLANE TTL TRIGGER

.WriteString “TRIGGER:DELAY 0.050” ' 50 ms TRIGGER DELAY

.WriteString “OUTPUT ON” ' ENABLE OUTPUT

.WriteString “INITIATE” ' ENABLE RESPONSE TO TRIGGER
End With
'
' BEFORE TRIGGERING THE MODULES, DETERMINE IF THE MODULES ARE READY BY CHECKING FOR
' 'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER). IF THE LAST MODULE
' PROGRAMMED IS READY THEN SO ARE THE OTHERS, SO JUST CHECK SLOT 2.
'
' YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY
' CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
' THAT TAKE TIME WILL GIVE THE MODULE A CHANCE TO COMPLETE PROCESSING.
'
Do

With MPS_Slot2
.WriteString “STATUS:OPERATION:CONDITION?”
st_value = .ReadNumber

End With
Loop Until (st_value & 32) ' TEST FOR BIT 5 = TRUE

' TRIGGER MODULE IN SLOT 0 TO BEGIN SEQUENCING THE 3 MODULES AT POWER UP
'
MPS_Slot0.WriteString “*TRG” ' SEND GPIB 'BUS' TRIGGER

' CLOSE THE I/O SESSIONS.
MPS_Slot0.FlushRead
MPS_Slot0.FlushWrite False
MPS_Slot0.IO.Close
Set MPS_Slot0 = Nothing

MPS_Slot1.FlushRead
MPS_Slot1.FlushWrite False
MPS_Slot1.IO.Close
Set MPS_Slot1 = Nothing

MPS_Slot2.FlushRead
MPS_Slot2.FlushWrite False
MPS_Slot2.IO.Close
Set MPS_Slot2 = Nothing

Exit Sub

MyError:

txtError = Err.Description & vbCrLf
Resume Next

End Sub

http://www.agilent.com/find/66000pn

Overview of application

When testing devices, such as
some GaAs and ECL devices
that are sensitive to when bias
voltages are removed, the order
of power-down of multiple
power modules can be con-
trolled. The power-down
sequence can be initiated by
an event, such as a change in
power module status, fault
condition, detection of a TTL
signal, etc.

For this example, there are
three supplies +5 V and ±15 V.
(See previous application for
how to generate a power up
sequence.) Once the power has
been applied to the DUT, the
modules can be reprogrammed
to perform the power down
sequence. The power down
sequence is initiated when a
fault in the DUT draws excessive
current from the power module,
causing the module to change
from CV to CC. To prevent
damage to the DUT, it is
necessary to remove the +5 V
first, then the ±15 V modules
15 ms later.

Once again, MPS triggering
can solve the application. In
this scenario, the CV-to-CC
crossover event will be used
as the trigger source. The
trigger will cause the modules,
in the correct order, to change
from their programmed voltages
down to 0 V.

MPS features used

• Generate a trigger on a
change in internal status

• Change the voltage on trigger

• Trigger in/out from MPS
mainframe backplane TTL
Trigger

• Trigger delay

• Active downprogramming

Advantages/benefits of the
MPS solution

• By using the modules’ change
in status to automatically
generate a trigger, the
computer is not devoted
to polling the modules to
detect a change in state.

• By letting each module
monitor its status, the CC
condition will generate a
response faster than if the
computer was polling the
module to detect a change
in state.

• The sequence is simpler to
program (no timing loops).

• By using trigger delay, the
timing is accurate and
repeatable because the
computer does not provide
timing for the sequence.

• The active downprogrammers
in the module output can
quickly discharge the module’s
output capacitors and any
capacitance in the DUT.

Implementation details

How the MPS implements
the solution

• All modules are set to listen
for a backplane TTL Trigger.

• When any module detects a
change in status from CV to
CC, it sends out a backplane
TTL Trigger.

• When the +5 V module
receives the trigger, it
immediately goes to 0 V.

• When the +15 V and –15 V
modules receive the trigger,
they wait the trigger delay
time and then go to 0 V.

(Note that any module can
both generate the backplane
TTL Trigger signal and be
triggered by that same
signal.)

15

Application 2.
Sequencing Multiple Modules to Power Down on Event

MPS set up
Module in slot 0:

• The module is connected
to +15 V on the DUT.

• The initial voltage setting
is 15 V.

• The module monitors
its status.

• The module will generate
a backplane TTL Trigger
on CV-to-CC crossover.

• The module listens for
a backplane TTL Trigger.

• The trigger delay is
programmed to 15 ms.

• Upon receipt of the trigger,
the module waits the trigger
delay time and then goes
to 0 V.

Module in slot 1:

• The module is connected to
supply –15 V to the DUT.

• The initial voltage setting
is 15 V.

• The module monitors
its status.

• The module will generate a
backplane TTL Trigger on
CV-to-CC crossover.

• The module listens for
backplane TTL Trigger.

• The trigger delay is
programmed to 15 ms.

• Upon receipt of the trigger,
the module waits the
trigger delay time and
then goes to 0 V.

Module in slot 2:

• The module is connected to
supply +5 V to the DUT.

• The initial voltage setting
is 5 V.

• The module monitors
its status.

• The module will generate
a backplane TTL Trigger
on CV-to-CC crossover.

• The module listens for
backplane TTL Trigger.

• Upon receipt of the trigger,
the module immediately
goes to 0 V.

Variations on this
implementation

1. The modules could be
set to generate SRQ when
the last module reaches 0 V.
This could notify the
computer that power has
been removed from the DUT.

2. The modules could be set
to generate a DFI (Discrete
Fault Indicator) signal on
the MPS rear panel on a
change in status. This signal
could be used to shut down
other power modules, to
flash an alarm light, or to
sound a buzzer. This could
also be routed to other
instruments to signal them
to stop making measurements.

3. To get all three modules to
remove power from the DUT
at the same time, simply
eliminate the trigger delay
on the ±15 V modules.

4. To provide a delay between
the removal of the three bias
voltages, you can program a
different trigger delay into
each module.

16

17

Figure 2-1. Block Diagram of Application #2

Figure 2-2. Timing Diagram of Application #2

+ -

D U T
+ 15 V – 15 V + –

5 V

Slot
0

Slot
1

Slot
2

Backplane TTL Trigger

MPS
Mainframe

+ - + -

Out
on
CC

In
15 ms
delay

Out
on
CC

In
15 ms
delay

Out
on
CC

In
0 ms
delay

15 ms

Trigger Delay

= Trigger response < 3 ms

CC

0 V

0 V

0 V

CV

5 V

15 V

15 V

15 ms
Trigger Delay

1

1

1

1

CV to CC
Status Change
in Any Module

MPS Mainframe
Backplane

TTL Trigger

Module,
Slot 2

Module,
Slot 0

Module,
Slot 1

18

'Application #2: Sequencing Multiple Modules to Power Down on Event
'

Private Sub CommandApp2_Click()

' THIS IS AN EXAMPLE PROGRAM INTENDED FOR USE WITH MICROSOFT VISUAL BASIC 6.0 AND THE AGILENT

' VISA COM OBJECTS.

'

' TO USE THE IO OBJECT IN A VISUAL BASIC PROJECT, SET THE REFERENCE TO INCLUDE THE LIBRARIES

' IN THE PROJECT/REFERENCES MENU:

' “AGILENT VISA COM RESOURCE MANAGER 1.0”, CORRESPONDS TO AgtRM.DLL

' “VISA COM 1.0 TYPE LIBRARY”, CORRESPONDS TO SISACOM.tlb

' “VISA COM 488.2 FORMATTED I/O 1.0”, CORRESPONDS TO BasicFormattedIO.DLL

'

' USE A STATEMENT SUCH AS “Dim MPS_Slot As VisaComLib.FormattedIO488” TO CREATE THE

' FORMATTED I/O REFERENCE AND USE “Set MPS_Slot = New VisaComLib.FormattedIO488” TO CREATE

' THE ACTUAL OBJECT

Dim io_mgr As VisaComLib.ResourceManager

Dim MPS_Slot0 As VisaComLib.FormattedIO488

Dim MPS_Slot1 As VisaComLib.FormattedIO488

Dim MPS_Slot2 As VisaComLib.FormattedIO488

Set io_mgr = New AgilentRMLib.SRMCls

Set MPS_Slot0 = New VisaComLib.FormattedIO488

Set MPS_Slot1 = New VisaComLib.FormattedIO488

Set MPS_Slot2 = New VisaComLib.FormattedIO488

Set MPS_Slot0.IO = io_mgr.Open(“GPIB0::5::0::INSTR”)

Set MPS_Slot1.IO = io_mgr.Open(“GPIB0::5::1::INSTR”)

Set MPS_Slot2.IO = io_mgr.Open(“GPIB0::5::2::INSTR”)

On Error GoTo MyError

' SET UP MODULE IN SLOT 0 AS +15V BIAS SUPPLY ----------------

With MPS_Slot0

.IO.Timeout = 30000

.WriteString “*RST;*CLS;STATUS:PRESET” ' RESET AND CLEAR MODULE

.WriteString “CURR .5”

.WriteString “VOLT 15” ' START AT 15V

.WriteString “VOLT:TRIGGERED 0” ' GO TO 0V ON TRIGGER

.WriteString “TRIGGER:SOURCE TTLTRG” ' TRIGGER SOURCE IS TTL TRIGGER

.WriteString “TRIGGER:DELAY .015” ' 15 ms TRIGGER DELAY

.WriteString “INITIATE” ' ENABLE RESPONSE TO TRIGGER

.WriteString “OUTPUT:TTLTRG:SOURCE LINK” ' GENERATE A BACKPLANE TTL TRIGGER

.WriteString “OUTPUT:TTLTRG:LINK 'CC'” ' WHEN A CV-TO-CC TRANSITION OCCURS

.WriteString “OUTPUT:TTLTRG:STATE ON” ' ENABLE TTL TRIGGER DRIVE

.WriteString “OUTPUT ON” ' ENABLE OUTPUT

End With

' SET UP MODULE IN SLOT 1 AS -15V BIAS SUPPLY -----------------

With MPS_Slot1

19

To download this example program, see: www.agilent.com/find/66000PN

.WriteString “*RST;*CLS;STATUS:PRESET” ' RESET AND CLEAR MODULE

.WriteString “CURR .5”

.WriteString “VOLT 15” ' START AT 15V

.WriteString “VOLT:TRIGGERED 0” ' GO TO 0V ON TRIGGER

.WriteString “TRIGGER:SOURCE TTLTRG” ' TRIGGER SOURCE IS BACKPLANE TTL TRIGGER

.WriteString “TRIGGER:DELAY .015” ' 15 ms TRIGGER DELAY

.WriteString “INITIATE” ' ENABLE RESPONSE TO TRIGGER

.WriteString “OUTPUT:TTLTRG:SOURCE LINK” ' GENERATE A BACKPLANE TTL TRIGGER

.WriteString “OUTPUT:TTLTRG:LINK 'CC'” ' WHEN A CV-TO-CC TRANSITION OCCURS

.WriteString “OUTPUT:TTLTRG:STATE ON” ' ENABLE TTL TRIGGER DRIVE

.WriteString “OUTPUT ON” ' ENABLE OUTPUT
End With

' SET UP MODULE IN SLOT 2 AS +5V BIAS SUPPLY -----------------
With MPS_Slot2

.WriteString “*RST;*CLS;STATUS:PRESET” ' RESET AND CLEAR MODULE

.WriteString “CURR .5”

.WriteString “VOLT 5” ' START AT 5V

.WriteString “VOLT:TRIGGERED 0” ' GO TO 0V ON TRIGGER

.WriteString “TRIGGER:SOURCE TTLTRG” ' TRIGGER SOURCE IS BACKPLANE TTL TRIGGER

.WriteString “TRIGGER:DELAY .015” ' 15 ms TRIGGER DELAY

.WriteString “INITIATE” ' ENABLE RESPONSE TO TRIGGER

.WriteString “OUTPUT:TTLTRG:SOURCE LINK” ' GENERATE A BACKPLANE TTL TRIGGER

.WriteString “OUTPUT:TTLTRG:LINK 'CC'” ' WHEN A CV-TO-CC TRANSITION OCCURS

.WriteString “OUTPUT:TTLTRG:STATE ON” ' ENABLE TTL TRIGGER DRIVE

.WriteString “OUTPUT ON” ' ENABLE OUTPUT
End With

' THE POWER MODULES ARE NOW SET UP TO IMPLEMENT THE POWER DOWN ON EVENT.
' ANY TIME ANY MODULE GOES INTO CC, THE SEQUENCE WILL OCCUR.
'
' CLOSE THE I/O SESSIONS.
MPS_Slot0.FlushRead
MPS_Slot0.FlushWrite False
MPS_Slot0.IO.Close
Set MPS_Slot0 = Nothing

MPS_Slot1.FlushRead
MPS_Slot1.FlushWrite False
MPS_Slot1.IO.Close
Set MPS_Slot1 = Nothing

MPS_Slot2.FlushRead
MPS_Slot2.FlushWrite False
MPS_Slot2.IO.Close
Set MPS_Slot2 = Nothing

Exit Sub

MyError:
txtError = Err.Description & vbCrLf
Resume Next

End Sub

http://www.agilent.com/find/66000pn

Overview of application

When control over the rate of
voltage ramp up at turn-on of
the power module output is
required, the desired shape can
be approximated by download-
ing and executing a series of
voltage and dwell time points.

For this example, you need to
program the power module to
change its output from 2 volts
to 10 volts, slewing through the
8 volt transition in 0.5 seconds.
This results in a turn-on ramp-
up of 16 V per second.

The MPS can create this voltage
versus time characteristic using
Lists. The desired characteristic
(in this case, linear) is simulated
using the 20 available voltage
points. To determine the value
of each point in the transition,
simply divide the change in
voltage by 20. To determine the
dwell time of each voltage point,
divide the total transition time
by 19. After the List has been
executed, the module will
continue to output the final
value (in this case, 10 volts)
until the output has been
reprogrammed to another value.
Note that the dwell-time of the
last point is not part of the
transition time.

To determine the slowest ramp
up (longest transition time)
that can be generated, you
must consider how smooth you
need the voltage versus time
characteristic to be. As the
dwell time associated with
each point gets longer, the out-
put voltage will become more
like a “stair step” and less like
a linear transition.
(See Figure 3-1)

To determine the fastest ramp
up (shortest transition time)
that can be generated, you must
consider the minimum dwell
time specification (10 ms) and
the maximum rise-time of
specification the power module
(20 ms). If you program 10 ms
dwell times, the power module
will not be able to reach its
output voltage before the next
voltage point is output.
(See Figure 3-2)

MPS features used

• 20-point voltage List

• Dwell time

• Dwell-paced Lists

Advantages/benefits of the
MPS solution

• By using Lists, the module
changes its output voltage
automatically, so that the
computer is not devoted to
reprogramming the output
voltage.

• The outputs can change faster
when dwell paced than when
the computer must explicitly
reprogram each change.

• The sequence is simpler to
program (no timing loops).

• By using dwell times, the
timing of each point is
accurate and repeatable.

• The computer does not
provide timing for the
sequence.

• For negative-going ramps,
the active downprogrammers
in the module output can
quickly discharge the module’s
output capacitors and any
capacitance in the DUT
when negative going ramps
are required.

20

Application 3.
Controlling Output Voltage Ramp Up at Turn On

21

Figure 3-1. Simulating a Slow Voltage Ramp

Figure 3-2. Simulating a Fast Voltage Ramp

Desired
Voltage
Ramp

Time in seconds

V
ol

ta
ge

Desired
Voltage
Ramp

V
ol

ta
ge

Time in milliseconds

Close up View
of Two Steps

step N

step N+1

10 ms

20 ms
(10-90%)
risetime

0 ms 200 ms

Implementation details

How the MPS implements
the sequence

• The module is programmed
to List mode.

• The module will execute
a dwell-paced List.

• The 20 voltage points are
downloaded to the module.

• The 20 dwell times are
downloaded to the module.

• When the transition must
occur, the module is triggered
by the computer.

• The module output ramps
under its own control.

Variations on this
implementation

1. The module could be set to
begin ramping in response
to an external or backplane
TTL Trigger.

2. The module could be set
to generate SRQ when it
has finished its transition.
This would notify the
computer that the voltage
is at the proper level.

3. The module could be set
to generate an external
trigger when it has finished
its transition. This trigger
could be routed to other
instruments as a signal to
start making measurements.

4. Multiple modules could be
programmed to slew together
in response to the computer
trigger command.

5. The module could be set
to generate an external
trigger for each point in
the transition. This trigger
could be routed to other
instruments as a signal to
take a measurement at
various supply voltages.
(See application #7)

6. Many voltage versus time
characteristics can be
generated by varying the
voltage values and the dwell
times in the List.

22

Figure 3-3. Generating the Desired Voltage Ramp for Application #3

Computer sends
trigger
command

Time in seconds

2 V

10 V

0 s 0.5 s

 Each Step = 8 V / 20
= 0.4 V

Each Dwell Time = 0.5 s / 19
= .026 s
= 26 ms

Last dwell time is not
included in the transition

V
ol

ta
ge

23

'Application #3: Controlling Voltage Ramp Up at Turn On
'

Private Sub CommandApp3_Click()

' THIS IS AN EXAMPLE PROGRAM INTENDED FOR USE WITH MICROSOFT VISUAL BASIC 6.0 AND THE AGILENT

' VISA COM OBJECTS.

'

' TO USE THE IO OBJECT IN A VISUAL BASIC PROJECT, SET THE REFERENCE TO INCLUDE THE LIBRARIES

' IN THE PROJECT/REFERENCES MENU:

' “AGILENT VISA COM RESOURCE MANAGER 1.0”, CORRESPONDS TO AgtRM.DLL

' “VISA COM 1.0 TYPE LIBRARY”, CORRESPONDS TO SISACOM.tlb

' “VISA COM 488.2 FORMATTED I/O 1.0”, CORRESPONDS TO BasicFormattedIO.DLL

'

' USE A STATEMENT SUCH AS “Dim MPS_Slot As VisaComLib.FormattedIO488” TO CREATE THE

' FORMATTED I/O REFERENCE AND USE “Set MPS_Slot = New VisaComLib.FormattedIO488” TO CREATE

' THE ACTUAL OBJECT

Dim io_mgr As VisaComLib.ResourceManager

Dim MPS_Slot0 As VisaComLib.FormattedIO488

Set io_mgr = New AgilentRMLib.SRMCls

Set MPS_Slot0 = New VisaComLib.FormattedIO488

Set MPS_Slot0.IO = io_mgr.Open(“GPIB0::5::0::INSTR”)

On Error GoTo MyError

Dim V_Step(20) As String ' ARRAY TO HOLD THE VOLTAGE RAMP STEPS

Dim V_StepList As String

Dim i As Integer

Dim Vstart, Vstop, Ramp_time, Dwell As Double

Dim st_value As Integer ' HOLD STATUS VALUE

Vstart = 2 ' START VOLTAGE FOR RAMP

Vstop = 10 ' STOP VOLTAGE FOR RAMP

Ramp_time = 0.5 ' SECONDS TO CHANGE FROM Vstart TO Vstop

Dwell = Ramp_time / 19 ' IN SECONDS

'

' SINCE THE OUTPUT STAYS AT THE LAST VOLTAGE POINT AFTER ITS DWELL TIME EXPIRES,

' THE DWELL TIME OF THE LAST POINT IS NOT PART OF THE TRANSITION TIME. THEREFORE,

' DIVIDE THE TOTAL TIME BY 19 POINTS, NOT 20. ALSO, YOU ONLY NEED TO DOWNLOAD 1

' DWELL TIME. IF THE MODULE RECEIVES ONLY 1 DWELL TIME, IT ASSUMES YOU WANT THE

' SAME DWELL TIME FOR EVERY POINT IN THE LIST.

'

For i = 0 To 19

V_Step(i) = Vstart + (((Vstop - Vstart) / 20) * (i + 1)) ' CALCULATES VOLTAGE POINTS

Next i

V_StepList = Join(V_Step, “,”) ' FORMAT THE VOLTAGE STEP LIST INTO A COMMA SEPARATED STRING

' “2.4,2.8,3.2,3.6,4.0,4.4,4.8,5.2,......,9.6,10.0”

24

With MPS_Slot0

.WriteString “*RST;*CLS;STATUS:PRESET” ' RESET AND CLEAR MODULE

.WriteString “VOLT” & “ ” & Vstart ' START RAMP AT Vstart

.WriteString “CURR .1” '

.WriteString “OUTPUT ON” ' ENABLE OUTPUT

.WriteString “VOLT:MODE LIST” ' SET TO GET VOLTAGE FROM LIST

.WriteString “LIST:VOLT” & “ ” & V_StepList ' DOWNLOAD VOLTAGE POINTS

.WriteString “LIST:DWELL” & “ ” & Dwell ' DOWNLOAD 1 DWELL TIME

.WriteString “LIST:STEP AUTO” ' DWELL-PACED LIST

.WriteString “INITIATE” ' ENABLE TRIGGER TO START LIST

End With

'

' BEFORE TRIGGERING THE MODULE, DETERMINE IF THE MODULE IS READY BY CHECKING FOR

' 'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER).

'

' YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY

' CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS

' THAT TAKE TIME WILL GIVE THE MOCULE A CHANCE TO COMPLETE PROCESSING.

'

Do

With MPS_Slot0

.WriteString “STATUS:OPERATION:CONDITION?”

Value = .ReadNumber

End With

Loop Until (Value & 32) ' TEST FOR BIT 5 = TRUE

'

' SEND TRIGGER COMMAND TO START LIST AND GENERATE THE VOLTAGE RAMP

'

' SEND AN IMMEDIATE TRIGGER, WHICH IS ALWAYS ACTIVE. THEREFORE, IT DOES NOT NEED TO BE

' SELECTED AS A TRIGGER SOURCE.

MPS_Slot0.WriteString “TRIGGER:IMMEDIATE”

' CLOSE THE I/O SESSIONS.
MPS_Slot0.FlushRead
MPS_Slot0.FlushWrite False
MPS_Slot0.IO.Close
Set MPS_Slot0 = Nothing

Exit Sub

MyError:

txtError = Err.Description & vbCrLf

Resume Next

End Sub

To download this example program, see: www.agilent.com/find/66000PN

http://www.agilent.com/find/66000pn

Overview of application

To burn-in devices using thermal
or mechanical cycling/stress,
cyclical time-varying voltage
is provided by programming a
set of voltage and dwell time
points that repetitively
sequence over time.

For this example, the power
module must provide the
repetitive waveform shown in
Figure 4-1. This time-varying
voltage will be applied to a
hybrid IC. By continually cycling
the voltage from 0 to 7 volts
over a 33 second interval, the
hybrid is given time to heat
up and undergo thermal and
mechanical stress as the welds
inside the hybrid expand and
contract, and then subsequently
cool down.

In addition to generating the
cyclical voltage, it is desirable
to have the power module notify
the computer should the device
fail and stop the cycling. Since
the module is monitoring test
status, the computer is free to
perform other tests.

The MPS can address this
application using dwell-paced
repetitive Lists. This application
could be thought of as a simple
power arbitrary waveform
generator. To get the desired
time-varying voltage, you must
be able to describe the wave-
form in 20 discrete voltage
points, with each point ranging
from 10 ms to 65 seconds. This
range of dwell times determines
the range of frequencies (or
time rate of change) of the
voltage waveform to be
generated.

Once the waveform has been
described, it is downloaded
to the module. Upon being
triggered, it will repetitively
generate the waveform without
computer intervention.

25

Application 4.
Providing Time-Varying Voltages

Figure 4-1. Voltage Waveform for Application #4

0 V

5 V

1 s

7 V

2 s

0 V

30 s

5 V

7 V

Cool
Down

Stress and
Burn-in

Normal
Operation

End of cycle,
repeats indefinitely

Computer trigger
command
starts cycling

Time in seconds

...

V
ol

ta
ge

The module will also be set up
to generate an SRQ and stop
the voltage cycling of the hybrid
should fail. If the hybrid fails by
shorting, the module will go into
CC. This change in status will
cause the module to protect the
DUT by disabling the output,
which will stop the test and
generate an SRQ. (Open circuit
failures will not be detected.
Since failures of this type are
less likely to have destructive
consequences, detection is
not required.)

MPS features used

• 20-point voltage List

• Repetitive Lists

• Dwell time

• Dwell-paced Lists

• Generate an SRQ on a
change in internal status

• Disable the output on a
change in internal status

• Stop the List on a change
in internal status

• Trigger on a GP-IB
trigger command

• Overcurrent protection

• Active downprogramming

Advantages/benefits
of the MPS solution

• By using Lists, the module
changes its output voltage
automatically, so that the
computer is not devoted to
reprogramming the output
voltage.

• The output can change faster
when dwell paced than when
the computer must explicitly
reprogram each change.

• Overcurrent protection can
disable the output before
the DUT is damaged.

• By letting each module
monitor its status, the CC
condition will be responded
to faster than if the computer
was responsible for stopping
the test.

• The sequence is simpler to
program (no timing loops).

• By using dwell times, the
timing of each point is
accurate and repeatable
because the computer does
not provide timing for the
sequence.

• When the output is disabled,
the active downprogrammers
in the module output can
quickly discharge the module’s
output capacitors and any
capacitance in the DUT.

Implementation details

How the MPS implements
the sequence

• The module is programmed
to List mode.

• The module will execute a
dwell-paced List.

• The 3 voltage points are
downloaded to the module.

• The 3 dwell times are
downloaded to the module.

• To begin the cycling, the
module is triggered by the
computer.

• The module continuously
generates the voltage
waveform.

• The module continuously
monitors its status.

• If the module goes into CC,
the overcurrent protection
disables the output.

• The module generates an
SRQ when the overcurrent
protection occurs.

26

Module set up

• Set voltage mode to List.

• Download voltage List.

• Download dwell times.

• Set Lists to dwell paced.

• Set Lists to infinitely repeat.

• Enable status monitoring
of overcurrent condition.

• Enable overcurrent
protection.

• Enable SRQ generation on
overcurrent protection
occurrence.

Variations on this
implementation

1. The module could be set
to begin generating the
waveform in response to
an external or backplane
TTL Trigger.

2. The module could be set
to generate external triggers
for each point in the List.
This trigger could be routed
to other instruments to
synchronize external mea-
surements to the change in
voltage. (See application #7)
Using this technique, para-
metric measurements could
be made on the device
during the thermal cycling.

3. Multiple modules could be
programmed to cycle together
in response to the computer
trigger command.

4. To determine how many
times the hybrid was cycled
before it failed, you can use
the SRQ (that was generated
when the hybrid failed and
the module went into CC) to
timestamp the failure. The
elapsed time will give the
number of cycles executed.

27

28

'Application #4: Providing Time-Varying Voltages
'

Private Sub CommandApp4_Click()

' THIS IS AN EXAMPLE PROGRAM INTENDED FOR USE WITH MICROSOFT VISUAL BASIC 6.0 AND THE AGILENT

' VISA COM OBJECTS.

'

' TO USE THE IO OBJECT IN A VISUAL BASIC PROJECT, SET THE REFERENCE TO INCLUDE THE LIBRARIES

' IN THE PROJECT/REFERENCES MENU:

' “AGILENT VISA COM RESOURCE MANAGER 1.0”, CORRESPONDS TO AgtRM.DLL

' “VISA COM 1.0 TYPE LIBRARY”, CORRESPONDS TO SISACOM.tlb

' “VISA COM 488.2 FORMATTED I/O 1.0”, CORRESPONDS TO BasicFormattedIO.DLL

'

' USE A STATEMENT SUCH AS “Dim MPS_Slot As VisaComLib.FormattedIO488” TO CREATE THE

' FORMATTED I/O REFERENCE AND USE “Set MPS_Slot = New VisaComLib.FormattedIO488” TO CREATE

' THE ACTUAL OBJECT

Dim io_mgr As VisaComLib.ResourceManager

Dim MPS_Slot0 As VisaComLib.FormattedIO488

Set io_mgr = New AgilentRMLib.SRMCls

Set MPS_Slot0 = New VisaComLib.FormattedIO488

Set MPS_Slot0.IO = io_mgr.Open(“GPIB0::5::0::INSTR”)

On Error GoTo MyError

Dim st_value As Integer ' HOLD STATUS VALUE

With MPS_Slot0

'

' INITIALIZE THE MODULE

'

.WriteString “*RST;*CLS;STATUS:PRESET” ' RESET AND CLEAR MODULE

.WriteString “VOLT 0” ' START TEST AT 0 V

.WriteString “CURR .1” ' SET CURRENT LIMIT

.WriteString “OUTPUT ON” ' ENABLE OUTPUT

'

' SET UP OVERCURRENT PROTECTION (OCP) AND GENERATE SRQ ON OCP TRIP

'

.WriteString “CURRENT:PROTECTION:STATE ON” ' ENABLE OCP

.WriteString “OUTPUT:PROTECTION:DELAY 0” ' NO DELAY BEFORE PROTECTION OCCURS

.WriteString “STATUS:QUESTIONABLE:ENABLE 2” ' ENABLE DETECTION OF OC CONDITION IN THE

' QUESTIONABLE REGISTER, WHERE OC = BIT 1 = VALUE 2.

.WriteString “STATUS:QUESTIONABLE:PTRANSITION 2”' ENABLES DETECTION ON POSITIVE TRANSITION, I.E., GOING INTO OC.

.WriteString “*SRE 8” ' ENABLES THE SERVICE REQUEST REGISTER TO GENERATE

' AN SRQ WHEN ANY EVENT IN THE QUESTIONABLE REGISTER

' IS ASSERTED. THE QUESTIONABLE REGISTER = BIT 3= VALUE 8.

29

To download this example program, see: www.agilent.com/find/66000PN

' SET UP THE VOLTAGE LIST

'

.WriteString “VOLT:MODE LIST” ' SET TO GET VOLTAGE FROM LIST

.WriteString “LIST:VOLT 5,7,0” ' DOWNLOAD VOLTAGE POINTS

.WriteString “LIST:DWELL 1,2,30” ' DOWNLOAD DWELL TIMES

.WriteString “LIST:STEP AUTO” ' DWELL-PACED LIST

.WriteString “LIST:COUNT INF” ' CONTINUOUSLY REPEAT LIST (INF = INFINITE)

.WriteString “INITIATE” ' ENABLE TRIGGER TO START LIST

End With

'

' BEFORE TRIGGERING THE MODULE, DETERMINE IF IT IS READY BY CHECKING FOR

' WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER).

' YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY

' CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS

' THAT TAKE TIME WILL GIVE THE MODULE A CHANCE TO COMPLETE PROCESSING.

'

Do

With MPS_Slot0

.WriteString “STATUS:OPERATION:CONDITION?”

st_value = .ReadNumber

End With

Loop Until (st_value & 32) ' TEST FOR BIT 5 = TRUE

'

' SEND TRIGGER COMMAND TO START LIST

'

' SEND IMMEDIATE TRIGGER, WHICH IS ALWAYS ACTIVE. THEREFORE, IT DOES NOT NEED TO BE SELECTED

' AS A TRIGGER SOURCE.

MPS_Slot0.WriteString “TRIGGER:IMMEDIATE”

' CLOSE THE I/O SESSIONS.
MPS_Slot0.FlushRead
MPS_Slot0.FlushWrite False
MPS_Slot0.IO.Close
Set MPS_Slot0 = Nothing

Exit Sub

MyError:

txtError = Err.Description & vbCrLf

Resume Next

End Sub

http://www.agilent.com/find/66000pn

Overview of application

To provide current limit
protection which varies as a
function of time, multiple
thresholds on current limit
are required. Having multiple
thresholds can provide a high
limit to protect the DUT during
its power-up in-rush with auto-
matic switchover to a lower
limit to protect the DUT during
its steady state operation.

For this example, the DUT is a
printed circuit assembly. This
assembly is being tested prior to
installation in the end product.
The module provides power to
the assembly, which will undergo
a functional test. The assembly
has capacitors on-board, and
when power is applied, the
in-rush current approaches
4 A. After the capacitors charge,
which takes about 500 millisec-
onds, the steady state current
settles to 600 mA. See Figure 5-1.

The MPS can address this
application using dwell-paced
Lists. In this case, the List
will consist of a set of current
limits and dwell times, because
the voltage will remain constant
throughout the test.

Once power has been applied,
the first current limit, which
provides protection to a shorted
DUT while still allowing high
current in-rush to occur, will
remain in effect for the dwell
time. Then the current limit
will switch to its next setting
in the List. The result is a cur-
rent limit which changes with
time and provides protection
as the DUT current require-
ments drop off to their steady
state value. When the dwell
time expires for the last current
limit in the List, the current
limit stays at this value until
reprogrammed. Thus, the actual
value of the last dwell time is
not important. The last current
List point would be the current
limit for the steady state opera-
tion during the test of the DUT.
See Figure 5-2 for how the MPS
implements this protection.

Throughout List execution,
overcurrent protection will
be enabled. If at any time the
module goes into CC, the
output will be disabled, the
test stopped, and the DUT
protected.

MPS features used

• 20-point current List

• Dwell time

• Dwell-paced Lists

• Disable the output on a
change in internal status

• Stop the List on a change
in internal status

• Change the voltage on trigger

• Trigger on a GP-IB trigger
command

• Overcurrent protection

• Active downprogramming

30

Application 5.
Providing Time-Varying Current Limiting

31

Figure 5-1. Typical DUT Current vs Time

Figure 5-2. Desired Current Limit vs Time

Time100 ms 500 ms

At 12 Volts

4 A

600 mA

Cu
rr

en
t

Time100 ms 500 ms

= typical DUT current

= programmed current limit

12 V

0 V

Computer trigger command

0 ms

4.1 A

50 ms

3 A

100 ms

2 A

1 A
700 mA

Dwell time on
last point is
not important

200 ms

150 ms

Cu
rr

en
t

Advantages/benefits of the
MPS solution

• By using Lists, the module
changes its current limit
automatically, so that the
computer is not devoted to
reprogramming the current
limit.

• The output can change faster
when dwell paced than when
the computer must explicitly
reprogram each change.

• Overcurrent protection can
disable the output before
the DUT is damaged.

• By letting the modules
monitor status, the CC
condition will be responded
to faster than if the computer
was responsible for stopping
the test.

• The sequence is simpler to
program (no timing loops).

• By using dwell times, the
timing of each point is
accurate and repeatable
because the computer does
not provide timing for the
sequence.

• When the output is disabled,
the active downprogrammers
in the module output can
quickly discharge the module’s
output capacitors and any
capacitance in the DUT.

Implementation details

How the MPS implements
the sequence.

• The module is programmed
to current List mode.

• The module will execute a
dwell-paced current List.

• The current limit List points
are downloaded to the
module.

• The dwell times are
downloaded to the module.

• To begin powering the DUT,
the module is triggered
by the computer. This one
trigger causes the current
List to begin executing and
the voltage to go to its
programmed value.

• The module steps through the
current limit List.

• The module continuously
monitors its status.

• If the modules goes into CC,
the overcurrent protection
disables the output.

Module set up

• Set the current mode to List.

• Download current List.

• Download the dwell times.

• Set the List to be dwell paced.

• Enable overcurrent protection.

• The initial voltage setting
is 0 V.

• The module listens for the
computer to send a trigger
command.

• Upon receipt of the trigger
command, the module goes
to 12 V.

• Also upon receipt of the
trigger command, the module
begins executing its current
limit List.

Variations on this
implementation

1. The module could be set to
begin applying power in
response to an external or
backplane TTL Trigger.

2. Multiple modules could be
programmed to cycle together
in response to the computer
trigger command. Each
module could have unique
current limits, voltage
settings, and dwell times.

3. The module could be set
to generate an SRQ if the
overcurrent protection
disables the output.

4. The module could be set
to generate an external or
backplane TTL Trigger
if the overcurrent protection
disables the output.

5. The in-rush current can be
controlled using the current
limit settings of the current
List. Instead of setting the
current limit slightly above
4 A, it could be set at a much
lower value. This would limit
the in-rush current to the
value in the List. It would
take longer to charge the
capacitors on the assembly,
but the in-rush condition
would be controlled. In this
variation, the overcurrent
protection could not be used,
because you want the
module to be in CC.

32

33

'Application #5: Providing Time-Varying Current Limiting
'

Private Sub CommandApp5_Click()

' THIS IS AN EXAMPLE PROGRAM INTENDED FOR USE WITH MICROSOFT VISUAL BASIC 6.0 AND THE AGILENT

' VISA COM OBJECTS.

'

' TO USE THE IO OBJECT IN A VISUAL BASIC PROJECT, SET THE REFERENCE TO INCLUDE THE LIBRARIES

' IN THE PROJECT/REFERENCES MENU:

' “AGILENT VISA COM RESOURCE MANAGER 1.0”, CORRESPONDS TO AgtRM.DLL

' “VISA COM 1.0 TYPE LIBRARY”, CORRESPONDS TO SISACOM.tlb

' “VISA COM 488.2 FORMATTED I/O 1.0”, CORRESPONDS TO BasicFormattedIO.DLL

'

' USE A STATEMENT SUCH AS “Dim MPS_Slot As VisaComLib.FormattedIO488” TO CREATE THE

' FORMATTED I/O REFERENCE AND USE “Set MPS_Slot = New VisaComLib.FormattedIO488” TO CREATE

' THE ACTUAL OBJECT

Dim io_mgr As VisaComLib.ResourceManager

Dim MPS_Slot0 As VisaComLib.FormattedIO488

Set io_mgr = New AgilentRMLib.SRMCls

Set MPS_Slot0 = New VisaComLib.FormattedIO488

Set MPS_Slot0.IO = io_mgr.Open(“GPIB0::5::0::INSTR”)

On Error GoTo MyError

Dim C_limit, Dwell As String

C_limit = “4.1, 3.0, 2.0, 1.0, 0.7” ' CURRENT LIMIT DATA

Dwell = “0.2, 0.05, 0.1, 0.15, 0.1” ' DWELL TIME DATA

Dim st_value As Integer ' HOLD STATUS VALUE

With MPS_Slot0

.WriteString “*RST;*CLS;STATUS:PRESET” ' RESET AND CLEAR MODULE

.WriteString “VOLT 0” ' START TEST AT 0 V

.WriteString “OUTPUT ON” ' ENABLE OUTPUT

.WriteString “CURRENT:PROTECTION:STATE ON” ' ENABLE OCP

.WriteString “OUTPUT:PROTECTION:DELAY 0” ' NO DELAY BEFORE PROTECTION OCCURS

.WriteString “CURRENT:MODE LIST” ' SET TO GET CURRENT FROM LIST

.WriteString “LIST:CURRENT ” & C_limit ' DOWNLOAD CURRENT POINTS

.WriteString “LIST:DWELL ” & Dwell ' DOWNLOAD DWELL TIMES

.WriteString “LIST:STEP AUTO” ' DWELL-PACED LIST

.WriteString “VOLT:TRIGGERED 12” ' GO TO 12 V WHEN TRIGGERED

.WriteString “INITIATE” ' ENABLE TRIGGER TO START LIST AND APPLY 12 V

End With

'

' BEFORE TRIGGERING THE MODULE, DETERMINE IF IT IS READY BY CHECKING FOR

' 'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER).

'

' YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY

' CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS

' THAT TAKE TIME WILL GIVE THE MODULE A CHANCE TO COMPLETE PROCESSING.

'

Do

With MPS_Slot0

.WriteString “STATUS:OPERATION:CONDITION?”

st_value = .ReadNumber

End With

Loop Until (st_value & 32) ' TEST FOR BIT 5 = TRUE

'

' SEND TRIGGER COMMAND TO START LIST AND APPLY 12V

' SEND IMMEDIATE TRIGGER, WHICH IS ALWAYS ACTIVE. THEREFORE, IT DOES NOT NEED TO BE

' SELECTED AS A TRIGGER SOURCE.

MPS_Slot0.WriteString “TRIGGER:IMMEDIATE”

' CLOSE THE I/O SESSIONS.
MPS_Slot0.FlushRead
MPS_Slot0.FlushWrite False
MPS_Slot0.IO.Close
Set MPS_Slot0 = Nothing

Exit Sub

MyError:

txtError = Err.Description & vbCrLf

Resume Next

End Sub

34

To download this example program, see: www.agilent.com/find/66000PN

http://www.agilent.com/find/66000pn

Overview of application

When performing bias supply
margin testing, throughput can
be maximized by eliminating
the command processing time
associated with reprogramming
all outputs for each set of limit
conditions. Instead, multiple
sets of bias limit conditions
can be downloaded to the power
modules during test system
initialization. During the testing,
the computer can use a single
command to simultaneously
signal all power modules to
step through each test
condition.

In this example, the DUT
requires +5 V and ±12 V. The
DUT is tested to ensure proper
operation at marginal supply
voltages. The margin specified
is ±5% of nominal voltage. At
each of the combinations given
below, the computer first sets
up the three modules and makes
a measurement on the DUT. The
combinations to be tested are:

When conducting this test,
the modules will need to be
reprogrammed 21 times and
seven measurements made.
The command processing time
could slow down this test.

The MPS can be used to increase
throughput. By downloading all
of the combinations into the
three modules, each setting can
be quickly stepped through by
triggering all modules to change
to their next voltage setting
and then taking a measurement
from the DUT. This permits
testing without command
processing overhead.

MPS features used

• 20-point voltage List

• Trigger-paced Lists

• Trigger in/out from MPS
mainframe backplane TTL
Trigger

• Trigger on a GP-IB trigger
command

Advantages/benefits of the
MPS solution

• By using Lists, the module
changes its voltage without
delays due to processing
the command to change the
output voltage.

• By using triggers, all three
outputs can be changed with
one command.

• The computer loop to change
the settings and take a
measurement is simplified,
because you do not have to
explicitly reprogram each
module output. Instead, the
loop becomes “Trigger” and
“Measure”.

35

Nominal 5 V Nominal +12 V Nominal –12 V

4.75 V 12 V – 12 V

5 V 12 V – 12 V

5.25 V 12 V – 12 V

5 V 11.4 V – 12 V

5 V 12.6 V – 12 V

5 V 12 V – 11.4 V

5 V 12 V – 12.6 V

Application 6.
Output Sequencing Paced by the Computer

Implementation details

How the MPS implements
the sequence

The following steps are
performed for each point
in the List:

• The computer sends a
trigger command to the
first module.

• The first module simultane-
ously sends a backplane TTL
Trigger to the other two
modules and goes to its
next List point.

• The second module receives
the backplane TTL Trigger
and immediately goes to its
next List point.

• The third module receives
the backplane TTL Trigger,
immediately goes to its next
List point.

• The computer gets a measure-
ment from the measurement
instrument.

MPS set up

Module in slot 0:

• The module is connected
to +5 V on the DUT.

• The initial voltage setting
is 0 V.

• Set the voltage mode to List.

• Download the voltage List.

• Set the List to be trigger paced.

• The module listens for
the computer to send a
trigger command.

• Upon receipt of the trigger
command, the module
outputs its next List point.

• Also upon receipt of the
trigger command, the
module generates a
backplane TTL Trigger.

Module in slot 1:

• The module is connected
to +12 V on the DUT.

• The initial voltage setting
is 0 V.

• Set the voltage mode to List.

• Download the voltage List.

• Set the List to be trigger
paced.

• The module listens for
a backplane TTL Trigger.

• Upon receipt of a trigger,
the module goes to its next
List point.

Module in slot 2:

• The module is connected
to –12 V on the DUT.

• The initial voltage setting
is 0 V.

• Set the voltage mode to List.

• Download the voltage List.

• Set the List to be trigger
paced.

• The module listens for a
backplane TTL Trigger.

• Upon receipt of a trigger,
the module goes to its
next List point.

Variations on this
implementation

1. A current List could also
have been executed by the
module so that for each
voltage point, a correspond-
ing current limit could be
programmed.

2. Overcurrent protection
could be enabled to protect
a faulty DUT.

3. The module could generate
an SRQ when it finishes
changing voltage for each
point in the List based on
the STC (Step Completed)
status bit, which indicates
when the module has
completed executing the
next point in the List. The
SRQ could tell the computer
to get a measurement from
the measurement instrument.

4. The module could be told
to output its next List point
in response to an external
or backplane TTL Trigger.
(See next application.)

36

37

Figure 6-1. Block Diagram of Application #6

Figure 6-2. Timing Diagram of Application #6

+ -

D U T +12 V – 12 V + –
5 V

Slot
0

Slot
1

Slot
2

Backplane TTL Trigger

InInOut

GP-IB
Trigger

MPS
Mainframe GP-IB

“Make a
Measurement”

Measurement
Instrument

+ - + -

0 V

12 V12 V 12 V

0 V

4.75 V
5 V

5.25 V

0 V

12 V12 V 12 V

List Point 1 List Point 2 List Point 3

Computer
Trigger

Command

Module,
Slot 0

MPS Mainframe
Backplane

TTL Trigger

Module,
Slot 1

Module,
Slot 2

Computer Gets
Reading

from DMM

...

...

...

...

...

...

38

'Application #6: Output Sequencing Paced by the Computer
'

Private Sub CommandApp6_Click()

' THIS IS AN EXAMPLE PROGRAM INTENDED FOR USE WITH MICROSOFT VISUAL BASIC 6.0 AND THE AGILENT

' VISA COM OBJECTS.

'

' TO USE THE IO OBJECT IN A VISUAL BASIC PROJECT, SET THE REFERENCE TO INCLUDE THE LIBRARIES

' IN THE PROJECT/REFERENCES MENU:

' “AGILENT VISA COM RESOURCE MANAGER 1.0”, CORRESPONDS TO AgtRM.DLL

' “VISA COM 1.0 TYPE LIBRARY”, CORRESPONDS TO SISACOM.tlb

' “VISA COM 488.2 FORMATTED I/O 1.0”, CORRESPONDS TO BasicFormattedIO.DLL

'

' USE A STATEMENT SUCH AS “Dim MPS_Slot As VisaComLib.FormattedIO488” TO CREATE THE

' FORMATTED I/O REFERENCE AND USE “Set MPS_Slot = New VisaComLib.FormattedIO488” TO CREATE

' THE ACTUAL OBJECT

Dim io_mgr As VisaComLib.ResourceManager

Dim MPS_Slot0 As VisaComLib.FormattedIO488

Dim MPS_Slot1 As VisaComLib.FormattedIO488

Dim MPS_Slot2 As VisaComLib.FormattedIO488

Set io_mgr = New AgilentRMLib.SRMCls

Set MPS_Slot0 = New VisaComLib.FormattedIO488

Set MPS_Slot1 = New VisaComLib.FormattedIO488

Set MPS_Slot2 = New VisaComLib.FormattedIO488

Set MPS_Slot0.IO = io_mgr.Open(“GPIB0::5::0::INSTR”)

Set MPS_Slot1.IO = io_mgr.Open(“GPIB0::5::1::INSTR”)

Set MPS_Slot2.IO = io_mgr.Open(“GPIB0::5::2::INSTR”)

On Error GoTo MyError

Dim Plus_5v, Plus_12v, Minus_12v As String

Plus_5v = “4.75, 5, 5.25, 5, 5, 5, 5” ' THESE ARE THE BIAS

Plus_12v = “12, 12, 12, 11.4, 12.6, 12, 12” ' SUPPLY LIMIT CONDITIONS

Minus_12v = “12, 12, 12, 12, 12, 11.4, 12.6” ' TO BE TESTED

Num_test_steps = 7 ' NUMBER OF BIAS SUPPLY LIMIT C0MBINATIONS

Dwell = 0.01 ' SECONDS OF DWELL TIME

Dim st_value As Integer ' HOLD STATUS VALUE

'

39

' SET UP MODULE IN SLOT 0 AS +5 V BIAS SUPPLY ---------------------

'

With MPS_Slot0

.WriteString “*RST;*CLS;STATUS:PRESET” ' RESET AND CLEAR MODULE

.WriteString “VOLT 0” ' START AT 0 V

.WriteString “OUTPUT ON” ' ENABLE OUTPUT

.WriteString “VOLTAGE:MODE LIST” ' SET TO GET VOLTAGE FROM LIST

.WriteString “LIST:VOLTAGE ” & Plus_5v ' DOWNLOAD VOLTAGE LIST POINTS

.WriteString “LIST:DWELL ” & Dwell ' DOWNLOAD I DWELL TIME (ASSUMES SAME FOR ALL POINTS)

.WriteString “LIST:STEP ONCE” ' EXECUTE 1 LIST POINT PER TRIGGER

.WriteString “TRIGGER:SOURCE BUS” ' TRIGGER SOURCE IS GPIB 'BUS'

.WriteString “OUTPUT:TTLTRG:SOURCE BUS” ' GENERATE BACKPLANE TTL TRIGGER WHEN GPIB 'BUS' TRIGGER IS RECEIVED

.WriteString “OUTPUT:TTLTRG:STATE ON” ' ENABLE TTL TRIGGER DRIVE

.WriteString “INITIATE” ' ENABLE RESPONSE TO TRIGGER

End With

'

' SET UP MODULE IN SLOT 1 AS +12 V BIAS SUPPLY ---------------------

'

With MPS_Slot1

.WriteString “*RST;*CLS;STATUS:PRESET” ' RESET AND CLEAR MODULE

.WriteString “VOLT 0” ' START AT 0 V

.WriteString “OUTPUT ON” ' ENABLE OUTPUT

.WriteString “VOLT:MODE LIST” ' SET TO GET VOLTAGE FROM LIST

.WriteString “LIST:VOLTAGE ” & Plus_12v ' DOWNLOAD VOLTAGE LIST POINTS

.WriteString “LIST:DWELL ” & Dwell ' DOWNLOAD 1 DWELL TIME (ASSUMES SAME FOR ALL POINTS)

.WriteString “LIST:STEP ONCE” ' EXECUTE 1 LIST POINT PER TRIGGER

.WriteString “TRIGGER:SOURCE TTLTRG” ' TRIGGER SOURCE IS BACKPLANE TTL TRIGGER

.WriteString “INITIATE” ' ENABLE RESPONSE TO TRIGGER

End With

'

' SET UP MODULE IN SLOT 2 AS -12 V BIAS SUPPLY ----------------------

'

With MPS_Slot2

.WriteString “*RST;*CLS;STATUS:PRESET” ' RESET AND CLEAR MODULE

.WriteString “VOLT 0” ' START AT 0 V"

.WriteString “OUTPUT ON” ' ENABLE OUTPUT

.WriteString “VOLT:MODE LIST” ' SET TO GET VOLTAGE FROM LIST

.WriteString “LIST:VOLTAGE ” & Minus_12v ' DOWNLOAD VOLTAGE LIST POINTS

.WriteString “LIST:DWELL ” & Dwell ' DOWNLOAD 1 DWELL TIME (ASSUMES SAME FOR ALL POINTS)

.WriteString “LIST:STEP ONCE” ' EXECUTE 1 LIST POINT PER TRIGGER

.WriteString “TRIGGER:SOURCE TTLTRG” ' TRIGGER SOURCE IS BACKPLANE TTL TRIGGER

.WriteString “INITIATE” ' ENABLE RESPONSE TO TTL TRIGGER

End With

'

' BEFORE TRIGGERING THE MODULES, DETERMINE IF THE MODULES ARE READY BY CHECKING FOR

' 'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER). IF THE LAST MODULE PROGRAMMED

' IS READY THEN SO ARE THE OTHERS, SO JUST CHECK SLOT 2.

'

' YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY

' CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS

' THAT TAKE TIME WILL GIVE THE MODULES A CHANCE TO COMPLETE PROCESSING.

'

Do

MPS_Slot2.WriteString “STATUS:OPERATION:CONDITION?”

st_value = MPS_Slot2.ReadNumber

Loop Until (st_value & 32) ' TEST FOR BIT 5 = TRUE

'

' GENERATE A TRIGGER AND MAKE A MEASUREMENT FOR EACH TEST CONDITION

'

For Loop_count = 1 To Num_test_steps

MPS_Slot0.WriteString “*TRG” ' SEND GPIB BUS TRIGGER

Get_Measurement

Next Loop_count

' CLOSE THE I/O SESSIONS.
MPS_Slot0.FlushRead
MPS_Slot0.FlushWrite False
MPS_Slot0.IO.Close
Set MPS_Slot0 = Nothing

MPS_Slot1.FlushRead
MPS_Slot1.FlushWrite False
MPS_Slot1.IO.Close
Set MPS_Slot1 = Nothing

MPS_Slot2.FlushRead
MPS_Slot2.FlushWrite False
MPS_Slot2.IO.Close
Set MPS_Slot2 = Nothing

Exit Sub

MyError:

txtError = Err.Description & vbCrLf

Resume Next

End Sub

Private Sub Get_Measurement()

'

' THIS IS JUST TO SHOW YOU WHERE YOU WOULD ADD CODE TO GET DATA FROM THE MEASUREMENT INSTRUMENT.

' THE MEASUREMENT MUST TAKE LONGER THAN THE PROGRAMMED DWELL TIME OR YOU WILL MISS TRIGGERS.

'

End Sub

40

To download this example program, see: www.agilent.com/find/66000PN

http://www.agilent.com/find/66000pn

Overview of application

When characterizing devices,
the DUT’s performance is
measured over a range of power
supply voltages. This test can be
performed without computer
intervention by using hardware
signals from the measurement
instrument to cause the power
module to sequence to the next
voltage in a preprogrammed
List. By buffering these readings
in the measurement instrument,
the entire test can be executed
without computer involvement.
For characterizations that
require long measurement
times, the computer is free to
do other tasks. For characteri-
zations that must execute at
hardware speeds, the computer
is not involved and will not
slow down the test loop.

In this example, the power
module must apply 8 to 14 volts
(in 13 0.5-volt increments) to
an automotive engine sensor.
The module varies the bias
voltage to the engine sensor
and the sensor’s output is
measured to characterize its
performance over the range
of possible “battery voltages”.
The sensor output is measured
by a DMM that has an internal
buffer and stores each reading.

By combining Lists and trigger
capabilities, the MPS can be
used to address this application.
The module can be programmed
to use its triggering capabilities
to the fullest extent. Each time
the module executes the next
step in its List and changes
voltage, the module will generate
an external trigger. The external
trigger will cause the DMM,
equipped with an external
trigger input, to take and store
a reading. The DMM, also
equipped with a “Measurement
Complete” output, sends its
output trigger signal to the
module to tell the module
to go to its next List point.
Effectively, the module and
the DMM “handshake”, so that
the two function at hardware
speeds without computer
intervention.

When the test is complete,
either device can signal the
computer to get the data from
the DMM. For the purpose of
this example, the module will
generate an SRQ when the last
List point has been executed.
This is indicated by the OPC
(Operation Complete) bit in the
status register.

Another detail that needs
attention is timing. The DUT
may require some settling time
before the DMM is told to take
a reading. The module’s dwell
time can be used to do this.
The STC (Step Complete)
status signal indicates when
the point has been executed
and its dwell time has expired.
The dwell time is programmed
to be the engine sensor’s
settling time. The external
trigger is generated when STC
is asserted. Thus, the DMM
will not be triggered until the
dwell time has expired and the
sensor's output has settled.

41

Application 7.
Output Sequencing without Computer Intervention

This type of self-paced test
execution is useful in two
situations. When the test must
execute very fast, there is no
time for the computer to be
involved in each iteration of
the test loop. Therefore, the test
must execute without computer
intervention. The second
situation is when the test is
very long. For example, if the
measurement instrument took
1 minute to make each mea-
surement, the test would take
13 minutes to execute. The
computer is not used efficiently
if it is idle while waiting for
each measurement loop, so it
would be best to have the com-
puter executing another task.
Without self-pacing, you would
need to develop interrupt
driven software that stops every
1 minute to take a reading.
By letting the module and the
DMM run on their own, code
development is much simpler
and computer resources are
used more efficiently.

MPS features used

• 20-point voltage List

• Dwell time

• Trigger-paced Lists

• Generate an SRQ on a
change in internal status

• Generate a trigger on a
change in internal status

• Trigger in/out from MPS
mainframe backplane
TTL Trigger

• Trigger on a GP-IB
trigger command

Advantages/benefits of the
MPS solution

• The entire test executes
without computer
involvement, the command
processing time is eliminated
from the test loop.

• The entire test executes
without computer involve-
ment, so the computer
can perform other tasks
while the test executes.

• Software development is
simplified; you do not need
to write a test loop because
the module and the DMM
are running on their own.

• By using dwell times, the
trigger out signal can be
sent at the correct time,
which permits the DUT to
settle before a reading
is taken.

Implementation details

How the MPS implements
the sequence

• The module listens for
the computer to send a
trigger command.

• Upon receipt of the trigger
command, the module
outputs its first List point.

• After the dwell time expires,
the STC is asserted and the
module generates an external
trigger.

• The DMM receives the
external trigger, takes and
stores a reading.

• The DMM generates a
“Measurement Complete”
output signal when it’s done.

• The module receives the
DMM output signal as an
external trigger in.

• Also upon receipt of the
trigger in, the module
outputs its next List point.

• The process repeats for
each List point.

• After the last List point
has executed, the module
generates SRQ, telling the
computer the test has
completed.

42

MPS set up

• Set the voltage mode to List.

• Download the voltage List.

• Download the dwell
time List.

• Set the List to be trigger
paced.

• Set the trigger source to
external trigger. (Note that
the computer trigger
command “TRIGGER:
IMMEDIATE” is always
active, even if the external
trigger is the selected
source.)

• Set the module to generate
a backplane TTL Trigger on
STC. This backplane TTL
Trigger drives external
trigger out. Set the module
to generate SRQ on OPC.

Variations on this
implementation

1. A current List could also
have been executed by the
module so that for each
voltage point, a correspond-
ing current limit could be
programmed.

2. Overcurrent protection
could be enabled to protect
a faulty engine sensor.

3. If the DMM does not have
an internal buffer, the
computer could take a
reading on each iteration
of the test loop (see previous
application).

43

44

Figure 7-1. Block Diagram of Application #7

Figure 7-2. Timing Diagram of Application #7

D U T

MPS
Mainframe

Module

Backplane

TTL Trigger

Out

GP-IB
Trigger
to start

Backplane

Ext Trigger In

In

Test Point

DMM
with
internal
data
buffer

“Handshake” Connections

Measurement
Complete

Trig
In

Trig
Out

Trig
In

+ –

+ –

...

...

...

...

...

...

...

1

1

1

1

1

Computer Trigger
Command to Module

Operation Complete
(OPC)

Module Output
= Dwell Time

Step Completed
(STC)

MPS Ext Trigger Out
DMM Trigger In

DMM Measurement

DMM Measurement
Complete

MPS Ext Trigger In

List Points
4 to 11

List Point 1 2 3 12 13

Signals
computer
to take
data from
DMM

45

'Application #7: Output Sequencing Without Computer Intervention
'
Implements VisaComLib.IEventHandler
Dim MPS_Slot0 As VisaComLib.FormattedIO488 'THIS REPRESENTS THE MPS MODULE
Dim SRQ As VisaComLib.IEventManager 'USE THIS TO ENABLE THE EVENT HANDLER
Private Sub CommandApp7_Click()

' THIS IS AN EXAMPLE PROGRAM INTENDED FOR USE WITH MICROSOFT VISUAL BASIC 6.0 AND THE AGILENT
' VISA COM OBJECTS.
'
' TO USE THE IO OBJECT IN A VISUAL BASIC PROJECT, SET THE REFERENCE TO INCLUDE THE LIBRARIES
' IN THE PROJECT/REFERENCES MENU:
' “AGILENT VISA COM RESOURCE MANAGER 1.0”, CORRESPONDS TO AgtRM.DLL
' “VISA COM 1.0 TYPE LIBRARY", CORRESPONDS TO SISACOM.tlb
' “VISA COM 488.2 FORMATTED I/O 1.0", CORRESPONDS TO BasicFormattedIO.DLL
'
' USE A STATEMENT SUCH AS “Dim MPS_Slot As VisaComLib.FormattedIO488” TO CREATE THE
' FORMATTED I/O REFERENCE AND USE “Set MPS_Slot = New VisaComLib.FormattedIO488” TO CREATE
' THE ACTUAL OBJECT

Dim io_mgr As VisaComLib.ResourceManager

Set io_mgr = New AgilentRMLib.SRMCls
Set MPS_Slot0 = New VisaComLib.FormattedIO488
Set MPS_Slot0.IO = io_mgr.Open("GPIB0::5::0::INSTR”) 'SET IO ADDRESS

On Error GoTo MyError

Dim Vlist As String
Dim st_value As Integer ' HOLD STATUS VALUE

Vlist = "8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14” ' VOLTAGE LIST POINTS

With MPS_Slot0
.WriteString “*RST;*CLS;STATUS:PRESET” ' RESET AND CLEAR MODULE
.WriteString “VOLT 0” ' START AT 0 V
.WriteString “CURR 1” ' SET CURRENT LIMIT
.WriteString “OUTPUT ON” ' ENABLE OUTPUT
.WriteString “VOLT:MODE LIST” ' SET TO GET VOLTAGE FROM LIST
.WriteString “LIST:VOLT” & Vlist ' DOWNLOAD VOLTAGE LIST POINTS
.WriteString “LIST:DWELL 0.05” ' DOWNLOAD 1 DWELL POINT (ASSUMES SAME FOR ALL POINTS)

' USE A 50 ms SETTLING TIME AS THE DWELL TIME
.WriteString “LIST:STEP ONCE” ' EXECUTE 1 POINT PER TRIGGER

.WriteString “*ESE 1” ' ENABLES DETECTION OF OPC IN THE STANDARD EVENT REGISTER.
' OPC = BIT 0 = VALUE 1 OF THE STANDARD EVENT REGISTER.

.WriteString “*SRE 32” ' ENABLES THE SERVICE REQUEST REGISTER TO GENERATE AN SRQ WHEN
' ANY EVENT IN THE STANDARD EVENT REGISTER IS ASSERTED.
' THE STANDARD EVENT REGISTER = BIT 5 = VALUE 32.

.WriteString “OUTPUT:TTLTRG:STATE ON” ' ENABLE BACKPLANE TTL TRIGGER DRIVE

.WriteString “OUTPUT:TTLTRG:SOURCE LINK” ' WHEN THE MODULE INDICATES SIC (STEP COMPLETED),

.WriteString “OUTPUT:TTLTRG:LINK 'STC'” ' GENERATE A BACKPLANE TTL TRIGGER
.WriteString “TRIGGER:SOURCE EXTERNAL” ' USE EXTERNAL TRIGGER IN BNC AS TRIGGER SOURCE
.WriteString “INITIATE" ' ENABLE RESPONSE TO TRIGGER
.WriteString “*OPC" ' TELLS MODULE TO ASSERT OPC (OPERATION COMPLETE)

' WHEN IT COMPLETES THE LIST. OPC GENERATES SRQ.
End With

Set SRQ = MPS_Slot0.IO ' SET SRQ TO THE SESSION AND
SRQ.InstallHandler EVENT_SERVICE_REQ, Me
SRQ.EnableEvent EVENT_SERVICE_REQ, EVENT_HNDLR ' ENABLE THE SRQ
'
' BEFORE TRIGGERING THE MODULE, DETERMINE IF IT IS READY BY CHECKING FOR
' 'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER).
'
' YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY
' CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
' THAT TAKE TIME WILL GIVE THE MODULE A CHANCE TO COMPLETE PROCESSING.
'
Do

With MPS_Slot0
.WriteString “STATUS:OPERATION:CONDITION?"
st_value = .ReadNumber

End With
Loop Until (st_value & 32)
'
' SEND TRIGGER COMMAND TO START LIST AND APPLY 12V
' SEND IMMEDIATE TRIGGER, WHICH IS ALWAYS ACTIVE. THEREFORE, IT DOES NOT NEED TO BE
' SELECTED AS A TRIGGER SOURCE.

MPS_Slot0.WriteString “TRIGGER:IMMEDIATE”

' CLOSE THE I/O SESSIONS.
MPS_Slot0.FlushRead
MPS_Slot0.FlushWrite False
MPS_Slot0.IO.Close
Set MPS_Slot0 = Nothing

MyError:

txtError = Err.Description & vbCrLf
Resume Next

End Sub
Private Sub mySrqTask()

MPS_Slot0.WriteString “*ESR?” ' THIS CLEARS INTERRUPT FROM OPC EVENT.

' ADD LINES HERE TO READ THE DATA BUFFER FROM THE DMM.

' INTERACTIVE MESSAGE FOR DEBUG.
txtData.SelText = vbCrLf & “mySrqTask fired, getting data " & Time() & vbCrLf

End Sub
Private Sub IEventHandler_HandleEvent(ByVal vi As VisaComLib.IEventManager, ByVal SRQevent As VisaComLib.IEvent, ByVal userHandle As Long)

mySrqTask ' PASS CONTROL TO YOUR INTERRUPT ROUTINE.

End Sub

46

To download this example program, see: www.agilent.com/find/66000PN

http://www.agilent.com/find/66000pn

This appendix contains a
sample program listing in
HP BASIC for application #3.
This example program was
chosen as representative of all
application programs because
it shows how to:

• Address the power module.

• Write strings to the power
module.

• Write real arrays to the
power module.

• Receive real numbers
from the power module.

The six other application
programs all use a subset of
these functions.

47

Appendix

10 ! APPLICATION #3: CONTROLLING VOLTAGE RAMP UP AT TURN ON
20 ! PROGRAM LISTING IN HP BASIC FOR APPLICATON #3
30 ! PROGRAM: APP_3
40 ASSIGN @Slot0 TO 70500 ! SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 00
50 !
60 OPTION BASE 1
70 DIM V-step(20 ! ARRAY TO HOLD THE VOLTAGE RAMP STEPS
80 Vstart=2 ! START VOLTAGE FOR RAMP
90 Vstop=10 ! STOP VOLTAGE FOR RAMP
100 Ramp_time=.5 ! SECONDS TO CHANGE FROM Vstart TO Vstop
110 Dwell=Ramp_time/19 ! IN SECONDS
120 !
130 ! SINCE THE OUTPUT STAYS AT THE LAST VOLTAGE POINT AFTER ITS DWELL TIME EXPIRES, THE DWELL TIME OF THE
140 ! LAST POINT IS NOT PART OF THE TRANSITION TIME. THEREFORE, DIVIDE THE TOTAL TIME BY 19 POINTS, NOT 20.
150 ! ALSO, YOU ONLY NEED TO DOWNLOAD 1 DWELL TIME. IF THE MODULE RECEIVES ONLY 1 DWELL TIME, IT ASSUMES
160 ! YOU WANT THE SAME DWELL TIME FOR EVERY POINT IN THE LIST.
170 !
180 FOR 1=1 To 20
190 V-Step(I)=Vstart+(((Vstop-Vstart)/20)*I) ! CALCULATES VOLTAGE LIST POINTS
200 NEXT I
210 !
220 OUTPUT @Slot0;“*RST;*CLS;STATUS:PRESET” ! RESET AND CLEAR MODULE
230 OUTPUT @Slot0;“VOLT”;Vstart ! START RAMP AT Vstart
240 OUTPUT @Slot0;“CURR .1”
250 OUTPUT @Slot0;“OUTPUT ON” ! ENABLE OUTPUT
260 OUTPUT @Slot0;“VOLT:MODE LIST” ! SET TO GET VOLTAGE FROM LIST
270 OUTPUT @Slot0;“LIST:VOLT”;V_step(*) ! DOWNLOAD VOLTAGE POINTS
280 OUTPUT @Slot0;“LIST:DWELL”;Dwell ! DOWNLOAD 1 DWELL TIME
290 OUTPUT @Slot0;“LIST:STEP AUTO” ! DWELL-PACED LIST
300 OUTPUT @Slot0;“INITIATE” ! ENABLE TRIGGER TO START LIST
310 !
320 ! BEFORE TRIGGERING THE MODULE, DETERMINE IF IT IS READY BY CHECKING FOR
330 ! 'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER).
340 !
350 ! YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY
360 ! CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
370 ! THAT TAKE TIME WILL GIVE THE MODULE A CHANCE TO COMPLETE PROCESSING.
380 !
390 REPEAT
400 OUTPUT @Slot0;“STATUS:OPERATION:CONDITION?”
410 ENTER @Slot0;Condition-data
420 UNTIL BIT(Condition-data,5) ! TEST FOR BIT 5 = TRUE
430 !
440 ! SEND TRIGGER COMMAND TO START LIST AND GENERATE THE VOLTAGE RAMP
450 !
460 OUTPUT @Slot0;“TRIGGER:IMMEDIATE” ! THIS IS AN IMMEDIATE TRIGGER, WHICH IS ALWAYS ACTIVE.
470 ! THEREFORE, IT DOES NOT NEED TO BE SELECTED AS A TRIGGER SOURCE
480 !
490 END

To download this example program, see: www.agilent.com/find/66000PN

http://www.agilent.com/find/66000pn

By internet, phone, or fax, get assistance
with all your test & measurement needs

Online assistance:
www.agilent.com/find/assist

Phone or Fax
United States:
(tel) 800 452 4844

Canada:
(tel) 877 894 4414
(fax) 905 282 6495

China:
(tel) 800 810 0189
(fax) 800 820 2816

Europe:
(tel) (31 20) 547 2323
(fax) (31 20) 547 2390

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (82 2) 2004 5004
(fax) (82 2) 2004 5115

Latin America:
(tel) 305 269 7500
(fax) 305 269 7599

Taiwan:
(tel) 0800 047 866
(fax) 0800 286 331

Other Asia Pacific Countries:
(tel) (65) 6375 8100
(fax) (65) 6836 0252
Email: tm_asia@agilent.com

Product specifications and descriptions in this
document subject to change without notice.
© Agilent Technologies, Inc. 2003
Printed in the USA April 28, 2003
5988-2800EN

Agilent Technologies’ Test and Measurement
Support, Services, and Assistance
Agilent Technologies aims to maximize the
value you receive, while minimizing your risk
and problems. We strive to ensure that you
get the test and measurement capabilities
you paid for and obtain the support you
need. Our extensive support resources
and services can help you choose the right
Agilent products for your applications and
apply them successfully. Every instrument
and system we sell has a global warranty.
Support is available for at least five years
beyond the production life of the product.
Two concepts underlie Agilent’s overall
support policy: “Our Promise” and “Your
Advantage.”

Our Promise
Our Promise means your Agilent test and
measurement equipment will meet its adver-
tised performance and functionality. When
you are choosing new equipment, we will
help you with product information, including
realistic performance specifications and prac-
tical recommendations from experienced test
engineers. When you use Agilent equipment,
we can verify that it works properly, help with
product operation, and provide basic mea-
surement assistance for the use of specified
capabilities, at no extra cost upon request.
Many self-help tools are available.

Your Advantage
Your Advantage means that Agilent offers a
wide range of additional expert test and mea-
surement services, which you can purchase
according to your unique technical and busi-
ness needs. Solve problems efficiently and
gain a competitive edge by contracting with
us for calibration, extra-cost upgrades, out-of-
warranty repairs, and on-site education and
training, as well as design, system integration,
project management, and other professional
engineering services. Experienced Agilent
engineers and technicians worldwide can
help you maximize your productivity, optimize
the return on investment of your Agilent
instruments and systems, and obtain
dependable measurement accuracy for
the life of those products.

Agilent T&M Software and Connectivity
Agilent’s Test and Measurement software
and connectivity products, solutions and
developer network allows you to take time
out of connecting your instruments to your
computer with tools based on PC standards,
so you can focus on your tasks, not on your
connections. Visit www.agilent.com/find/
connectivity for more information.

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products
and applications you select.

Agilent Technologies

http://www.agilent.com/find/emailupdates
http://www.agilent.com/find/assist

	1. Sequencing Multiple Modules During Power Up
	2. Sequencing Multiple Modules to Power Down on Event
	3. Controlling Output Voltage Ramp Up at Turn On
	4. Providing Time-Varying Voltages
	5. Providing Time-Varying Current Limiting
	6. Output Sequencing Paced by the Computer
	7. Output Sequencing without Computer Intervention

